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Prediction of crop yield is an essential task for maximizing the global food supply,
particularly in developing countries. This study investigated lettuce yield (fresh weight)
prediction using four machine learning (ML) models, namely, support vector regressor
(SVR), extreme gradient boosting (XGB), random forest (RF), and deep neural network
(DNN). It was cultivated in three hydroponics systems (i.e., suspended nutrient film
technique system, pyramidal aeroponic system, and tower aeroponic system), which
interacted with three different magnetic unit strengths under a controlled greenhouse
environment during the growing season in 2018 and 2019. Three scenarios consisting
of the combinations of input variables (i.e., leaf number, water consumption, dry weight,
stem length, and stem diameter) were assessed. The XGB model with scenario 3 (all
input variables) yielded the lowest root mean square error (RMSE) of 8.88 g followed
by SVR with the same scenario that achieved 9.55 g, and the highest result was by
RF with scenario 1 (i.e., leaf number and water consumption) that achieved 12.89 g. All
model scenarios having Scatter Index (SI) (i.e., RMSE divided by the average values of
the observed yield) values less than 0.1 were classified as excellent in predicting fresh
lettuce yield. Based on all of the performance statistics, the two best models were SVR
with scenario 3 and DNN with scenario 2 (i.e., leaf number, water consumption, and
dry weight). However, DNN with scenario 2 requiring less input variables is preferred.
The potential of the DNN model to predict fresh lettuce yield is promising, and it can be
applied on a large scale as a rapid tool for decision-makers to manage crop yield.

Keywords: machine learning, deep learning, DNN, yield prediction, food safety 2

INTRODUCTION

The changing conditions of climate and weather patterns during the past years have fueled the
current problems of land and water scarcity and continue to cause harm in the agricultural sector
(Majid et al., 2021). Globally, the agricultural sector is the largest consumer of water comprising
about 70% of the total demand, but 70% of this is returned as wastewater through the different
processes (Kloas et al., 2015; Murad et al., 2017). While per capita drinking water is about 2–5 L/day,
it requires about 5,000 L of water to produce daily dietary needs per person (Manju et al., 2017). The
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development of sustainable plans has become a global focus, and
a circular economy is the order of the day (Wei et al., 2019).

Without a doubt, the use of modern technologies has
increased ability of mankind to meet the latest challenges of
limited resources. Hydroponic systems are considered as an
alternative to traditional agricultural systems (Majid et al., 2021).
Safety, sustainability, and policy issues associated with water
and agriculture are fundamental to Egyptian interests. Irrigated
agriculture is the main user of water resources in most parts
of the world. Stress on water availability and associated impacts
among competing user groups in the region are increasing due
to population growth, development, environmental, and wildlife
concerns (Abd-Rbo et al., 2015). Therefore, the application of
modern agricultural techniques of hydroponic and aeroponics
without the need for soil is on the increase (Mehra et al.,
2018). Hydroponic systems can increase water productivity and
maintain the quality of production. Therefore, they should be
implemented on any scale to support the environment and
agriculture (El-Ssawy et al., 2020). Artificial intelligence (AI),
such as neural networks, has been applied in hydrology to deal
with complex phenomena (Elbeltagi et al., 2020; Abdel-Fattah
and Abdo, 2020; Mokhtar et al., 2021) and is also used to
control the growth of hydroponic plants (Mehra et al., 2018).
For some systems, such as the nutrient film technique (NFT),
a fresh solution of nutrients is continuously supplied to the
crops to compensate for the uptake of nutrients and water by
the plants. In some systems, the input of nutrients is based on
the nutrient/water uptake ratio concept, i.e., nutrient weight per
unit volume of water absorbed (Sonneveld and Voogt, 2001;
Neocleous and Savvas, 2019).

Lettuce grows much faster in aeroponics compared to a
floating system, probably due to the higher dissolved oxygen
level in the nutrient solution (Puccinelli et al., 2021). Hydroponic
systems can be automated using Internet of Things technology,
and machine learning (ML), a subset of AI, is very beneficial in
this regard. However, the use of ML in hydroponic/aeroponic
systems to automate plant growth has received less research
(Araújo et al., 2019). Recently, there have been many approaches
to estimate crop yield based on conventional methods, including
models of process-oriented crop simulation and statistical-based
models analyzing crop production and explanatory variables
(Johnson, 2014; Cai et al., 2019). Conventional statistical-
based methods or specific response functions linking yield and
independent variables provide an alternative to forecast yield due
to their simpler computation and higher interpretation power
(Qader et al., 2018). However, there are some problems with
conventional empirical prediction models because they tend to
be applicable to local conditions and the generalization for other
areas is limited (Qader et al., 2018; Folberth et al., 2019). ML is
a “black-box” with complicated functions but has the capability
for dealing with complex relationships between the independent
and the dependent variables (Kamir et al., 2020; Cao et al., 2021).
In recent years, ML techniques have been used in agricultural
research fields, such as classification of crop and monitoring of
growth and prediction of yield in some countries (Sadeghipour
et al., 2013; Shah et al., 2019; Wolanin et al., 2019). The ground
is now set for future sustainable agriculture that is data-driven to
feed AI and robots (Saiz-Rubio and Rovira-Más, 2020).

