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Indole compounds with their unique properties of mimicking peptide structures

and reversible binding to enzymes are of great exploitative value in the regulation

of plant growth. They stimulate root and fruit formation and activate the plant’s

immune system against biotic and abiotic factors harmful to the plant. Analysis of

target recognition, receptor recognition, key activation sites and activation

mechanisms of indoles in plant to enhance crop growth or disease resistance is

a crucial step for further developing compounds as plant growth regulators and

immune inducers. Therefore, this review focused on the mechanism of action of

indoles in regulating plant growth and enhancing plant resistance to biotic and

abiotic stresses.
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Introduction

Synthesized or extracted artificially, plant growth regulators, also known as

phytohormones, possess a physiological effect that is comparable to that of natural plant

hormones. Within plants, they bind to hormone receptors in plant cells to form complexes

that recognize hormone signals, which in turn trigger a series of physiological and

biochemical reactions in the plant, ultimately leading to morphological changes in the

plant (Nikonorova et al., 2021). Plant immune inducers act as a catalyst to activate the

immune system, making it better defend against agricultural pests and diseases. Within

plants, the induction of salicylic acid (SA) and jasmonic acid (JA) biosynthesis can be induced

(Gozzo and Faoro, 2013), resulting in the hypersensitive reaction (HR) of the plant cell,

which leads to its death to protect the plant from further colonization of pests and diseases

(Chen et al., 2014).

Indole 1 (Figure 1) is a significant structure in drug discovery, as it functions as a scaffold

for various receptors (de Sá Alves et al., 2009; Zhang and Chen, 2014b). Indole-based

compounds, such as indoleacetic acid (IAA) 2 (Figure 1) (Chen et al., 2020) and indole-3-

butyric acid (IBA) 3 (Figure 1) (Li et al., 2018), are commonly used as plant growth regulators

in agricultural settings. Indole-3-acetonitrile (IAN) 4 (Figure 1) has been documented to be

an effective plant growth regulator, with its efficacy being ten-fold that of IAA. Additionally, it

is converted to IAA with growth-regulating effects in plants (Osborne, 1952; Sun et al., 2018).
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The emergence of indole compounds has revealed a multitude of

indole derivatives that can activate plant immunity. Studies

conducted by Stahl et al. and Ye et al. have demonstrated that

indole, a plant organic volatile, can augment plant immunity to

herbivorous insects (Stahl et al., 2016; Ye et al., 2019). Studies have

revealed that MT 5 (Figure 1) can increase plant resistance to

pathogens by activating MAPK pathways, resulting in the

expression of numerous plant protection genes (Lee and Back,

2016a). To further exploit compounds as plant growth regulators

and plant immune inducers, identifying targets, recognizing

receptors, determining key activation points, and understanding

activation mechanisms are necessary (Kusajima, 2019). An analysis

of indole compounds about plant growth regulators and plant

immune inducers is rarely documented. Therefore, this review

examines the mechanism of action of indole compounds with

regard to their application in the regulation of plant growth and

activation of plant immunity. Our goal is to furnish a reliable source

of knowledge for academics in related fields.
Plant growth promoters

Plant growth promoters are a form of growth regulators that can

encourage cell division, elongation, and the growth of vegetation, as

well as the maturation of reproductive organs (Cai et al., 2020). The

indole compounds with growth-regulating abilities are widespread.

However, IAA is the most common and has a major impact on the

growth and development of plants. IAA acts as a signal between

rhizobium and plants. Experimental studies have demonstrated the

application of Stenotrophomonas maltophilia Sg3, Proteus mirabilis

BjB17, Providencia rettgeri AlDp5, Bacillus thuringiensis TNJbx.3.3

and Bacillus cereus GR12, which are capable of synthesizing IAA,

increased the number of pods of edamame beans (Zhang et al., 2022).

