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Surface Defect Detection (SDD) is a significant research content in Industry 4.0

field. In the real complex industrial environment, SDD is often faced with many

challenges, such as small difference between defect imaging and background, low

contrast, large variation of defect scale and diverse types, and large amount of

noise in defect images. Jujubes are naturally growing plants, and the appearance of

the same type of surface defect can vary greatly, so it is more difficult than

industrial products produced according to the prescribed process. In this paper, a

ConvNeXt-based high-precision lightweight classification network JujubeNet is

presented to address the practical needs of Jujube Surface Defect (JSD)

classification. In the proposed method, a Multi-branching module using

Depthwise separable Convolution (MDC) is designed to extract more feature

information through multi-branching and substantially reduces the number of

parameters in the model by using depthwise separable convolutions. What’s more,

in our proposed method, the Convolutional Block Attention Module (CBAM) is

introduced to make the model concentrate on different classes of JSD features.

The proposed JujubeNet is compared with other mainstream networks in the

actual production environment. The experimental results show that the proposed

JujubeNet can achieve 99.1% classification accuracy, which is significantly better

than the current mainstream classification models. The FLOPS and parameters are

only 30.7% and 30.6% of ConvNeXt-Tiny respectively, indicating that the model

can quickly and effectively classify JSD and is of great practical value.

KEYWORDS
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1 Introduction

SDD, also known as Automated Optical Inspection (AOI) or Automated Surface

Inspection (ASI), is a significant research content in Industry 4.0 field (Penumuru et al.,

2020). It is a technology that can acquire images by using machine vision equipment to
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fpls.2022.1108437/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1108437/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1108437/full
https://www.frontiersin.org/articles/10.3389/fpls.2022.1108437/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.1108437&domain=pdf&date_stamp=2023-01-18
mailto:ybxbupt@163.com
https://doi.org/10.3389/fpls.2022.1108437
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.1108437
https://www.frontiersin.org/journals/plant-science


Jiang et al. 10.3389/fpls.2022.1108437
determine whether there are defects in the acquired images. At

present, surface defect equipment based on artificial vision has been

widely used to replace manual visual inspection in various industrial

fields, including automobile, household appliances, machinery

manufacturing, semiconductor and electronics, chemical industry,

medicine, aerospace, light industry, and other industries (Liu Y et al.,

2020). For example: Ferguson et al. (2017) applied machine learning

technology to the detection of surface defect on automobile parts. The

GDXray Casting dataset adopted included 2,727 X-ray images, which

were mainly from automobile parts, including aluminum wheels and

steering knuckles. Tabernik et al. (2020) applied automated surface

inspection technology to the detection of metal surface defects and

published Kolektor SDD data set. Mayr et al. (2019) proposed a SDD

method for solar panels. Huang et al. (2018) proposed a SDD method

for magnetic tile surfaces. He et al. (2020) proposed An end-to-end

steel SDD approach via fusing multiple hierarchical features. Gan

et al. (2017) proposed hierarchical extractor-based visual rail surface

inspection system. Yang et al. (2018) proposed automatic pixel-level

crack detection and measurement using full convolutional network. Li

et al. (2019) proposed detection algorithm for bridge cracks based on

Deep Learning (DL). Tang et al. (2019) proposed an online Printed

Circuit Board (PCB) defect detector on a new PCB defect dataset.

Compared with other computer vision tasks, SDD does not have a

large and unified data set such as ImageNet (Deng et al., 2009),

PASCAL-VOC (Everingham et al., 2010) and COCO (Lin et al.,

2014). Defect detection mainly studies specific applications in

different detection objects and scenarios. In the real complex

industrial environment, SDD is often faced with many challenges,

such as small difference between defect imaging and background, low

contrast, large variation of defect scale and diverse types, large

amount of noise in defect images, and even large amount of

interference in the imaging of defects in natural environment.

Therefore, it is faced with greater challenges.

The agriculture 4.0 model is an intelligent agricultural

development model characterized by being intelligent and

unmanned, and it is also a resource-integrated agricultural

development model (Da Silveira et al., 2021). In the Agriculture 4.0

mode and the others, the difference between the agricultural

management and service system is that, in the former mode, all the

intelligent machinery and equipment, including their corresponding

elements related to agriculture, such as agricultural production and

circulation markets, are interconnected through the Internet of

Things network. With the help of new internet technologies such as

big data, cloud computing, and artificial intelligence, intelligent

decisions on agricultural activities are made to improve the

efficiency in resource utilization, labor productivity, and agricultural

production. Lack of per capita resources, shortage of labor force, and

urgent forms of environmental protection are scientific problems

throughout the development of agricultural modernization (Zhai

et al., 2020). Agriculture 4.0 is an in-depth development stage of

agricultural modernization construction. Precise and intelligent

agricultural production can be achieved with a higher level of

intensity, precision, and coordination, and the three problems

above can be fundamentally solved.

Jujube is a high-quality tonic native to China, rich in various

vitamins, with high nutritional, edible, and medicinal values

(Rashwan et al., 2020). Jujube has a history of being cultivated for
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more than 4,000 years. The quality is best for those with red color,

thick, plump meat, small kernel, and sweet taste. The rapid increase in

planting area of red jujube in China is in sharp contrast to the

backward processing technology of post-harvest jujube. The jujube

industry has boomed in recent years, with 3.3 million hectares under

jujube cultivation and 7.46 million tons of production in China as of

2019. With the continuous improvement of living standards and the

increasing popularity of food health knowledge, people’s demand for

jujube products is also proliferating, and they have higher

requirements for the quality of the fruit (Chen et al., 2017).

