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Extraction of 3D distribution of
potato plant CWSI based on
thermal infrared image and
binocular stereovision system

Liuyang Wang1, Yanlong Miao2, Yuxiao Han1, Han Li1*,
Man Zhang2 and Cheng Peng1

1Key Laboratory of Agricultural Information Acquisition Technology, Ministry of Agriculture and
Rural Affairs, China Agricultural University, Beijing, China, 2Key Laboratory of Smart Agriculture
System Integration Research, Ministry of Education, China Agricultural University, Beijing, China
As the largest component of crops, water has an important impact on the

growth and development of crops. Timely, rapid, continuous, and non-

destructive detection of crop water stress status is crucial for crop water-

saving irrigation, production, and breeding. Indices based on leaf or canopy

temperature acquired by thermal imaging are widely used for crop water stress

diagnosis. However, most studies fail to achieve high-throughput, continuous

water stress detection and mostly focus on two-dimension measurements.

This study developed a low-cost three-dimension (3D) motion robotic system,

which is equipped with a designed 3D imaging system to automatically collect

potato plant data, including thermal and binocular RGB data. A method is

developed to obtain 3D plant fusion point cloud with depth, temperature, and

RGB color information using the acquired thermal and binocular RGB data.

Firstly, the developed system is used to automatically collect the data of the

potato plants in the scene. Secondly, the collected data was processed, and the

green canopy was extracted from the color image, which is convenient for the

speeded-up robust features algorithm to detect more effective matching

features. Photogrammetry combined with structural similarity index was

applied to calculate the optimal homography transform matrix between

thermal and color images and used for image registration. Thirdly, based on

the registration of the two images, 3D reconstruction was carried out using

binocular stereo vision technology to generate the original 3D point cloud with

temperature information. The original 3D point cloud data were further

processed through canopy extraction, denoising, and k-means based

temperature clustering steps to optimize the data. Finally, the crop water

stress index (CWSI) of each point and average CWSI in the canopy were

calculated, and its daily variation and influencing factors were analyzed in

combination with environmental parameters. The developed system and the

proposed method can effectively detect the water stress status of potato plants

in 3D, which can provide support for analyzing the differences in the three-

dimensional distribution and spatial and temporal variation patterns of CWSI

in potato.
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1 Introduction

Global climate change and water scarcity lead to a severe

negative impact on crop yield. Among the increasing research on

crop precision irrigation, water stress detection has attracted

increasing attention. Potato is the fourth most important food

crop in the world after wheat, rice, and maize (FAOSTAT, 2020).

Due to the relatively shallow root-zone depth coupled with the

low to medium soil field capacity of the coarse-textured soils

commonly used for their cultivation (Rud et al., 2014), the

potato plant has a high sensitivity to water stress, which affects

its growth and, in turn, its yield and quality. Therefore, it is

crucial to improve potato yield and quality by effectively water

stress status monitoring.

The immediate response of crop to water stress is to close

leaf stomata, resulting in increasing canopy temperature.

Stomatal conductance is a vital indicator of plant water stress,

and canopy temperature is a surrogate indicator for stomatal

conductance (Prashar and Jones, 2016). Idso et al. (1981)

proposed the crop water stress index (CWSI) based on crop

canopy temperature, which has been proved to effectively reflect

the water stress status of the crop since it was proposed. This

indicator can be calculated by three methods: empirical

approach (Idso et al., 1981), analytical approach (Jackson

et al., 1981), and direct approach (Jones, 1999). The CWSI

calculated by the three methods can be abbreviated as CWSIe,

CWSIa, and CWSId, respectively (Maes and Steppe, 2012).

Among them, CWSIe and CWSIa rely on meteorological

information such as ambient temperature, humidity, wind

speed, etc. In the measurement process, CWSId only needs a

thermal infrared image to simultaneously acquire the

temperatures of the dry and wet reference surfaces (Tdry and

Twet), and the temperature of crop canopy or leaf (Tc). Tdry

represents the temperature of a non-transpiring leaf with

completely closed stomata, and Twet represents the leaf

temperature when stomata are fully open (undisturbed

transpiring leaf). Due to the application of artificial reference

surfaces (Poirier-Pocovi et al., 2020), the measurement based on

thermal infrared images is further simplified. Moreover, the

CWSId index showed a good correlation with stomatal

conductance (Maes et al., 2016), leaf water potential (Rud

et al., 2014), and stem water potential (Garcia-Tejero

et al., 2017).

With the development of thermal imaging technology,

especially the decrease in high-performance online thermal

camera price, thermal infrared image has become increasingly

widely used in the agricultural field (Qiu et al., 2018). CWSI

(CWSId) calculation using the direct approach has become

widely used. In addition to non-destructive temperature

measurement, thermal infrared images can also be obtained

continuously, online, and rapidly in high-resolution. Therefore,

compared with other indicators such as stomatal conductance,
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leaf water potential, and stem water potential, the CWSI

calculation using the direct approach has the potential for

high-throughput water stress detection, and can be applied to

precise irrigation planning and drought resistance breeding

(Prashar et al., 2013). Thermal image captured by thermal

imaging equipment usually contains canopy temperature and

background temperature. It is a vital issue to eliminate the

background noise of thermal images. One method is to

separate the canopy based on the temperature difference

between the canopy and background. For example, Obidiegwu

et al. (2015) assessed water stress by extracting the crop canopy

in thermal images around noon under solar illumination.