The secretion of root in Arabidopsis can trigger Falciphora oryza to

produce IAA, thus promoting the development of the lateral root of

Arabidopsis (Sun et al., 2020). Gomes et al. and Zhang et al. (Gomes

and Scortecci, 2021; Zhang et al., 2022) conducted reviews which

revealed that IAA can modulate the transcription and expression of

numerous genes through the ubiquitination complex, which is

downstream of the repressor and activator of gene transcription

factors. When there is a high growth hormone level in the cell, the

ubiquitination complex is triggered by transport inhibitor response

(TIR) proteins that are part of the growth hormone signaling

pathway. This leads to the breakdown of Aux/IAA repressor

molecules, thus allowing transcription factors to activate gene

transcription in response to the growth hormone. At low growth

hormone levels, cells tend to favor Aux/IAA due to dimer-mediated

gene transcription by transcriptional auxin response factor (ARF) (as

seen in Figure 2).

IBA (Figure 1) is a type of auxin structurally similar to IAA, with

two methylene groups to its side chain (Dong et al., 2018; Damodaran

and Strader, 2019). The indole ring of IBA is too elongated to

successfully bind to the TIR1-Aux/IAA pocket, which is a necessary

component of the peroxidase enzymes IBR1, IBR3, IBR10, and ECH2

that are involved in the b-oxidation process leading to IAA

production, resulting in a subsequent auxin-level signaling cascade
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(Fattorini et al., 2017; Aihebaier et al., 2019). It is yet to be determined

whether IBA is an IAA-independent signaling molecule.

A new form of growth factor, indole-3-hexanoic acid (IHA) 6, has

been identified (illustrated in Figure 1). Structurally, it is analogous to

IAA and IBA. It is derived from a novel pyridine carboxylate. It is

recognized directly or indirectly by TIR1, the protein responsible for

receiving signals from IHA, thus exhibiting a reaction similar to IAA

(Napier, 2014). Studies have indicated that IHA can regulate the

secretion of growth hormones by converting to IBA, and can also

inhibit the transformation of IBA to IAA. Additionally, IHA has been

found to induce responses that are distinct from IBA, such as

increased amounts of GH3.3 and ACS4 (Song et al., 2021).

However, the signaling process of IHA requires further exploration

and study.
FIGURE 2

IAA signalling and gene expression system.
FIGURE 1

Structural formula of compounds 1-15.
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4-Chloro-indole-3-acetic acid (4-Cl-IAA) 7 (Figure 1) is a variant

of IAA, which is distinguished by the presence of a chlorine atom at

the 4-position of the indole ring. It was initially isolated from

immature pea seeds (Marumo et al., 1968). However, in peas, only

4-Cl-IAA was able to stimulate gibberellin biosynthesis, inhibit the

expression levels of ethylene biosynthesis genes (PsACS4, PsACO2,

and PsACO3) in the pericarp, and upregulate the expression levels of

ethylene receptor and signaling-related genes (PsERS1, PsETR2,

PsEBF1, and PsEBF2) in the pericarp thereby reducing ethylene

signaling output for pericarp growth (Jayasinghege et al., 2017).

Reports indicate that 4-Cl-IAA is a critical signaling molecule in

the aging process of oat florets, yet its precise mode of action remains

uncertain (Dziurka et al., 2019). Generally, the distance between the

aromatic ring and the carboxyl-terminal of IAA, IBA, 4-Cl-IAA, and

other structurally similar growth factors is optimally within 0.55 Å for

the most preferred activity (Cao et al., 2019; Damodaran and Strader,

2019). Research has shown that the activity of certain compounds in

regulating plant growth is affected by the spatial configuration of the

compounds. For example, Indole-3-succinic acid (ISA) 8 (Figure 1)

proved to be more efficient than IAA or IBA in stimulating the growth

of certain seedlings. Through chromatographic and diastereomeric

crystallographic splitting, Daniel and his team were able to isolate the

enantiomers R-(-)-ISA and S-(+)-ISA of ISA. It was determined that

the plant growth-promoting activity of R-(-)-ISA was more effective

than that of S-(+)-ISA (Armstrong et al., 2002).

Indoleamine compounds are essential for the growth and

development of plants and are involved in many significant

biological processes. Such as stress response, growth and

development, and reproduction. Indole-3-acetamide (IAM) 9

(Figure 1) is the precursor to the biosynthesis of IAA, which

impacts plant growth through two pathways. Pathway 1 works

towards the promotion of plant growth when IAM is converted to

IAA by the specific hydrolase AMI1 (Pérez Alonso et al., 2020)

(Figure 3). Pathway 2 is elucidated in depth through its

inhibitory effects.