However, during the natural growth, harvesting, and processing of

jujube, defects such as deformation and rotten and cracked jujube

fruit are often caused by pests, harsh environments, improper

processing methods, and storage methods (Pham and Liou, 2020).

If these defective products come onto the market mixed with the

choicest jujube, it will seriously affect the jujube’s quality, sales, and

prices, causing economic losses to jujube farmers and enterprises.

Therefore, effective identification and classification of defective jujube

is a primary means to ensure the quality of jujube products and has a

significant economic value (GenG et al., 2019). Jujube appearance

quality sorting technology is a crucial technology to improve jujube

quality and product-added value in the process of jujube

industrialization. Jujube sorting quality is also an important factor

affecting the prices and markets of jujube. After the appearance and

quality sorting, the market value of high-quality jujube can be

increased, and the defective jujube can be made into new products

through secondary deep processing, which is the direction and trend

of the future revenue of the jujube industry. The traditional

industrialization process of jujube requires a lot of manpower, and

the deep processing of defective jujube can effectively save resources

and reduce the pressure of environmental protection. Therefore, the

application of artificial vision technology to the industrialization

process of jujube production and the improvement in the level of

automation can provide a beneficial reference for the combination of

Agriculture 4.0 and Industry 4.0 (Araújo et al., 2021).

Machine vision technology has developed rapidly in recent years

and has been gradually applied in the quality detection of agricultural

products. However, at present, a large number of factories still use

manual methods to classify JSD (Bhargava et al., 2022), which have

obvious disadvantages such as low efficiency and high costs. Manual

quality sorting is subject to significant fluctuations in human factors,

and the phenomenon of wrong inspection and omission often occurs,

which leads to the uneven overall quality of jujube commodities

(Dong et al., 2022). Therefore, it is urgently necessary to introduce

advanced technologies to innovate and replace the simple manual

sorting methods to improve the quality of jujube products and

achieve their automatic sorting.

Traditional SDD methods based on machine vision usually use

conventional image processing algorithms or manually designed

features and put into the classifier for classification. In general, the

corresponding imaging scheme is usually designed according to the

defect characteristics of the object surface to be inspected. A

reasonable imaging scheme is helpful to obtain the image with

uniform illumination and clearly reflect the surface defects of the

objects. A common method is to select a light source based on the

surface color of the object being inspected. For example, Jing et al.

(2016) selected a composite white light source to image the various
frontiersin.org
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types of defects on the surface of colored fabrics. Another method is to

select different imaging schemes according to the reflective properties

of the object surfaces to be detected., mainly including bright field

imaging, dark field imaging, and mixed imaging. As an example,

Chen et al. (2016) designed two concentrically placed conic annular

bright field light sources to illuminate the central and peripheral areas

at the bottom of the metal can for SDD at the concave and convex

bottom of the can. For the SDD algorithm of red jujube, Wu et al.

(2016) used hyperspectral imaging techniques and machine vision

algorithms based on Support Vector Machines (SVM) to achieve the

quality classification.

In the real production environment, complex SDD often faces

many challenges, such as low contrast, large variation of the defect

scales, multiple defect types, noise, interference, etc. In this case,

classical methods are often helpless, and it is difficult to obtain good

detection results. The introduction of classical techniques did solve

the automated sorting of red jujube to a certain extent. However, they

require a high inspection environment and have problems such as low

accuracy and poor real-time performance, and, therefore, are not

conducive to large-scale promotion (Li et al., 2022). DL, a significant

branch of machine learning, has made breakthroughs in recent years,

especially with Convolutional Neural Networks (CNN), which have

become widely used in various image recognition scenarios because of

their powerful feature extraction and nonlinear representation

capabilities, and some defect detection methods based on DL begin

to have wide application in various industrial scenes. In 2014, Soukup

and Huber-Mörk (2014) innovatively trained a CNN model to

accurately classify cavity defects on the track surface by collecting

photometric stereo images. The whole network consists of two

convolutional layers, two pooling layers and the last fully connected

layer. Ultimately, a recognition accuracy of 98.98% was achieved in

the rail surface defect dataset. Park et al. (2016) designed a CNN-

based SDD system for the automated detection of various defects,

such as dirt, scratches, burrs, and wear, on the surface of parts in

industrial production. This work shows that the method can achieve

98% classification accuracy on the validation dataset., and its

detection speed is 5285 samples/min. Kyeong and Kim (2018)

proposed a CNN framework to classify mixed-type defect patterns

in Wafer Bin Map (WBM) of semiconductor industry. Deitsch et al.

(2019) used the modified VGG19 network to identify defects in

300×300 resolution solar panel images, and the accuracy of the

network reached 88.42%, which exceeds a variety of hand-designed

features, including KAZE, Scale-Invariant Feature Transform (SIFT),

Speeded Up Robust Feature (SURF), and the performance of the

classifier exceeded the effect of the SVM method. Liang et al. (2019)

proposed a method built on top of ShuffleNetV2 and achieved 99.88%

classification accuracy on an in-line code inspection apparatus in the

plastic container industry. The methods of directly using original

images for SDD were widely used in many fields, such as welding

defect classification (Zhang et al., 2019), lithium polymer battery bleb

defect classification (Ma et al., 2019), PCB defect classification (Deng

et al., 2018), etc. In addition, two-stage Faster R-CNN series and one-

stage You Only Look Once (YOLO) series target detection networks

are also used for SDD. For example: Tao et al. (2020) improved the

two stage Faster R-CNN network for insulator defect location in

drone power inspection, and Xue and Li (2018) realized shield tunnel

lining defects detection based on the improved Faster R-CNN. Li et al.
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(2018) proposed a method based on MobileNet-SSD for the detection

of sealing surface defects offilling production line containers. Liu et al.