Because the pixel resolution of the thermal camera is very low,

and a single pixel can detect thermal radiation from soil and leaf,

a threshold based on temperature alone may create a high degree

of uncertainty in estimating Tc. The other method is to collect

thermal and color images of the canopy simultaneously for

alignment and geometric registration, and then the canopy

area can be extracted based on segmentation algorithms of

color image processing (Amogi et al., 2020; Cucho-Padin et al.,

2020; Elsherbiny et al., 2021). This method requires pre-

calibration based on multiple sets of images from the thermal

camera and color camera, to determine the horizontal and

vertical displacement vectors between the two cameras.

Manual selection of the relevant control points in the two

images is often needed. Gan et al. (2018) proposed a

photogrammetry-based multi-modal image registration

method, which achieved an average accuracy of 3 pixels on

citrus canopy images.

With the development of technology, high-throughput

phenotyping methods using advanced sensors and robotic

platforms have shown increasing efficiency over traditional

manual phenotyping methods. Studies have shown that high-

throughput phenotyping techniques have achieved good results

in detecting and monitoring plant health, water and nutritional

status using multi-sensor data (Pereyra-Irujo et al., 2012; Kipp

et al., 2014). There are many high-throughput phenotyping

platforms developed by organizations and institutions which

are in use today (e.g., Scanalyzer Discovery platform, LemnaTec,

Germany; Phenomobile, High Resolution Plant Phenomics

Centre, Australia). However, these commercial platforms are

expensive and unsuitable for large-scale deployment. Therefore,

there is a need to develop a low-cost and lightweight system that

can meet specific crop phenotyping needs. Zhang et al. (2016)

developed a three-dimension (3D) motion robotic system for

automated high-throughput phenotyping of cereal crops, which

can extract 20 features from data acquired by onboard thermal

and multispectral cameras. Precision irrigation and drought

resistance breeding also require the large-scale automatic

collection of crop water stress data.

The current methods for crop CWSI calculation is often

based on temperature of random canopy parts or the entire
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canopy, obtained on two-dimension (2D) thermal image.

However, it fails to verify whether the water stress status of

crops is affected by different leaf positions or different detection

positions. Studies have shown that for potato plants, there are

differences in different leaf positions of plants due to the

transferability of chlorophyll. For example, Sun et al. (2018)

took Atlantic cultivars at the flowering stage as the research

object, drew a visual distribution map of chlorophyll in isolated

potato leaves at different leaf positions, and found that the

chlorophyll content increased from bottom to top. Also, Sun

et al. (2019) analyzed the two-dimensional distribution of water

content in isolated potato leaves by hyperspectral imaging, and

found that water stress increased, and the leaves started to lose

water from the edge and gradually spread to the middle of the

leaves. The above research shows that the water stress status of

potato plants may be affected by the leaf position and detection

position, which reflects the necessity of studying the differences

of potato CWSI in the 3D distribution. In general, there are

many ways to acquire 3D point cloud data (PCD) of a plant. It

has been reported that Narvaez et al. (2016) obtained thermal

distribution of pear trees in 3D using LiDAR and thermal

camera. However, the price of LiDAR is generally high. Rossi

et al. (2022) proposed an algorithm to automatically collect plant

structural parameters based on a phenotyping platform and

structure-from-motion (SFM) method, and applied the

algorithm to monitor the dynamic response of the plant to

early water stress. The SFM is an offline algorithm for 3D

reconstruction of a series of disordered images, which limits

its commercial use. 3D reconstruction based on stereo vision

technology, an image-based 3D information acquisition method,

has low cost and simple equipment, and is one of the most

commonly used reconstruction methods. Laguela et al. (2012)
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used image matching and fusion techniques to combine thermal

imaging and metric information to acquire 3D thermal models.

Yang et al. (2018) developed an imaging system consisting of two

smartphones and a low-cost thermal infrared camera, and the

images captured by it were fused for 3D thermal model reconstruction.

This study aims to extract 3D distribution of potato plant

CWSI at low cost using a thermal and a binocular camera.

Firstly, a 3D motion robotic system integrated with a 3D thermal

imaging system was developed for automated high throughput

acquisition of potato plant thermal image, binocular images (a

pair of color images), and temperature data. Then, specific

methods for generating a 3D thermal model of the potato

plant canopy were developed. The objectives of this study are

to: (1) develop a low-cost 3D platform and an image acquisition

control system, which has the function of positioning the image

acquisition module at predefined position and triggering the

control system to acquire images; (2) propose a method for fast

pixel-level registration of thermal and color images, and (3)

acquire the 3D CWSI distributions of the potato plant, and

analyze its variation characteristics and influencing factors in

time series.
2 Material and methods

2.1 3D motion robotic system

As shown in Figure 1A, the hardware of the 3D motion

robotic system adopted a modular design, consisting of a 3D

platform, an image acquisition module, and a host controller.