As a major biosynthetic precursor, tryptophan (Trp) 10 (Figure 1)

can help enhance the metabolites of Clonostachys rosea, resulting in a

stronger capability to support the growth of tomato roots (Han et al.,

2022). A class of ionic liquids (ILs) 11 (Figure 1) that demonstrate

good solubility was developed by incorporating ammonium cations
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into the structure of L-Trp. The utilization of Lettuce increases its

biomass by a range of 12-20% and enhances the uptake of certain

nutrients (Szymaniak et al., 2021). Jasmonoyl-L-Tryptophan (JA-

Trp) 12 (Figure 1) is a class of compounds that has the ability to

disrupt AUX1, thus resulting in a failure of IAA. However,

endogenous JA-Trp plays a minor role in the regulation of plant

growth (Staswick et al., 2017). Additionally, Trp can be converted to

melatonin by L-Trp decarboxylase (PSID) and tryptophan-5-

hydroxylase (CYP71P1) (Zhang et al., 2022). This conversion has

been found to have an effect on plant growth, such as promoting root

growth after germination (Park and Back, 2012), influencing

flowering time and regulating plant sugar metabolism (Zhao et al.,

2015; Lee et al., 2019). The extent to which melatonin influences root

elongation is dependent on the availability of IAA. At low

concentrations, its ability to increase the expression of genes related

to IAA signal transduction (IAA19 and IAA24) and IAA biosynthesis

(YUC1, YUC2, YUC3, YUC6, and TAR2) as well as some PIN

proteins, has been demonstrated to facilitate lateral root

development Auxin, coupled with its downstream signal nitric

oxide, can activate the growth hormone signaling pathway (Wang

et al., 2016; Wen et al., 2016), resulting in the production of

adventitious roots in plants (Wen et al., 2016) (Figure 4). Zhang

et al. reviewed (Zhang et al., 2022) that the first MT receptor in

Arabidopsis was the candidate G protein-coupled receptor 2

(CAND2), a membrane protein that readily binds to MT (Wei

et al., 2018). Research has demonstrated that the introduction of

melatonin from an external source can induce the upregulation of the

genes RPOTm and RPOTmp through the CAND2 receptor and its G

protein alpha subunit (GP A1) (Bychkov et al., 2022). Arabidopsis

Cand2/pmrt1, which is located at the plasma membrane, is known to

interact with GPA1 and control stomatal movement by means of the

NADPH oxidase-mediated reactive oxygen species (ROS) signaling

pathway (Li et al., 2020). Recently, Zhao et al. reported that exogenous

MT can promote the expression of PITDC and PICOMT1 and

increase the content of endogenous MT. And the endogenous MT

can promote the expression of lignin biosynthesis-related genes

(PIPAL, PICCR, PICAD, PICOMT, and PIPOD) and increases

lignin accumulation, improving the strength of Paeonia lactiflora

Pall stems (Zhao et al., 2022).
FIGURE 3

IAM accumulation-mediated transcriptional activation of MYB74 and
its conversion to IAA regulates plant growth.
FIGURE 4

Melatonin regulates IAA biosynthesis and transport as well as regulates
abiotic stress responses in plant.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1120613
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sun et al. 10.3389/fpls.2022.1120613
Plant growth restrainers

Plant growth inhibitors are compounds, either man-made or

natural, that impede the development of the entire plant or a

particular part of the plant (Tuyen et al., 2018; Ellis et al., 2019).

An investigation into the biological activity of chemicals

associated with root-parasitic plants revealed that IAA had a potent

inhibitory effect on the seed germination of certain root-parasitic

plants. Subsequent introduction of the 3-methylfuran-2(5H)-one

structure into the carboxylic acid portion of IAA resulted in the

formation of compound 13 (Figure 1), which was found to have dual

activity, both inducing seed germination and suppressing the growth

of embryonic roots after germination (Kuruma et al., 2021). The IAA

analogs also showed significant inhibition of root growth in Brassica

napus. In particular, compounds 14 and 15 inhibited up to 96% and

95% of B. napus roots at 100 mg/L, respectively, and persisted with

92% and 93% inhibition when the concentration was decreased to 10

mg/L (Wang et al., 2022). The conformational analysis demonstrated

that the number of substituents on the benzene ring and electronic

effects influenced the inhibitory action of B. napus roots. It was seen

that CF3-substituted compounds were the most successful, and the

presence of a long-chain alkyl group at the alpha position of the

compounds increased their affinity for the TIR1 receptor. In addition,

the benzene ring at the alkyl terminus facilitated the binding of the

compounds to the TIR1 receptor (Hayashi, 2012; Wang et al., 2022).