(2020) used MobileNet-SSD network to locate the high-speed rail

catenary support components. Zhang et al. (2020) applied YOLOv3 to

bridge surface defect location.

Several scholars have applied it to fruit sorting tasks and achieved

successful results (Yin et al., 2022; Lin et al., 2022). Some researchers

have also carried out relevant studies in the field of surface defect

identification of jujube, which will be elaborated in the section

“Related Work”. A CNN-based JSD classification algorithm named

JujubeNet is proposed in this paper. The proposed algorithm is built

on the basis of ConvNeXt (Liu et al., 2022) for the JSD detection. To

solve the problem of SDD of jujube, the ConvNeXt model was

improved as follows: firstly, by introducing a novel MDC module

with a multi-branch structure instead of the original ConvNeXt

module, the classification accuracy of the model is effectively

improved, while the number of model parameters is reduced;

Secondly, the CBAM is combined with ConvNeXt to make the

model focus on different classes of jujube defects features (Woo

et al., 2018). In the experiment of this paper, we compare JujubeNet

with other mainstream algorithm models, and the results show that

our JujubeNet has higher classification accuracy in the JSD

classification scenario. The main contributions of this paper are

as follows.
1. In the actual production environment, we collected 12000

images of jujube with 5 categories of defects (2000 images for

each type of defective product) and 2000 images of good

product, and created a dataset named ‘Jujube2000’,

specifically for the classification study of surface defects of

jujube. The jujube defect image dataset is released at https://

pan.baidu.com/s/1mQZa_aoJ0uCitnSHta0UCg.

2. A MDC module with a multi-branch structure is designed,

the CBAM is introduced to improve the ConvNeXt model,

and finally, JujubeNet is proposed.

3. The effectiveness of the MDC module and CBAM Attention

Mechanism (AM) was verified by ablation experiments,

respectively.

4. The performance advantages of the proposed network in this

paper are verified by comparing JujubeNet with the other

mainstream networks.
The rest of this paper is structured as follows: Section 2 introduces

the current DL-based algorithms for JSD. Section 3 introduces the

‘Jujube2000’ dataset and the improvement method proposed in this

paper and presents JujubeNet. Section 4 compares and analyzes the

experimental results of JujubeNet with the mainstream network on

the ‘Jujube2000’ dataset. Section 5 summarizes the main work of this

paper and indicates the directions for future research.
2 Related work

In recent years, DL methods represented by CNN have made

significant breakthroughs in computer vision. The great success of

AlexNet in the 2012 ImageNet competition also marks the beginning

of the era of DL. Take image classification as an example, such as
frontiersin.org
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VGGNet (Simonyan and Zisserman, 2014), ResNet (He et al., 2016),

and DenseNet (Huang et al., 2017), which have achieved satisfactory

results in the traditional vision domain (Yang et al., 2022). Along with

the development needs of smart agriculture and intelligent

manufacturing, DL methods are increasingly introduced into

various fields (Zhu et al., 2018). At present, scholars have gradually

applied DL methods to fruit defect classification scenarios (Altalak

et al., 2022). In this section, the current DL-based JSD classification

methods will be discussed.

Geng et al. (2018) first applied a deep CNN with a two-branch

structure to the defect classification task of jujube. In the first branch,

the authors adopted a migration learning strategy to train the jujube

dataset using SqueezeNet; in the second branch, the authors proposed

a fusion module, which broadens the structure of the network and

improves the classification accuracy of the model by contacting

multiple feature maps. Finally, the classification model achieves an

average accuracy of 99.3% on the self-built dataset of jujube. Sun et al.

(2019) designed a CNN with low computational cost and high

classification accuracy specifically for the real-time detection and

classification of JSD. The model is based on DenseNet and simulates

the visual mechanism of organisms by adding SE attention. In the

authors’ self-built dataset of JSD, the model achieves classification

accuracy comparable to mainstream networks with an accuracy of

91.9% with real-time availability. Wen et al. (2020) proposed a

residual network-based method for classifying surface defects of

jujube. First, the authors separated the G component from the RGB

color map as the network’s input, improved the residual network’s

activation and loss function, and then introduced the Dropout

method to avoid overfitting. Finally, with the advantage of the

residual module, the model achieved 96.1% classification accuracy

on the self-built dataset of jujube. Guo et al. (2020) conducted a study

on the impact of the jujube dataset on DL classification algorithms

and used generative adversarial networks and rigid transformation to

enhance the image data to solve the problem of an uneven sample of

defective jujube. Experiments showed that the classification accuracy

of the algorithm could be effectively improved, and based on the

ResNet18 algorithm, the authors achieved a classification accuracy of

99.2%. Ju et al. (2022) proposed an improved ResNet for JSD

classification. The authors first performed simulated data

augmentation on small sample data to build a dataset containing

five classes of JSD; secondly, the original ResNet was improved by

embedding the SE module and applying Triplet loss and Center loss

instead of Softmax loss; and finally, transfer learning was used to train

the model. Their report shows that the classification accuracy of the

algorithm can reach 94.2% in the authors’ self-built dataset of JSD. Yu

(2022) proposed a multiple attention blending method for jujube

grading. Using DenseNet121 as the backbone network, the authors

obtained the final output by designing multiple attention mixing

modules, specifically, constructing spatial attention, channel

attention, and channel-space attention branches in the module and

averaging the outputs of the three branches. The results show that the

method can achieve a classification accuracy of 95.7%.