The 3D platform consists of an XYZ three-axis gantry

aluminum frame, three stepper drive control integrated
A

B

C

FIGURE 1

Equipment and apparatus used for experiments in this study: (A) overall experimental platform, (B) image acquisition module, and (C) host
controller.
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motors, and a single-chip microcomputer. The platform was

designed as 1.8 m×1.8 m×1.5 m (L×W×H) in dimension. The

sliders are driven by motors to move along the three axes. The

single-chip microcomputer is a development board integrated

with the STM32F103RCT6 (ST, Geneva, Switzerland) chip,

which sends control signals to the motor. The maximum

payload of the Z-axis for carrying the image acquisition

module is 10 kg. The “Home” position or coordinate origin of

the 3D plat form is at one of the corners of the

platform (Figure 1A).

The image acquisition module consists of a thermal camera

(Wuhan Guide Infrared Co., Ltd, Wuhan, China) with a model

of IPT384 and a binocular USB camera (Pixel XYZ, Wuhan,

China). The thermal camera can capture thermal pseudo-color

images with a resolution of 384×288 pixels, and save the

temperature of each pixel (measurement resolution is 0.1°C)

into a text file. The baseline of this binocular USB3.0 camera is

60 mm, and the left and right cameras can both capture color

images in 1280×720-pixel resolution. As shown in Figure 1A, the

image acquisition module was fixed on the slider of the Z-axis

(indicated by Z in Figure 1A) of the 3D platform. For ease of

installation, a camera frame was designed and 3D printed to

mount the two cameras (Figure 1B).

The host controller is a Jetson Nano (NVIDIA Corporation,

California, USA) running Ubuntu 18.04 system. The host

controller sends commands to the single-chip microcomputer

through the interface to control the 3D platform to move in

three directions. Furthermore, the host controller controls the

capturing of images of crop canopy by the cameras through

communications with the image acquisition module. As shown

in Figure 1A, the host controller and power module were fixed

above the image acquisition module. To facilitate installation, a

frame was designed and 3D printed to mount the host

controller (Figure 1C).

The host controller uses the Robot Operating System (ROS)

software architecture to write each functional module in the

form of nodes, which are divided into “AxisMoveNode” (AMN),

“IrCaramIpt384NodeV2016” (IrCN), and “RGBCaramNode”

(RGBCN). Communication between the nodes is implemented

in the form of publish/subscribe messages. The workflow of the

3D motion robotic system is shown in Figure 2. In the initial

stage, the AMN controls the motors to drive the sliders to move

to the origin position and return the coordinates to zero. Then,

the AMN controls the motor to drive the slider to move to the

preset target position, and judges whether the slider has reached

the target position through the position coordinate information

fed back in real-time. After reaching the target position, the

IrCN and the RGBCN receive the message of reaching the target

position published by the AMN, and then control the image

acquisition module to capture the images of the crop canopy and

the temperature data to the local folder, and publish the status
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message of the folder at the same time. The AMN determines

whether to go to the next target location by judging whether all

images and temperature data are newly added to the folders.

Until all the target positions are traversed, the AMN controls the

motors to drive the sliders to move to the origin position. Hence,

a round of inspection is completed.
2.2 Data collection

In the period from April 24th to May 1st (7 days), 2022, a

water stress experiment on potato plants (Netherlands 15) was

conducted in the No.9 greenhouse facilities of the National

Precision Agriculture Research Base, Beijing, China (40◦18′N,
116◦45′E). Potatoes are grown in pots, with peat and coconut

bran (at a volume ratio of 3:1) as the substrate, covered with a

black plastic. There were two experimental groups (control and

treatment groups, each has four potato plants), and the two

groups were treated with the same irrigation from planting to the

beginning of the experiment. After the first day of the

experiment, the control group was fully irrigated, and the

treatment group was not irrigated (Gerhards et al., 2016).

In this study, a wet reference surface was built following the

steps proposed by Meron et al. (2013). The CWSI can be

calculated by function (1) (Jones et al., 2002).

 CWSI ¼  
Tc  � Twet

Tdry  � Twet  
(1)

where Tc, Twet, and Tdry are the potato plant canopy

temperature, dry and wet reference surface temperatures,

respectively. Tdry was replaced by air temperature Tair plus 7°C

(Rud et al., 2014). The CWSI values are in the range of 0-1, and

the larger the value, the greater the water shortage pressure.

In this experiment, the cameras acquired plant data

perpendicular to the ground at a height of approximately

1.2m to 1.5m every day. The next day, the collection height

were readjusted according to the natural growth of the potato

to ensure that the entire canopy is included in the image as

much as possible. When collecting thermal images, Tair and

illumination were measured by LoRa sensors (IntelliFuture,

Hebei, China). The real-time Tair and illumination were

uploaded to the cloud platform through the LoRa

communication gateway. From April 24th to May 1st, 20-25

datasets were collected from 8:00 to 17:00 every day, and the

collected thermal data and images were stored in the onboard

SD card of the host controller.

Using Visual studio 2019 as the platform, the point cloud

library PCL1.10.0 and the computer vision library OpenCV3.1.0

(Open Source Computer Vision Library) were installed, and the

C++ language for software programming was used to realize

data processing.
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FIGURE 2

Workflow chart of the 3D robot system.
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2.3 Data processing

2.3.1 Stereo-calibration of thermal and
binocular cameras

Photogrammetry-based registration of thermal and

binocular cameras requires stereo-calibration of the

two cameras.