IAM (Figure 1), a precursor of IAA biosynthesis, has a bifurcated

effect on plant growth. In pathway 1, it has a stimulatory effect, while

in pathway 2, it has an inhibitory effect. This is caused by the

increased levels of IAM in the plant, which leads to the expression

of NCED3, a rate-limiting enzyme involved in the biosynthesis of

abscisic acid (ABA). This, in turn, results in the overexpression of

R2R3 MYB transcription factor genes MYB74 or direct induction of

MYB74 overexpression, independent of ABA (Pérez Alonso et al.,

2020; Ortiz Garcıá et al., 2022). Overexpression of MYB74 has been

observed to have an effect on certain genes associated with the

proliferation of hyphal tissue cells (e.g., MYB11, MYB77), as well as

genes related to the formation of lateral roots in plants, which

ultimately leads to a decrease in plant growth (Figure 3).

Thaxtomins are a type of indole derivative featuring a 4-

Nitroindole and diketopiperazine structure (King and Calhoun,

2009). Thaxtomin A 16 and thaxtomin C 17, isolated from natural

materials, the pre-emergence and post-emergence inhibitory activities

against of B. campestris and A. retroflexus are more than 60%. And a

study of such compounds by Zhang et al. found that compounds 16,

17, 18, and 19 (Figure 5 ), with R5 as benzyl, showed significant

inhibitory activity (≥85%) against B. campestris and A. retroflexus

(King and Calhoun, 2009; Zhang et al., 2015). The nitro group at R1 is

also critical for the growth inhibition of B. campestris and A.

retroflexus. For example, compound 20 (Figure 5) with the nitro

removed exhibited only 10% pre-emergence inhibition activity

against B. campestris and A. retroflexus. In addition, the benzyl

portion on R5 and the hydroxyl group on the diketopiperazine

structure affect the crop selection properties of such compounds.

Protoporphyrinogen oxidase (PPO) may be a potential target for

compounds 16, 17, 18, and 19, which indirectly affect chlorophyll

synthesis and inhibit plant growth (Duke et al., 2019). Another class
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of compounds with 7-Nitroindole structure, 21 and 22 (Figure 5), can

reduce the dry biomass of the weeds of Ipomoea grandifolia and Senna

alata by 40% and 37%. This leads to a decrease in plant ATP synthesis

and CO2 fixation, interfering plant development (de Souza et al.,

2020). In addition, the introduction of methylene structure can

improve the lipophilicity of these compounds and promote their

entry into plant cells to exert inhibitory effects. For example,

compound 23 (Figure 5) inhibited seed germination and root

length of plants by 22% and 49.6%, respectively.

The introduction of the methyl ketone structure at the indole 3-

position of compound 24 (Figure 5) produced a considerable

inhibition of germination and shoot growth of the seeds of

Amaranthus tricolor (Chotpatiwetchkul et al., 2022). At a

concentration of 400-800 mM, the germination of seeds was

completely inhibited. Compound 24 demonstrated inhibitory effects

against hydroxyphenylpyruvate dioxygenase (HPPD), potentially

interrupting the transformation of HPP to homogentisate and

subsequently impeding the formation of tocopherols and

plastoquinones. This disruption in the production of carotenoids

may result in abnormal plant growth or death (Ndikuryayo et al.,

2017; Chotpatiwetchkul et al., 2022). The conformational analysis

showed that replacing the 7-position of the indole ring in compound

24 with C to N could enhance the inhibitory activity against HPPD

(Chotpatiwetchkul et al., 2022).
Biological stress resistance

Biological stress is a general term for various biological factors

that are unfavorable to plant survival and development. It is usually

caused by infection and competition, such as diseases, pests, weed

hazards, etc (Moustafa-Farag et al., 2019).