In summary, it is shown that the DL-based image classification

algorithm is feasible for the JSD classification task. However, these

studies are deficient in several aspects overall: Firstly, the dataset of

JSD is not publicly available for academic research, which is

detrimental to promoting the research on JSD. Secondly, the above
Frontiers in Plant Science 04
studies are based on classical networks as the research basis of the

model, which are not as good as the state-of-the-art networks in

model accuracy and structural optimization design. In the Result

section (Table 1), this paper demonstrates ConvNeXt’s superiority

over other classical networks. In order to achieve more efficient

industrial production, cutting-edge and practical techniques in

academia should be applied to actual production. Finally, these

studies lacked detailed analysis of the misidentified defects. A

comprehensive and accurate analysis can be targeted to assist in the

optimization of the model to improve the model’s classification

accuracy and reduce misidentified. The purpose of this research is

to design a lightweight and high-precision network for the

classification of JSD. Considering the shortcomings of current

research, this paper first collects and discloses the ‘Jujube2000’

dataset for academic research on the classification of JSD. Secondly,

a novel MDC module is designed, and CBAM is introduced to

improve the advanced ConvNeXt. Next, JujubeNet is proposed,

specifically used for JSD classification. Then, the superiority of

JujubeNet is demonstrated by extensive experiments. Finally, the

direction of the model optimization in the following work was

given by a detailed analysis of the misidentified case. In Table 2,

this paper further summarizes the JSD classification methods

mentioned above in terms of the algorithm used by the model, the

composition of the data set, and the classification accuracy.

Since the dataset used in the relevant literature has not been

publicly downloaded, it cannot be directly compared with the

experimental results in the relevant papers. Therefore, this paper

conducted a comparative experiment with the underlying networks in

the related papers on the ‘Jujube2000’ dataset. The results show that

the test accuracy of the base algorithms in the relevant papers on the

‘Jujube2000’ dataset is generally lower than that on their own datasets,

which also reflects the fact that the ‘Jujube2000’ data set is more

challenging and difficult to classify. Based on the ConvNeXt model,

this paper achieved an improvement in model accuracy while

significantly reducing FLOPS and the number of parameters. The

experimental results show that our JujubeNet has a significant

advantage in terms of prediction accuracy and parameter

computation: the prediction accuracy reaches 99.1% on the

‘Jujube2000’ data set, and the number of parameters is only 8.5M.

Please see the Result section of this paper for detailed results.
3 Materials and methods

3.1 Image shooting and processing

Up to now, as the relevant literature has not disclosed the

download links of their data sets, this paper has built a jujube

image acquisition platform in the actual production scene, which is

specially used for the collection of JSD images. The workflow of the

acquisition platform is shown in Figure 1. The acquisition equipment

mainly consists of LED light source, CCD industrial camera (MER-

500-14U3C), roller conveyor, motor switch, and PC (CPU: AMD

Ryzen 7 4800H 2.90GHz, RAM:16GB, SSD:500G).

When the motor switch is activated, the roller conveyor drives the

jujubes forward at a uniform speed, and at this time, the PC controls

the camera to take and save the image. The camera can take a large
frontiersin.org
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image containing multiple jujubes at a time. Then, according to the

gap between the rollers of the roller conveyor, the large image is

divided into sub-images containing only one jujube. These sub-

images are saved to the hard disk in png format. In order to obtain

sufficient training images and guarantee the balance of the data set,

12000 images were selected from a large number of Jujube images to

form the ‘Jujube2000’ data set, which contains 5 kinds of surface

defects (2000 images for each defect) and 2000 high quality jujube

images. The ‘Jujube2000’ dataset contains six categories: deformed,

wrinkled, cracked, moldy, bird-pecked, and normal jujubes. The data

set is divided into training, test and verification sets in a ratio of 7:2:1.

Some sample images are shown in Figure 2.

During model training, multiple images need to be combined into

a batch to feed the model (the batch size depends on the memory of

the GPU), and the images must be of the same size in one batch,

which makes the images need to be normalized before the model

training. In a large dataset, there will inevitably be images of various

sizes. Therefore, setting the height and width of images to be the same

is an optimal solution considering the speed and accuracy of the

model training (disadvantage: resize may lead to deformation of the

object and thus affect the accuracy of the model). Numerous

researches (He et al., 2016; Liu et al., 2022) have shown that using
Frontiers in Plant Science 05
an input image size of 224 × 224 is the most balanced choice after

considering the model accuracy and computational effort. For

example, the default feature map size is 7 × 7 with a downsample

multiplicity of 2. If the image size is adjusted to 112 × 112: the image

information will be seriously lost. However, resizing the image to 448

× 448 will result in a significant increase in computing load.

Therefore, in order to facilitate the model training, the jujube image

size is normalized to 224×224 in this paper. Meanwhile, in order to

improve the acquisition sample’s quality and increase the model’s

generalization ability, this paper performs data enhancement on the

images. The following are the approaches taken for the JSD

classification scenario.
• Gaussian noise: Add noise to the image in line with the

Gaussian distribution to simulate signal interference during

image acquisition.

• Random cropping: On the one hand, The cropping of random

regions on the image can have the effect of data enhancement;

On the other hand, the stability of the model can be enhanced,

and the model overfitting can be effectively prevented.

• Hybrid enhancement: Hybrid enhancement refers to the

enhancement process of superimposing the contrast,
TABLE 1 Comparison of the performance for each model on the ‘Jujube2000’ test set.