The checkerboard grid (Gan et al., 2018), was used in the

experiment for stereo-calibration. The size of each square is 30 ×

30mm, as shown in Figure 3A. The resolutions and filed of views

of the color and thermal images are different. First, the

checkerboard in the color image was resized to be the same as

that in the thermal image by applying the bicubic interpolation

algorithm, and then the color image was cropped to the same

resolution as the thermal image to facilitate subsequent

registration. The results are shown in Figures 3B, C. Next,

stereo-calibration was implemented using the Stereo Camera

Calibrator toolbox in MATLAB 2018a. The stereo-calibration

gets two sets of parameters, the first set of parameters are the

elements of interior orientation of the cameras (Wolf et al.,

2014). The second set of parameters is named relative

orientation between cameras (between the left and right

cameras of the binocular camera; between the left color and

the thermal cameras) (Gan et al., 2018). The calibrated

parameters were saved for subsequent use. Finally, the interior

orientation and relative orientation parameters of the left and

right cameras of the binocular camera were loaded and the stereo

rectification was applied, so that the left and right color images

were aligned in parallel without distortion.
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2.3.2 Coarse registration of thermal and
color images

The registration between thermal and color images requires

finding the geometric transformation relationship between

them. This requires groups of homonymy points to be found

correctly in two images. The process is shown in Figure 4A, and

Figure 5 shows a specific example.

First, to quickly select the homonymy points as many as

possible on the potato plants, the Laplacian algorithm was used

to sharpen the left and right color images to enhance the

contours/edges of the image (Ma et al., 2014). Then the

sharpened images were converted into the HSV (Hue,

Saturation, Value) color space. Compared with the RGB (Red,

Green, Blue) model, the HSV model can express the brightness,

hue, and saturation of the color very intuitively, and can

effectively use the color space for segmentation (Hamuda

et al., 2017). The mask parameters were obtained by setting

the upper and lower thresholds of the H channel [HL, HU], S

channel [SL, SU], and V channel [VL, VU] to extract the target

image, which was the green channel image, through the ‘and’

operation (Li et al., 2020).

Second, speeded-up robust features (SURF) features were

detected on the two target images and their descriptors were

established. Then, the detected feature points were matched

using the nearest neighbor distance ratio strategy and the

matching results were displayed on the original images. Some

mismatched points in the matching results may negatively

affect the regis trat ion, fi l tered out using epipolar

geometry constraints.
A

B C

FIGURE 3

Images pre-processing and Checkerboard. (A) Checkerboard for stereo-calibration, (B) thermal image of the potato plant, (C) cropped and
resized color image of the potato plant.
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Third, the filtered feature point pairs were extracted, and the

interior direction and relative direction parameters of the left

and right cameras of the binocular camera were loaded. The

triangulation principle was used for these point pairs to calculate

the world coordinates. Back-projection was applied using

function (2) to project those world coordinates onto the

thermal image.

Lastly, taking the feature points in the left color image and

the back-projected points on the thermal image as the input,

Random Sample Consensus (RANSAC) algorithm was

applied to compute the homography transformation that

best describes the relationship between these point pairs.

The calculation result of the RANSAC algorithm is the

optimal solution in the sense of least squares error. The
Frontiers in Plant Science 07
thermal image was transformed using the resulting

transformation matrix.

S ñCoordinatesthermal  ¼  K ñ 
R T

0T 1

" #
ñCoordinatesworld (2)

where, S is a non-zero scale factor, which is the z-component

of the world coordinates, Coordinatesthermal are the

homogeneous coordinates of the back-projection points on the

thermal image, and Coordinatesworld are the homogeneous

coordinates of the world points. K, R, and T are the intrinsic

matrix of the thermal camera, the rotation matrix, and the

translation matrix of the thermal camera relative to the left

camera of the binocular camera, respectively.
A

B

FIGURE 4

Workflow of the (A) coarse registration method and (B) fine registration method.
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2.3.3 Fine registration of thermal and
color images

The premise of applying the coarse registration method to

accurately register color and thermal images is that the

photographed object is close to the plane. However, the

surface structure of the potato plant canopy is complex and

the depth varies greatly. Moreover, the error of the coarse

registration is relatively large due to the error brought by the

camera calibration. Therefore, when the coarse registration

cannot meet the registration accuracy requirements, further
Frontiers in Plant Science 08
fine registration is required. The specific process is shown

in Figure 4B.

Firstly, for any filtered feature point in the color image, its

corresponding point in the thermal image can be obtained by

applying the coarse registration method. For instance, if the

coordinates of a feature point in the color image were (x0, y0 ), the

corresponding projection point coordinates in the thermal image

were calculated by back-projection as (x0_pro_thermal, y0_pro_thermal) .

Secondly, it was assumed that (x0_pro_thermal, y0_pro_thermal ) and the

coordinates of the true corresponding points in the thermal image
FIGURE 5

Example of coarse registration of color and thermal images.
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(x0_thermal, y0_thermal ) had a small position difference (Δx, Δy) , which

had an initial value (0, 0 ). Thirdly, the filtered feature points in the

color image and the position-compensated corresponding points in

the thermal image (x0_pro_thermal+Δx, y0_pro_thermal+Δy ) were retaken

as input, and the RANSAC algorithm was used to calculate the

homography matrix that can best describe the transformation

relationship between them, and the original thermal image was

transformed. Fourthly, the structural similarity (SSIM) index was

used to measure the similarities between the transformed thermal

image and the color image. The two images were first constrained to

co-aligned regions by cropping and then used as input for

measurement (Dandrifosse et al., 2021). Lastly, repeated the

previous four steps by increasing the values (Δx, Δy ). Because the

SSIM possesses the property of maximum uniqueness, the

transformation with the largest SSIM value was chosen as the

optimal transformation. The temperature matrix was acquired

simultaneously with the thermal image was also transformed using

the optimal homography transformation for subsequent use.