Indole can serve as signals for some chewing insect infestations or

for necrotic pathogens to invade plants. Studies have found that the

indole biosynthesis rate in maize and rice quickly increases when

exposed to herbivorous insect attacks. Indole has been demonstrated
FIGURE 5

Structural formula of compounds 16-30.
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to bolster plant immunity when faced with pathogenic threats by

prompting the build-up of H2O2, which activates the MAPK cascade

and phosphorylates protein-like transcription factors. This leads to

the activation of defense genes (Jalmi and Sinha, 2015; Mittler and

Blumwald, 2015; Perez and Brown, 2015; Shen et al., 2018; Ye et al.,

2019), including JA and plant antitoxin biosynthesis genes, cure-

associated proteins, and antioxidant enzymes (Gozzo and Faoro,

2013; Shen et al., 2018). In Camellia sinensis, indole is the

expression of early defense genes involved in Ca2+ signal, MPK

signal, and JA biosynthesis, and the production of secondary

metabolites associated with JA and defense is initiated, thus

increasing the resistance of Camellia sinensis to herbivores (Ye

et al., 2021).

MT also plays a critical role in enhancing plant resistance to biotic

stresses. Zhao et al. reviewed (Zhao et al., 2020) that MT, together

with ROS and reactive nitrogen species (RNS), promotes cell death

and prevents pathogen invasion by forming an integrated feedforward

loop during the early stages of pathogen invasion (Gaupels et al.,

2017; Arnao and Hernandez-Ruiz, 2018). In addition, the MT-ROS-

RNS composition transmits pathogen invasion signals from the

starting site to the entire plant and confers plant biological

tolerance early in infection. During pathogen invasion, MT acts

upstream of SA and accumulates it, and SA further mediates

immune response dependent on MAPK signaling cascade.

Moreover, MT may also improve plant immunity by altering cell

wall composition and influencing crosstalk between auxin and JA

signaling pathways. MT further removes excess ROS and RNS by

activating gene expression of antioxidant enzymes (SOD, H2O2, etc.)

and promotes redox homeostasis in plant systems (Reiter et al., 2009;

Arnao and Hernández-Ruiz, 2019) (Figure 6). MT increased early in

pathogen invasion and was restored to normal levels by expression of

metabolic genes (IDO or 2-OGDD) (Tan et al., 2007; Lee et al., 2016b;

Yu et al., 2018).

The compounds indole-3-formaldehyde 25 and indole-3-

carboxylic acid 26 (Figure 5) extracted from Purpureocillium lilaci-

num had better immune activation for some plants infected by the

tobacco mosaic virus (TMV). The application of 25 and 26 can

increase the level of transcription of Nonexpresser of PR1 (NPR1),

pathogenesis-related 1 (PR1), pathogenesis-related 2 (PR2),

pathogenesis-related 5 (PR5) and phenylalanine ammonia-lyase
Frontiers in Plant Science 05
(PAL), 25 and 26 can also upregulate the activity of defensive

enzymes such as catalase (CAT) and peroxidase (POD) to reduce

peroxide damage to membranes. In addition, 25 also improves (PAL)

activity and transcription levels of isochorismate (ICS) and avrPphB

susceptible 3 (PBS3) to facilitate SA accumulation. But 26 only

mediates SA accumulation through the PAL pathway, triggering

systemic acquired resistance in plants (SAR) (Sun et al., 2022). A

class of compound 27 (Figure 5) reported by Wang et al. was also able

to induce SA and PR2 expression and improve plant resistance to

TMV by activating reactive oxygen species and antioxidant levels

(Wang and Song, 2020).

In addition to the above indole compounds that enhance plant

resistance to viruses via the SA pathway, Wei et al. reported that

compound 28 (Figure 5) with a disulfide structure can promote

photosynthesis by enhancing chlorophyll content, and also can

enhance plant resistance to TMV, cucumber mosaic virus (CMV)

and potato Y virus (PVY) by enhancing the activities of defense

enzymes such as SOD, POD, PAL and CAT. Futhermore, compound

28 was able to increase malate dehydrogenase (MDH) activity and act

with MDH signaling pathway (Figure 7) (Wei et al., 2019).