Model Accuracy Precision Recall F1 FLOPS(G) Params(M)

SqueezeNet* 75.7% 64.2% 75.7% 55.2% 23.6 0.8

VGG16 91.8% 93.4% 91.9% 91.9% 495.5 138.4

ResNet18* 93.4% 93.3% 93.4% 93.4% 58.2 11.2

ResNet34* 93.6% 93.7% 93.6% 93.6% 117.5 21.3

ResNet50* 93.4% 93.4% 93.5% 93.4% 131.5 23.5

DenseNet121* 93.8% 93.8% 93.8% 93.8% 91.7 7.0

Swin-Tiny 97.9% 97.9% 97.9% 97.8% 39.2 27.5

ConvNeXt-Tiny 98.6% 98.6% 98.6% 98.7% 142.6 27.8

JujubeNet (Ours) 99.1% 99.1% 99.1% 99.1% 43.7 8.5

The base algorithms used in each paper in Table 1 are labeled using *, and bold data is the best result.
FIGURE 1

Workflow diagram of ‘Jujube2000’ data set collection platform.
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Fron
brightness, and color of an image, and this operation contains

a variety of image processing methods.

• Horizontal and vertical flip: Randomly flip the image

horizontally or vertically without changing the original

image information.
Finally, the ‘Jujube2000’ dataset contains 60,000 images after the

image enhancement, of which 42,000 images are used for model

training, 12,000 for model testing, and 6,000 for model validation.
3.2 Basic network selection

In order to achieve better classification results on the ‘Jujube2000’

dataset, this paper refers to the algorithms used by different authors in

related works (Geng et al., 2018; Sun et al., 2019; Wen et al., 2020; Guo

et al., 2020; Ju et al., 2021; Yu et al., 2022). However, the relevant

literature did not disclose the code in their papers, and the data sets used

were not publicly available for download. Therefore, this paper can

neither directly identify the algorithms from the relevant literature for the

‘Jujube2000’ dataset for practical production nor directly compare the

algorithms proposed in this paper with those in the relevant papers. For

this reason, this paper evaluated the classification effect of the base

models (SqueezeNet, ResNet18, ResNet34, ResNet50, DenseNet121)

used in the related papers and the current mainstream base networks

on the ‘Jujube2000’ dataset (detailed results of the experimental tests

shown in Section 4.3). The evaluation results show that, firstly,

SqueezeNet has the worst classification accuracy (only 75.7% accuracy

in test dataset), which can not be directly applied in a real production

environment; secondly, DenseNet121 has the slowest inference speed

(DenseNet121: 40 images per second inference), which is not conducive
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to subsequent device deployment; Although VGG16 performed well in

the training set, achieving a classification accuracy of 94.5%, it performed

poorly in the test set, achieving only 91.8% classification accuracy, which

also indicates the poor generalization ability of the network. Also,

comparing the ResNet family, although they achieve similar accuracy

on the test set, the difference in inference speed is more pronounced

(ResNet18: 93.4% test accuracy, 251 images per second inference;

ResNet34: 93.6% test accuracy, 168 images per second inference;

ResNet50: 93.4% test accuracy, 115 images per second inference).

Finally, ConvNeXt-Tiny achieved a classification accuracy of 97.5% on

the training set. On the test set, ConvNeXt-Tiny has the best (98.6% test

accuracy) generalization performance among all the mainstream

networks participating in the comparison. Therefore, this paper further

improved the network based on ConvNeXt-Tiny and got a better model

named JujubeNet. After our improvements, the JujubeNet is a much

lighter model than the ConvNeXt-Tiny, with less than 30.1% parameters

and FLOPS, but 0.5% more accuracy, which makes it even more suitable

for the processing scenario of industrial production of jujube.
3.3 ConvNeXt

ConvNeXt is a pure CNN proposed by FAIR in 2022 (Liu et al.,

2022). It eliminates the need for tedious operations such as window

shifting and relative position bias and offers better performance with

less computation than the currently popular transformer network.

The overall structure of ConvNeXt is based on the design of ResNet

using residual blocks. It incorporates many advanced network design

approaches to further improve the network’s overall performance.

The detailed structure of ConvNeXt-Tiny and ConvNeXt Block are

shown in Figure 3.
A B

D E F

C

FIGURE 2

Examples of six kinds of defect samples: (A) deformed; (B) wrinkled; (C) cracked; (D) moldy; (E) bird-pecked; (F) normal. (A-E) are jujubes with surface
defects, and (F) is one of high quality.
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3.4. MDC block

Increasing cardinality is a more effective way of gaining accuracy

than going deeper or wider. This idea was first proposed in ResNeXt

(Xie et al., 2017). Drawing inspiration from it, this paper introduced a

two-branch structure in the ConvNeXt Block. In one branch, the paper

followed the original modular design; while in the other, it used two

consecutive convolutional designs in reference to the Wide Residual

Network (Zagoruyko and Komodakis, 2016). Of these two branches,

each one’s channel dimension of each branch is half of that on the main

branch. Meanwhile, this paper uses depthwise separable convolution in

wide residuals instead of ordinary convolution to reduce the number of

model parameters. Finally, after the two branches are dimensionally

spliced, the information passing on the main branch is randomly

discarded by Drop Path, which can effectively prevent the model from

overfitting and improve the overall performance. The structure of the

MDC block is shown in Figure 4.
3.5 CBAM

In general, when CNN extracts features from the images, it will

inevitably be disturbed by the background and noise, which can

directly affect the classification effect of the networks. Such

problems can be effectively overcome by introducing an AM, which

enables the network to focus on the helpful feature information and

suppress the useless noise and interference. This will improve the

model’s classification accuracy. CBAM is a general and efficient AM

proposed by Woo et al. in 2018, which perceives feature information

in different dimensions through the channel attention module and

focuses on location information in the feature map through the spatial

attention module (Woo et al., 2018). Not only that but CBAM can also

be easily integrated into CNN for end-to-end training (Zhong et al.,

2022). The structure of CBAM is shown in Figure 5, which mainly

consists of a channel attention module and a spatial attention module.