2.3.4 Generation of potato plant PCD
with temperature

3D reconstruction based on stereo vision technology is one

of the most commonly used reconstruction methods. Stereo

matching technology based on image information to acquire

depth information is a popular research topic in stereo vision. It

is the process of finding the homonymy points in two images,

then calculating the disparity value to acquire the depth

information of the point in the three-dimensional space.

In this study, stereo vision technology was used to

reconstruct the canopies of potato plants in 3D to generate

point clouds. Based on the similar triangle principle, the depth of

the world coordinate point can be calculated by the following

function:

D  ¼  
B ∙ f

xl � xr
(3)

where D is the depth value. B is the baseline, which is the

distance between the principal points of the two cameras of the

binocular camera. f is equal to the focal length multiplied by a

coefficient representing the number of pixels per millimeter on

the imaging plane. d=xl-xr is called disparity, which is the

difference between the x coordinates of the two corresponding

pixels on the left and right images.

First, a variant of the semi-global matching algorithm

(SGM), the semi-global block matching algorithm (SGBM)

was applied, using the left and right color images with stereo

rectification in section 2.3.1 to calculate the disparity map.

Next, due to occlusion or uneven illumination, some disparity

values in the disparity map are unreliable, and median filtering

was used to filter out isolated noise points caused by

mismatching. After removing false matches, the removed

pixels will cause holes of invalid values, and the method of
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multi-level mean filtering was used to fill the voids iteratively.

Multi-level mean filtering is a variant of mean filtering, which

is an algorithm that fills holes multiple times by changing the

filter window size and using the integral map of the disparity

map. It first performs mean filtering with a larger initial

window and assigns values to the holes in a large area. Then

in the subsequent filtering, the window size was reduced to half

of the original size, and the original integral graph was used to

filter again and assign values to the smaller holes (overwrite the

original values). These steps were repeated until the window

size became 3× 3, then the filtering stopped and the final result

was obtained. Then, the similar triangle principle was applied

using function (3) to calculate the depth value of a point in

space, and the three-dimensional coordinate information of

the point was calculated in combination with function (4)

(Huang et al., 2020; Xie et al., 2020). Finally, based on the

homography transformation between the color and thermal

images in section 2.3.3, a new point cloud data type was defined

by using the PCL library, which integrated the three-

dimensional coordinate information, RGB color value, and

temperature information of the potato plant canopy together.

Thus, the original 3D points cloud data of the potato canopy

containing both color information and temperature

information has been generated.

Z  ¼ D

X  ¼   x � x0
f

Än D

Y  ¼   y � y0
f

Än D

8>>><
>>>:

(4)

where (x, y) are the pixel coordinates of the image, and

(x0, y0) are the pixel coordinates of the principal point.

2.3.5 Optimization of PCD and extraction of
3D distribution of CWSI

In section 2.3.4, the original PCD of the potato plant were

acquired through stereo vision technology. The original PCD

not only contained potato plant but also background point

clouds such as soil and flower pots. The quality of PCD is not

high due to the influence of environmental factors (e.g.

illumination, wind speed) and image registration errors. Some

methods need to be taken to optimize the original PCD to

extract the potato plant canopy information. The specific steps

are as follows.

Step one: the PCD of the canopy of the potato plant were

extracted. Color is one of the most important features for

distinguishing crops and backgrounds in a greenhouse

environment (Tkalcic and Tasic, 2003). Philipp and Rath

(2002) found that the HSV color space is one of the most

reliable color spaces for distinguishing plant from the

background. In order to extract the green canopy area of

potato plant, a color model based on the HSV color space was

used to segment the original PCD.
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Step two: the scatter points were removed. The produced

scatter points due to factors such as random measurement error

and external environment when acquiring PCD was removed by

using the statistical filtering algorithm.

Step three: the abnormal temperature points of the canopy

were removed. Some ground areas were incorrectly matched to

some of the leaves due to the registration errors of the thermal

and color images, resulting in higher temperature values o4f the

leaves than their true surface temperatures. To remove such

incorrectly matched points, the k-means algorithm was used to

classify all points into two classes according to their temperature,

and the class with more points was saved as the optimized PCD

of the potato plant canopy (Qiu et al., 2021).

Step four: the CWSI value of each point of the potato plant

canopy was calculated and its 3D distribution was acquired. The

temperature of the wet reference surface was acquired from the

original PCD, and the temperature of the dry reference surface

was replaced by the air temperature plus 7 °C. The CWSI of each

point in the canopy can be obtained with these data through

function (1) and the distributions of CWSI in 3D were obtained.
2.4 Performance evaluation

Evaluation of registration performance was conducted for

thermal and color images. Because the true coordinates of the

matching points on the thermal image corresponding to the

color image cannot be determined, the accurate matching error

between these point pairs cannot be calculated. However, the

thermal image after the optimal homography transformation

can be overlaid with the color image to show the performance of

the registration. At the same time, the homography

transformation errors between the matching feature points on

the color image and transformed thermal image were calculated.