In 2022, Li et al. reported that indole derivatives 29 (Figure 5)

containing pyridinium salts could regulate the conversion of

glycolysis in rice to produce pyruvate, which was further

decarboxylated to produce acetyl-CoA and subsequently entered the

citric acid cycle where NAD+ was reduced to NADH. The NADH

produced by this process was fed into the oxidative phosphorylation

way (Li et al., 2022a). The result of the two closely linked ways

improves plant resistance to Xanthomonas oryzae pv. oryzicola and X.

oryzae pv. oryzae. by oxidizing nutrients and generating available

chemical energy to give to the plant (Figure 8).
Abiotic stress resistance

Abiotic stress is the result of an abiotic factor on a plant in a given

environment, which can disrupt its growth and development

processes (Mittler, 2002).

IAA, one of the most abundant phytohormones in plants, not

only promotes root growth but also enhances plant resistance to

abiotic stresses. Studies have shown that the external application of
FIGURE 6

Melatonin induces resistance to biotic stress responses in plants.
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IAA can significantly increase the activities of POD and SOD, as well

as the contents of chlorophyll, carotenoid, and soluble protein in

Cyphomandra betacea seedlings. Furthermore, it can reduce the Cd

content in different organs and improve the resistance of plants to Cd

(Li et al., 2022b). Salt stress in plants led to an overexpression of

growth hormones, which manifested in increased root hair formation.

This alteration augmented the capacity of plants to take up water

during the drought (Germanà et al., 2015). IBA, was found to be

effective in counteracting the inhibitory effects of Cd and mannitol on
Frontiers in Plant Science 06
plant adventitious roots, and it was also successful in restoring the

levels of soluble proteins that had been reduced due to Cd and

mannitol (Li et al., 2018). Pernak et al. reported a class of ILs 30

composed of alkylated choline cations and IBA anions that exhibit

excellent physical properties such as hydrophobicity and surface

activity (Kaczmarek et al., 2020). Compound 30 were found to

promote the uptake of essential material nutrients (P, K, Ca, Mg,

Na, and Mn) by lettuce, while hindering the uptake of Fe, Zn, and Cu,

resulting in a 20% increase in lettuce biomass production. However,
FIGURE 8

Mechanism of disease resistance triggered by compound 29 stimulation in rice.
FIGURE 7

MDH signaling pathway in tobacco response to compound 28. Red arrows indicate that the protein is upregulated in this pathway. (Fd, ferredoxin; FNR,
ferredoxin-NADP reductase; FTR, ferredoxin-thioredoxin reductase; MDH, malate dehydrogenase; NTRC, chloroplast NADPH-thioredoxin reductase; OAA,
oxaloacetate; OMT, malate/OAA translocators; PS I, photosystem I; PS II, photosystem I; ROS, reactive oxygen species; Trx, thioredoxin). (Wei et al., 2019).
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the exact mechanism of action is yet to be determined. Additionally,

IAM, as a precursor of IAA, can improve plant abiotic stress tolerance

by enhancing the expression of abiotic stress-related genes, such as

NIG1 and MYB47 (Kim and Kim, 2006; Ding et al., 2013).

Abiotic stress can produce a large amount of ROS and RNS in

plants, resulting in oxidative damage to plant cells (Mittler, 2002). MT

has been identified to possess antioxidant properties, which can

stimulate the activity of antioxidant enzymes such as the Ascorbate-

glutathione (AsA-GSH) cycle, SOD, POD, CAT, APX, and the

expression of related genes. This helps to eliminate excess ROS and

RNS, improving the resilience of plants to abiotic stresses (Shi et al.,

2014; Li et al., 2016; Marta et al., 2016; Cui et al., 2017). MT can help

to increase abiotic stress resistance through its downstream signals

H2O2 and NO. For instance, under low-temperature stress, MT can

inhibit sulfhydryl nitrosylation activity and promote NADPH oxidase

activity to generate H2O2, protecting against low-temperature stress

(Gong et al., 2017). In Fe-deficient plants, MT regulates the plant by

modulating the polyamine-induced NO production (Zhou et al.,

2016). Fu et al. revealed that MT has the potential to act as an

antecedent to ABA, thereby regulating the plant’s response to low-

temperature stress. Additionally, MT is known to assist plants in

dealing with abiotic stresses (Arnao et al., 2018). Under heat stress,

MT was able to up-regulate the expression of cytokinin (CKs)

synthesis genes and their transcription factors type B ARRs (Zhang

et al., 2017). Under salt stress, melatonin induced the expression of

gibberellin (GA) synthesis genes GA20xox and GA3ox (Zhang et al.,

2014a). In addition, MT resists the inhibitory effect of abiotic stress on

plant photosynthesis by regulating photosynthetic carbon reduction,

photorespiration, and O2-dependent alternate electron flow balance

(Zhao et al., 2016; Chen et al., 2017; Li et al., 2017) (Figure 4).
Conclusion and perspectives