As shown in Figure 5, the feature map first passes through the

channel attention module, which generates the corresponding

channel attention map using the channel relationship between

different features. Then, the input feature map is multiplied by the

channel attention map. The output is again input to the spatial
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attention module, which generates the spatial attention map using

the spatial position relationship between features. It multiplies the

output of the channel attention module with the spatial attention map

to obtain the final output feature map. The mathematical expressions

of the above operations are shown in (1) and (2), where F (C×H×W)

denotes the input feature map,Mc(F) (C×1×1) is the one-dimensional

channel attention map, Ms(F’) (1×H×W) is the two-dimensional

spatial attention map, ⊗ denotes the element multiplication

operation, F’ (C×H×W) is the output after the channel attention

module, and F’’ (C×H×W) is the final output of the CBAM.

F0 = Mc(F)⊗ F (1)

F00 = Ms(F
0)⊗ F 0 (2)

This paper further explores the embedding position of CBAM in

the model and designed the following three structures (Kim et al.,

2021), as shown in Figure 6. Where (a) indicates the use of the CBAM

after each ConvNeXt Block operation; (b) indicates that the model

uses CBAM before each downsample; and (c) indicates that the

network uses CBAM after each downsample, and according to the

experiments in Section 4.1, (c) shows more excellent results, so our

model will adopt the CBAM of (c) embedding position design.
3.6 JujubeNet

In this paper, a novel MDC module with multi-branch structure

based on ConvNeXt Block is first designed, then introduced the

CBAM AM into ConvNeXt, and finally proposed a high-precision

lightweight classification network named JujubeNet, which is

specifically designed for JSD classification. The experiments show

that JujubeNet can perform the JSD classification excellently, and its

overall network structure is shown in Figure 7.
3.7 Operating environment and
parameter setup

All experiments were conducted on the same high-performance

DL server (Central processing unit: Intel Xeon Silver 4210 CPU
A

B

FIGURE 3

(A) ConvNeXt-Tiny overall network structure; (B) ConvNeXt Block structure.
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@2.20GHz; Graphics processing unit: NVIDIA GeForce RTX 2080 Ti

11GB; Memory: 128 GB; Deep learning framework: Python 3.8.10,

Cuda 10.2, torch 1.8.1, torchvision 0.9.1; Operating system: Windows

10). In the experiments, uniform training parameters were set for all

the models in this paper. The training image size is fixed at 224×224,

the BatchSize set at 32, and the cross-entropy loss function and
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AdamW optimizer are applied in the model training. In the initial

training phase of the models, this paper first performed a 2-epoch

warm-up training, during which one-dimensional linear interpolation

was employed to update the learning rate of each iteration. After the

warm-up training, the learning rate is decayed using a cosine

annealing function, where the initial learning rate is 0.0005, and the
FIGURE 5

Convolution Block Attention Module.
FIGURE 4

The structure of the MDC block.
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minimum learning rate is 0.00005. It is worth noting that we did not

train the models using transfer learning in order to make a fairer

comparison of the effects of network model modifications. Finally,

each model was trained for 300 epochs.
3.8 Evaluate metrics

In DL methods, Accuracy, Recall, Precision, and F1-scores are

significant metrics for evaluating the merits of classification models
Frontiers in Plant Science 09
(Khasawneh et al., 2022). The accuracy rate is the percentage of the

correct samples predicted by the model to the total number of

samples; the recall rate is the percentage of the model correctly

predicted as a positive sample to the total number of positive

samples; the precision rate is the percentage of the number of

positive samples predicted by the model that genuinely belongs to

positive samples, and the F1-score is the best balance point that the

model measures both the precision rate and the recall rate and

achieves, and this value also reflects the overall performance of the

model more comprehensively. Their specific formulae are shown
A B C

FIGURE 6

CBAM embedded position design.
FIGURE 7

The network structure of the JujubeNet model. It consists of CBAMs (The details of the CBAM structure is shown in Section 3.5), MDC blocks,
downsample modules, a stem module, and a classifier.
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below, where TP is the number of true positive samples, FP is the

number of false positive samples, FN is the number of false negative

samples, and TN is the number of true negative samples.

Accuracy =
TP + TN
P + N

(3)

Recall =
TP

TP + FN
(4)

Precision =
TP

TP + FP
(5)

F1 − Socre =
2� TP

2� TP + FP + FN
(6)
4 Results

4.1 CBAM embedding position experiment

Table 3 shows the detailed experimental results of the three

CBAM embedding position schemes proposed in Section 3.5 of this

paper. By observation, it can be found that as the state-of-the-art

classification network, ConvNeXt exhibits strong classification

performance, and the CBAM embedding position of the scheme (c)

can further improve the model’s performance. Therefore, CBAM will

be used after each downsample performed by the network.
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4.2 Ablation experiments

To verify the effectiveness of the MDC module and CBAM in

JujubeNet, this paper conducted ablation experiments on the test set,

and the results are shown in Table 4.

The data in the table shows that CBAM can effectively improve

the model’s classification accuracy with almost no increase in the

number of the model parameters, and the accuracy is improved by

0.3% compared with the original network. By using the MDCmodule,

the model’s accuracy is also improved by 0.4%, and the FLOPS and

the number of parameters are reduced by about 70%, making the

model more efficient and lighter. Finally, the classification accuracy of

JujubeNet reached 99.1% with the introduction of the two modules.