Second, registration performance was also measured by

computing the average distance between control points

(control point error) on the color and thermal images

(Dandrifosse et al., 2021). The control points were visually

selected by a human operator on the potato plant. The points

had to be selected on recognizable pixels (all locations of the

canopy and leaves).
3 Results

3.1 Feature detection and matching
results of the left and right color images

The image processing shows that illumination affect the

specific settings of H, S, V thresholds, especially in the

saturation, that is, the parameter S. When the sunlight hits the

crop surface directly, it affects the color and brightness of the

image, and the SL of the green reference color varies from 30 to
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40. The SL of the green reference color varies from 45 to 65 when

there is no direct sunlight. The images obtained at different times

of the day were analyzed and compared, as shown in Figure 6.

Figures 6A, B show the images when the sunlight directly on the

surface of tomato plants. At this time, the effect is best when the

SL is 35. Figures 6C, D show images of tomato plants in shadow

or without direct sunlight. At this point, the best result is when

the SL is 60. In the experiment, in order to reduce the

interference of background such as soil, a black plastic was

covered on the soil surface (Figure 1A). Under these conditions,

the values of HU and HL were set to 100 and 35, respectively.

The feature detection results on the green channel image

were compared with the feature detection results on the original

color image. The number of good matching points acquired by

filtering before and after extracting the canopy was used to

characterize the comparison results (the feature detection,

matching and filtering algorithms and parameter settings used

before and after the canopy extraction remain the same), as

shown in Figure 7. In this study, a total of 30 potato plant

samples from different collection periods were randomly

selected for verification, the results are shown in Table 1. It

can be seen that the number of matching point pairs filtered

from the extracted canopy images is 48% more than the number

of point pairs filtered from the original images on average.
3.2 Results of registration for thermal
and color images

The registration of thermal and color images was finished

according to the procedures described in sections 2.3.2 and 2.3.3.

The example in Figure 8 shows the performance of the proposed

image registration method and it can be seen that even though

some potato plants have a complex canopy structure and a wide

range of depths, their color and thermal images can be well

registered. Image registration performance was evaluated with

the same set of randomly selected 30 potato plant samples. The

homography transformation error and control point error of

each potato plant sample was recorded. The statistical results are

shown in Tables 2 and 3. The registered control point error is 2.8

pixels on average, indicating that the proposed SURF feature

detection on the extracted canopy images and photogrammetry-

based methods can effectively register the color and thermal

images of potato plants.
3.3 Extraction of 3D distribution of
potato plant CWSI

3.3.1 Results of generation and optimization of
the PCD

When using the disparity map calculated by stereo matching

for 3D reconstruction, the quality of the generated PCD is often
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not high due to the low quality of the disparity map. Therefore,

some disparity refines operations can be performed to improve

the quality of the disparity map. In this study, the SGBM

algorithm used, in addition to its sub-pixel fitting and

consistency check and other strategies to refine the disparity

map, median filtering and multi-level mean filtering algorithms

were also adopted to refine the disparity map further.

Experiments show that setting the initial window size to 4× 4

not only ensures that the holes were filled, but also ensures that

the image is not over-smoothed.

The PCD were generated from the stereo-rectified left and

right color images and the registration results of the color and

thermal images, and contains both color information and

temperature information. Firstly, a method based on HSV

color space segmentation was used to extract the green canopy

of the potato plant, and then only the canopy PCD were

operated. However, the resulting PCD also contained many

scatter points, which was filtered out by applying a statistical

filtering algorithm. In this study, the number of neighbors
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selected for statistical analysis was 50, and the threshold for

identifying outliers was set to 0.5. Besides, the temperature

values of some regions were much higher than the real surface

temperature of the potato plant, mainly due to the miss

matching of the canopy partial PCD and the ground caused by

the image registration error. The difference between the

temperature of the potato plant and the ground was

significant. A clustering algorithm based on k-means was used

to filter out abnormal temperature points caused by image

registration errors, and the optimized PCD of the potato plant

canopy were retained. The PCD of four potato plant samples

(two well-watered and two water-stressed) of different sizes and

qualities were selected from the treatment and control groups to

demonstrate the results of this method. As the black circles

shown in Figure 9, it can be seen that the temperatures in some

edge regions of the canopy were significantly higher than that of

other regions before the k-means clustering algorithm was

adopted. Through the above treatments, the canopy PCD of

the potato plant were relatively intact, as shown in Figure 10.
A B

DC

FIGURE 6

Image processing results under different sunlight and SL thresholds. (A) Direct sunlight, SL=35; (B) direct sunlight, SL=60; (C) no direct sunlight,
SL=35; (D) no direct sunlight, SL=60.
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3.3.2 Extraction of plant CWSI in 3D
distribution-a case study

In this study, the PCD and temperature data of the potato

plant were combined basing color and thermal images

registration. The direct approach was used to calculate the

CWSI value of each point of the potato plant canopy, and the

3D distributions of the CWSI were obtained.