Investigating the role of indole compounds in the process of plant

growth regulation, as well as their impact on plant resistance to both

biological and abiotic stress, is the main focus of this review. The

promotion of plant growth by indole analogs is closely related to IAA.

For instance, IBA requires b-oxidation to form IAA, while IAM can

be converted to IAA with the help of a specific hydrolase (AM1).

Furthermore, melatonin is essential for enhancing IAA-related

transduction genes, biosynthetic genes, and some PIN proteins,

thus aiding in the development of plant roots. Indole compounds

can boost plant resistance to various biotic stresses through direct or

indirect action on SA, JA, and MDH pathways and increase the

activity of associated defense response enzymes. Research has

revealed that 26 and 27 can heighten plant defenses against TMV

by augmenting the activity of defensive enzymes like CAT and POD

and stimulating salicylic acid accumulation. Melatonin is the initial

factor that triggers the increase of SA, which then activates the MAPK
Frontiers in Plant Science 07
signaling cascade to regulate the immune response. In addition,

melatonin can also resist the adverse effects of salt, drought, and

cold on plants by promoting the activity of various antioxidant

enzymes and the expression of related genes.

Numerous indole compounds have been observed to influence

plant growth and stress tolerance. Yet, how these signals are detected

by the plant and amplified for further regulation of development and

stress resistance is largely unknown. Subsequent studies should focus

on examining the effects of indole analog signals on biotic and abiotic

stress signal receptors and how they may intensify the signal

transduction process. Investigating the interplay between indole

signals in plants and other phytohormones will be advantageous in

comprehending the mechanism of indole compounds in regulating

plant growth and resilience to stress.
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Marta, B., Szafrańska, K., and Posmyk, M. M. (2016). Exogenous melatonin improves
antioxidant defense in cucumber seeds (Cucumis sativus l.) germinated under chilling
stress. Front. Plant Sci. 7. doi: 10.3389/fpls.2016.00575

Marumo, S., Hattori, H., Abe, H., and Munakata, K. (1968). Isolation of 4-
chloroindolyl-3-acetic acid from immature seeds of pisum sativum. Nature 219, 959–
960. doi: 10.1038/219959b0

Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci.
161, 4–25. doi: 10.1016/s1360-1385(02)02312-9

Mittler, R., and Blumwald, E. (2015). The roles of ROS and ABA in systemic acquired
acclimation. Plant Cell. 27, 64–70. doi: 10.1105/tpc.114.133090

Moustafa-Farag, M., Almoneafy, A., Mahmoud, A., Elkelish, A., Arnao, M. B., Li, L.,
et al. (2019). Melatonin and its protective role against biotic stress impacts on plants.
Biomolecules 10, 54. doi: 10.3390/biom10010054

Napier, R. M. (2014). “Auxin receptors and perception,” in Auxin and its role in plant
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Ortiz Garcıá, P., Pérez Alonso, M. M., González Ortega Villaizán, A., SánchezParra,
B., Ludwig Müller, J., Wilkinson, M. D., et al. (2022). The indole-3-Acetamide-
Induced arabidopsis transcription factor MYB74 decreases plant growth and
contributes to the control of osmotic stress responses. Front. Plant Sci. 13.
doi: 10.3389/fpls.2022.928386

Osborne, D. J. (1952). A synergistic interaction between 3-indolylacetonitrile and 3-
indolylacetic acid. Nature 170, 210–211. doi: 10.1038/170210b0

Park, S., and Back, K. (2012). Melatonin promotes seminal root elongation and root
growth in transgenic rice after germination. J. Pineal. Res. 53, 385–389. doi: 10.1111/
j.1600-079x.2012.01008.x
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