The FLOPS and the number of parameters were only 43.7G and 8.5M,

indicating that the MDC module and the CBAM AM can effectively

enhance the model’s recognition of JSD and significantly reduce the

number of the parameters.
4.3 Model comparison analysis

Under the experimental platform set in this paper, the

performance of JujubeNet and the current mainstream classification

models are compared on the ‘Jujube2000’ dataset. Figure 8 shows the

trend of validation accuracy and training loss with the number of

epochs for each model. In Figure 8A, the horizontal axis indicates the

number of rounds of model training and the vertical axis indicates the

validation accuracy of the model. Similarly, in Figure 8B, the
TABLE 2 Experimental results of algorithms in their own datasets in the relevant literature.

Reference Basic
Algorithm Dataset Composition Defect Category Accuracy

Geng et al. (2018) SqueezeNet
16000 for training
4000 for verification

4 Classes: Plump, Wizened, Cracked, Defective. 99.3%

Sun et al. (2019) DenseNet
20100 for training
2355 for verification
1280 for testing

4 Classes: Invalid, Rotten, Wizened, Normal. 91.9%

Wen et al. (2020) ResNet34
2800 for training
1120 for verification

3 Classes: Normal, Rotten, Cracked. 96.1%

Guo et al. (2021) ResNet18
25129 for training
8424 for verification
7917 for testing

7 Classes: Black spot, Yellow skin, Cracked, Peeling, Wrinkled, Overlapping, Normal. 99.2%

Ju et al. (2022) ResNet50 9478 for all 5 Classes: Health, Rotted, Split, Peeling, Russet. 94.2%

Yu et al. (2022) DenseNet121
20929 for training
8969 for verification

5 Classes: Cracked, Split, Insect pest, Black spot, Normal. 95.7%
fr
TABLE 3 Performance comparison of different CBAM embedding position schemes.

Method Accuracy Precision Recall F1

ConvNeXt 98.6% 98.6% 98.6% 98.7%

ConvNeXt with (a) 98.7% 98.7% 98.7% 98.7%

ConvNeXt with (b) 98.5% 98.5% 98.5% 98.5%

ConvNeXt with (c) 98.8% 98.8% 98.8% 98.8%
ontie
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horizontal axis indicates the number of rounds of model training and

the vertical axis indicates the training loss of the model.

Figure 8A shows that all the models start to converge at 30 epochs

and slowly level off, reaching full convergence at 300 epochs. Among

these models, JujubeNet achieved the highest validation accuracy, up to

96.0%, followed by ConvNeXt with 94.7% accuracy, and the VGG16

model had the worst validation accuracy of 88.3%. Figure 8B shows that

the training loss curves of the CNN architecture models are relatively

consistent, with the ConvNeXt model performing the best, reflecting its

excellent fitting ability, while JujubeNet also shows its excellent ability.

Swin-Tiny has the lowest convergence effect, which may be related to

the fact that it is not trained using transfer learning because the

transformer architecture model is more influenced by the number of

training epochs and the dataset size.

All trained models were tested on the test set according to each

performance metric, and the specific experimental results are shown

in Table 1. The results show that JujubeNet has a significant

advantage in terms of prediction accuracy and parameter

computation. Based on the ConvNeXt model, this paper achieved a

slight improvement in model accuracy while significantly reducing

FLOPS and the number of parameters. Finally, JujubeNet achieves a

prediction accuracy of 99.1%, and the number of parameters is only

8.5M. In addition, this paper also tested the classification effectiveness

of the underlying networks in the related papers on the ‘Jujube2000’

dataset. The results show that the test accuracies of each network

model on our dataset are generally lower than the test accuracies on

their respective datasets, which also reflects the fact that ‘Jujube2000’

is more challenging and more difficult to classify.
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4.4 Confusion matrix

The confusion matrix is a visual tool to evaluate the performance of

a classification model, which describes the relationship between the

prediction results of the model and the actual sample data. In addition,

the confusion matrix can be used to more intuitively discern the

strengths and weaknesses of the classification models and analyze

their problems. As shown in Figure 9, this paper visualized the

confusion matrix of each model in the previous subsection. The

horizontal axis represents the true labels of the images, and the

vertical axis represents the results predicted by the models. The

diagonal part indicates that the predicted results of the models are

the same as the true labels, and the remaining part indicates that the

predicted results of the models do not match the true labels.

The analysis reveals that, firstly, the deformation defects of

jujubes are the easiest to be misjudged because their defective

characteristics are the least obvious. Second, crack defects are more

likely to be misclassified as moldy, because the black spots of mold are

more similar to the cracks of crack defects. Third, due to the

variability of moldy defects, making this defect is more easily

identified as other defect categories. Among the mainstream

networks, Swin-Tiny and ConvNeXt-Tiny achieved better

classification performance because they are more novel and have a

more reasonable network structure compared with VGG16, ResNet34

and DenseNet121, among which, ConvNeXt-Tiny performs the best.

Furthermore, the classification performance of ConvNeXt-Tiny can

be further optimized by constructing novel MDC module and

introducing the CBAM AM in JujubeNet.
A B

FIGURE 8

Training and validation of each model on the ‘Jujube2000’ dataset. (A) Trend of the validation accuracy curve of the model with the number of epochs.
(B) Trend of the training loss curve of the model with the number of epochs. Colors denote corresponding models.
TABLE 4 Comparison of ablation experiments on the test set.