After extraction of 3D distribution of CWSI, one potato

plant sample was selected from each of the data of treatment and

control acquired on April 26 (partly cloudy), and the PCD

generated from 11:00-15:00 were processed to obtain their

distributions of the temperature and 3D CWSI, and the results

are shown in Figures 11A–C. It can be seen from the figure that

the potato petiole and the area around the vein respond quickly

to water stress, the temperatures were significantly higher than

that of other areas, and the difference under different irrigation

treatments was very large, which can provide a reference for the

selection of the measurement position of potato plant water

stress state. At the same time, the change curve of their average

CWSI values of canopy were plotted, as shown in Figure 11D. It

can be seen from the figure that each two peaks appeared in the

CWSI (CWSI_well and CWSI_stress) of the potato plants under

two different moisture treatments, and each time appeared at the

same time. The first peak appeared at 11:30. At this time, the

temperature in the greenhouse was 29.54 °C, which was in the

rising stage, and the illumination intensity was the maximum

value of 72.4 klx. The second peak appeared at 13:00. At this

time, the CWSI of the potato plant under two different water

treatments reached the maximum value, the temperature in the

greenhouse was 31.05°C, which was the highest value in a day,

and the illumination intensity was 69.4 klx. From the above

statistical results, it can be seen that the water stress state of the

potato plant was jointly affected by air temperature and
Frontiers in Plant Science 12
illumination intensity. The water stress degree of potato plant

can be comprehensively evaluated in combination with soil

moisture and environmental parameters.
4 Discussion

4.1 Feature detection and matching of
the left and right color images

To quickly find the set of points that best represent the

geometric transformation between color and thermal images,

and to select these points from the potato plant canopy as much

as possible. The RGB color space was converted to HSV color

space and extracted the green channel image, by setting the

upper and lower thresholds of the H, S, and V values,

respectively. The purpose of this is to reduce the interference

of background points when computing the homography

transformation using the RANSAC algorithm. The results

show that the method of feature detection by extracting the

canopy provides more and effective candidate matches for

computing the optimal homography transformation between

color and thermal images.
4.2 Registration of thermal and
color images

Although the method of extracting the canopy from the

color image and then performing the SURF feature detection

can provide more candidate matches for image registration,

the thermal image after homography transformation

sometimes cannot be well registered with the color image.
FIGURE 7

Comparison of the number of feature points obtained by detection, matching and filtering before and after canopy extraction.
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In this study, a similarity index was selected to evaluate the

structural similarity between images, and the optimal

homography transformation matrix that could ensure more

canopy pixel overlap was obtained by finding its maximum

value. Nonetheless, some areas in the potato plant canopy
Frontiers in Plant Science 13
were less affected by the homography transformation because

no feature points were detected in these areas due to the

influence of illumination changes and the weak texture of the

canopy surface, as the blue circles shown in Figure 12A. It was

also because even if feature points were detected in this part of
TABLE 1 Comparison of the results of feature detection before and after canopy extraction in ten samples.

Sample No. Amounts of feature points

Before canopy extraction After canopy extraction Increase (%)

1 41 65 58.5

2 51 55 7.8

3 32 61 90.6

4 26 61 134.6

5 20 34 70

6 33 54 63.6

7 42 68 61.9

8 10 28 180

9 71 78 9.9

10 26 35 34.6

11 48 68 41.7

12 60 81 35.0

13 42 63 50.0

14 47 79 68.1

15 24 60 150.0

16 35 71 100.0

17 41 52 26.8

18 28 65 132.1

19 34 67 97.1

20 38 65 71.1

21 28 42 50.0

22 21 40 90.5

23 46 38 -17.4

24 29 35 66.7

25 66 81 22.7

26 47 66 40.4

27 34 49 44.1

28 75 89 18.7

29 31 42 35.5

30 51 49 -3.9

average 39.2 58.0 48.0
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the region, they will finally be filtered out by the RANSAC

algorithm due to their low quality, which also caused this part

of the region to be less affected by the homography

transformation, as the blue circles shown in Figure 12B.
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These situations resulted in some regions cannot be

perfectly aligned, increasing the registration error.

As the blue circles shown in Figure 12C, it can be seen that

some regions in the color and thermal images have large
FIGURE 8

Registration results of the thermal and color images of potato plant.
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differences in shape, and some edge regions are not absolutely

overlapping. One reason for the differences was that the different

resolutions of the thermal and color cameras resulted in the

cropped color image not being exactly the same size as the potato

plant in the thermal image. The other reason was that the

thermal and binocular camera were fixed at different positions

of the image acquisition module resulting in the potato plant in

the captured images having different shape characteristics in

some areas. Lastly, although the experiments were conducted in

a relatively closed greenhouse environment, ventilation was

applied during the day, causing the leaves of the potato plant

to swing in the wind sometimes. The differences in the shape of

the potato plants in the two images caused by all these factors

lead to inevitable registration errors.
4.3 Extraction and analysis of 3D
distribution of potato plant CWSI

When filtering out abnormal temperature points caused by

thermal image and color image registration errors, the k-means

algorithm sometimes clustered leaves and soil background points

into one class, resulting in false segmentation of some leaves point

clouds. This was most likely to occur in the near-ground leaves of

potato plants under water stress. The near-ground potato plant

leaves under water stress conditions were affected by high-

temperature radiation from the soil, and their temperatures were

close to or even the same as the ground temperature. When the

temperature clustering method based on k-means was applied, this
Frontiers in Plant Science 15
part of the point clouds and the soil point clouds will be clustered

into one class, resulting in the false segmentation of canopy point

clouds. In this case, the method of accurately extracting the canopy

point clouds needs further improvement.