MDC CBAM Accuracy Precision Recall F1 FLOPS(G) Params(M)

– – 98.6% 98.6% 98.6% 98.7% 142.6 27.8

√ – 98.9% 98.9% 98.9% 98.9% 43.6 8.4

– √ 98.8% 98.8% 98.8% 98.8% 142.7 27.9

√ √ 99.1% 99.1% 99.1% 99.1% 43.7 8.5
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Jujubes are naturally growing plants, and defects of the same type

may vary while defects of different types may differ less. Therefore, it

is much more difficult than the defect detection of industrial products

produced according to the specified process. Though JujubeNet shows

state-of-the-art classification performance in many experiments, it

has relatively more misidentified extruded, cracked, and moldy JSD in

some cases. The specific details are shown in Figure 10. This paper

tries to explore and analyze the causes of model discrimination errors

for classifying anomalous images. Figure 10A shows that JujubeNet

incorrectly identifies a deform defect as normal. The possible reason is

that the shooting angle and lighting caused the defective sample to

show more features of normal jujube, thus diluting the distortion. As

shown in Figure 10B, even the human eye cannot accurately discern

the specific defect of this jujube, as there appeared to be moldy in the

cracked areas, which made it difficult for JujubeNet to make an

accurate judgment. Figure 10C shows that a moldy defect was
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misidentified as normal. In this image, the moldy part is located on

the edge of the jujube, causing the model to mistake it for a shaded

area, leading to a classification error. Through a rational analysis of

the failure cases, we will carry out targeted optimization on the

proposed model to reduce misidentification in future work.
4.5 Visual interpretation of the model

In order to further visualize and analyze the process of classifying

surface defects of jujubes, this paper introduce Gradient-weighted Class

Activation Mapping (Grad-CAM), which is a method of weighted

summation of specific feature maps in the model by weight and

outputs a heat map of the specified class (Li and Li, 2022). In the heat

map, the higher the weight, the redder the region’s color, indicating that

the image information of the region has a more significant influence on
A B

D

E F

C

FIGURE 9

Confusion matrix for each model. (A) VGG16. (B) ResNet34. (C) DenseNet121. (D) Swin-Tiny. (E) ConvNeXt-Tiny. (F) The proposed JujubeNet.
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the model for category discrimination. Conversely, the smaller the

weight, the bluer the region’s color, indicating that the image

information of the region has less influence on the model for category

discrimination. Figure 11 shows the heat maps generated by each model

using Grad-CAM in different categories of JSD.

The heat map gives us a clear view of the defect areas of interest to

the model. The VGG16 model focuses on a more scattered region, so its

classification is the least effective. ResNet34 and DenseNet121 models

havemore similar heat maps, which focus on a broader range of regions

and have the problem of inaccurate focus on defective regions. Swin-

Tiny naturally has the advantage of long-range information

dependence because it is a transformer architecture model. Hence, it

not only focuses on the most expansive area but also suffers from the

problem of imprecise focus on defective regions. It can be found that

ConvNeXt-Tiny can focus on the defective regions of jujube more

precisely compared with the other networks, which makes the network
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achieve better classification results. In JujubeNet, by constructing the

MDC module and introducing the CBAM AM, the position attention

of the model to the defective regions is further optimized. Therefore, the

classification performance is improved.
5 Conclusions

SDD is a significant research content in Industry 4.0 field. In the

real complex industrial environment, SDD is often faced with many

challenges, such as small difference between defect imaging and

background, low contrast, large variation of defect scale and diverse

types, large amount of noise in defect images. Jujubes are naturally

growing plants, so the problem of SDD of jujube is also related to

agriculture 4.0 field. Lack of per capita resources, shortage of labor

force, and urgent forms of environmental protection are scientific
A B C

FIGURE 10

Examples of failure cases. The yellow dashed boxes indicate the defect areas that the model needs to focus. (A) A deformation defect was mistaken for a
normal jujube. (B) A crack defect was mistaken for a moldy defect. (C) A moldy defect was mistaken for a normal jujube.
FIGURE 11

Comparison of heat maps generated by Grad-CAM for each model.
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problems throughout the development of agricultural modernization

Agriculture 4.0 is an in-depth development stage of agricultural

modernization construction. Precise and intelligent agricultural

production can be achieved with a higher level of intensity, precision,

and coordination, and the three problems above can be fundamentally

solved. The rapid increase in planting area of red jujube is in sharp

contrast to the backward processing technology of post-harvest jujube.

The traditional industrialization process of jujube requires a lot of

manpower, and the deep processing of defective jujube can effectively

save resources and reduce the pressure of environmental protection.

Therefore, the application of artificial vision technology to the

industrialization process of jujube production and the improvement

in the level of automation can provide a beneficial reference for the

combination of Agriculture 4.0 and Industry 4.0.

In the actual production environment, we collected 12000 images

and created a dataset named ‘Jujube2000’, which is specifically used

for the classification study of surface defects of jujube. In this paper, a

ConvNeXt-based high-precision lightweight classification network

named JujubeNet is proposed for the defect classification of jujubes.

Firstly, a MDC module with a multi-branch structure is designed,

then, the CBAM is introduced to improve the ConvNeXt model, and

finally, JujubeNet is proposed. In the ablation experiment phase, the

effectiveness of the MDC module and CBAM AM was verified,

respectively. In this paper, a comparative experiment is carried out

on the ‘Jujube2000’ dataset with the underlying network in the

relevant papers. By comparison, the performance advantage of

JujubeNet is verified. The results show that our model exhibits

better recognition accuracy and the FLOPS and number of

parameters are much lower than the other models with the same

performance, proving the effectiveness of the improved method

proposed in this paper. In addition, some cases of classification

errors were analyzed by confusion matrix and visualized. Future

work will continue to study these difficult samples and further

optimize the algorithm. The research results in this paper are not

only applicable to the defect classification of jujubes but also can be

extended to other defect classification scenarios.
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