The experimental period of this study was the seedling

stage of potato, which was mainly the period for stem and leaf

growth and root system development, and the growing

amount accounted for about 1/5 of the whole growth period.

Most of the leaves in this period were in the early stage of

function, and various physiological activities were very

vigorous. Therefore, the detection of water stress status in

this period can be considered using the entire canopy.

However, at the stage of tuber expansion, the growth of

shoots and leaves on the ground stopped, and the growth of

tuber volume and weight were the main factors. At this time,

the potato is most sensitive to water and needs the most water,

and the water demand accounts for more than 50% of the

water demand in the whole growth period. Therefore, accurate

detection of water stress status during this period directly

determines tuber size and yield. During this period, the plant

canopy size was large, and the leaves at different depths

responded differently to water stress due to the difference in

chlorophyll content and the length of the functional period.

To analyze the water status of potato plant more accurately,

some point clouds segmentation techniques to extract a single

leaf from the PCD of the potato plant canopy can be

considered. A leaf-scale-based water stress status analysis

method based on the 3D motion robotic system proposed in

this study will be further studied in the future.
TABLE 2 Homography transformation errors between color image and transformed thermal image.

Images No. 1 2 3 4 5 6 7 8 9 10

Error (pixel) 0.4 0.5 1.0 0.3 0.3 0.5 0.3 0.8 0.9 0.5

Images No. 11 12 13 14 15 16 17 18 19 20

Error (pixel) 0.3 0.6 0.7 1.0 0.7 0.5 0.4 0.3 0.6 0.6

Images No. 21 22 23 24 25 26 27 28 29 30

Error (pixel) 0.4 0.5 0.3 0.3 0.4 0.6 0.5 0.5 0.3 0.7

Bold values represent image sequences.
frontiersin
TABLE 3 Control Points Error between color image and transformed thermal image.

Images No. 1 2 3 4 5 6 7 8 9 10

Control Points Error (pixel) 3.3 2.8 3.5 2.1 2.7 1.9 2.0 3.1 3.3 2.2

Images No. 11 12 13 14 15 16 17 18 19 20

Control Points Error (pixel) 1.8 3.3 3.7 3.3 4.2 2.7 4.0 2.6 2.4 1.9

Images No. 21 22 23 24 25 26 27 28 29 30

Control Points Error (pixel) 4.5 2.2 3.5 2.8 3.1 2.6 3.4 2.5 2.2 2.3

Bold values represent image sequences.
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5 Conclusion

A low-cost 3D motion robotic system for automated high-

throughput phenotyping detection of potato plant was

developed and demonstrated in this study. The system can

continuously acquire potato plant canopy image and thermal

data through timing triggering, providing data support for

potato plant water status analysis in both space and time scale.

The efficiency of data collection using this system was much

higher than that done manually.
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With the help of this 3D motion robotic system platform, a

cost-effective method was proposed to realize the detection of

potato plant CWSI in 3D. The green canopy was extracted from

a color image of potato plant based on the HSV color space, and the

thermal and color images were registered using the SURF algorithm

and photogrammetry. The results show that extracting the green

canopy from the color image and then performing feature detection

can provide more candidate point pairs for computing the

homography transformation. The filtered feature points on the

color images were projected as world coordinate points, and back-

projected onto the thermal image, and then accuracy of these back-
FIGURE 9

Four examples of the processed PCD of potato plant. PCD of potato plant before the k-means and the PCD of potato after the k-means. (unit: °C).
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projected points was improved to through position-compensated

method. Finally, taking the points on the thermal and left color

images as input, the optimal homography transformation for each

set of images was calculated by the RANSAC algorithm. The

average error of the homography transformation was 0.52 pixels,

and the average error of the registered control points was 2.8 pixels,

indicating that the used method was suitable for registering thermal

and color images of potato plants. In addition, the temperature

clustering method based on k-means can effectively eliminate the
Frontiers in Plant Science 17
interference of background point clouds. However, for the accurate

extraction of point cloud of potato plant canopy under partial water

stress, the k-means algorithm needs to be further optimized to

improve the segmentation accuracy.

This paper also provided a case study for 3D distribution

extraction of CWSI analysis based on the provided 3D motion

robotic system. By analyzing the diurnal variation and influencing

factors of CWSI, data support can be provided for accurate

detection of potato water stress. In the future, the performance of
A B

D

C

FIGURE 11

At the conditions of under well-watered and water stress, the distributions of the (A) color, (B) temperature, (C) CWSI of two potato samples in
3D,and (D) variation curves of air temperature, illumination intensity, and CWSI of two potato samples.
FIGURE 10

Two examples of the optimized PCD of potato plant. (unit: mm).
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the proposed method will be verified in different growth stages of

potato. And the changing of the CWSI 3D distribution in both leaf

scale and canopy scale with the continuous changing time under

different water stress levels will be studied, which will provide data

support for precision irrigation strategy making both in the field

and in the greenhouse.
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FIGURE 12

Three examples of potato plants that were not perfectly registered. (A) No feature points can be detected in the blue circled area, (B) feature
points with low intensity in the blue circled region are filtered out, and (C) different plant sizes in the blue circled area..
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