The ML is improving the ability of computers to perform
actions on their own after they have been trained for a specific
task. For machines to think like humans, they should first
learn like human beings. The mind of a human being makes
decisions based on past experiences, i.e., the data of the past
that one has been exposed to. ML algorithms have different
uses in hydroponics, such as to control plant growth, electrical
conductivity (EC) values, and the constituents of the nutrient
solution (Mehra et al., 2018). It instructs computers to perform
complicated tasks through regression, diagnosis, planning, and
recognition by learning from historical data. Thus, data and
algorithms are considered fundamental to performance of ML
models. Higher quality data and larger data sizes are instrumental
for the accuracy of ML models. It is also necessary to apply
suitable algorithms to achieve solutions to different problems
containing different types of datasets (Kang et al., 2020). For
example, Johnson (2014) applied a regression tree (RT) for
predicting yields of soybean and maize at the county-level in
the United States. In Australia, Cai et al. (2019) compared
the three improved ML models [i.e., support vector machine
(SVM), random forest (RF), and neural network (NN)] and the
method of traditional regression [i.e., Least Absolute Shrinkage
and Selection Operator (LASSO)] for the prediction of wheat
yield. Their results showed that ML methods were better than the
traditional regression method.

Jeong et al. (2016) predicted the yield of wheat, maize,
and potato by applying RF and multiple linear regression
(MLR). They concluded that RF was better than MLR in
predicting crop yields. Fukuda et al. (2013) also applied RF
to predict yields of mango fruit with a successful outcome.
Deep learning (DL), a subset of NN, has multiple layers
and progressively extracts higher-level features from the raw
input data (Lecun et al., 2015; Khaki and Wang, 2019). You
et al. (2017) used convolutional neural networks (CNNs) and
recurrent neural networks (RNNs) to predict soybean yield
based on a sequence of remotely sensed images. Furthermore,
a deep neural network (DNN) was applied to predict maize
yield during 2008–2016, and the results showed that DNN was
clearly better than LASSO, shallow neural network (SNN), and
RT (Khaki and Wang, 2019). Kim et al. (2019) applied a DNN
model to predict corn and soybean yield during 2006–2015.
In Argentina, Khaki and Wang (2019) developed a DNN for
predicting soybean yields.

The initial cost for establishing a hydroponic system is
very high, making it imperative to predict crop yield before
establishment using models, such as ML. Therefore, the objectives
of this study were to (1) apply four ML models to predict
fresh head weight (yield) of lettuce under controlled greenhouse
conditions subject to three input scenarios consisting of the
combinations of input variables and (2) identify the best
model scenarios.

MATERIALS AND METHODS

Experimental Treatments
The experiment was conducted in a controlled greenhouse
(2.0 m wide, 3.5 m long, and 2.5 m height) environment
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FIGURE 1 | Components of the experimental setup. (A) Photograph.
(B) Computer graphics.

made with an iron frame covered with a polyethylene sheet
at the Agricultural Engineering Research Institute, Agricultural
Research Center, Giza, Egypt, during the growing season in 2018
and 2019. It contained three hydroponics systems (i.e., suspended
NFT system, pyramidal aeroponic system, and tower aeroponic
system) as shown in Figure 1, subjected to three different
magnetic levels (MWL1 = 3,800 gauss, MWL2 = 5,250 gauss,
and MWL3 = 6,300 gauss) (Figure 2). The nutrient solution
was pumped from an irrigation storage tank through 16-mm
polyethylene pipes connected to each system by a 1-hp pump, and
the irrigation rate was 10 L/day for 6 h.

The suspended NFT system consisted of 150-cm-high vertical
iron stands that support three horizontal pipes each of 250 cm
length and 10.16 cm diameter. Each pipe had holes with 5 cm
diameter at 20-cm intervals containing the hydroponic cups that
housed the plants. The pyramidal aeroponic system consisted
of 1 m2 iron frames, two put together to make a V-shaped
structure and placed on an iron tank (1 m wide, 1 m long, and
0.5 cm deep). The iron frames were covered with high-density
plastic sheets on both sides forming a triangular pyramid, the
plants being housed in the plastic sheet. A gutter at the bottom
of the pyramid collected the nutrient solution which was then
redirected to the irrigation storage tank. Four foggers of 0.5 m
diameter, discharging at 6 L/h under 2 bar pressure, were installed
inside the system. The tower aeroponic system was made of pipes
of 15.24 cm diameter and 1.5 m height. Also with this system,
the plants were placed at 20 cm intervals in hydroponic cups
within holes of 5 cm diameter. The nutrient solution was pumped
from a tank to the foggers installed above the system through a

polyethylene pipe of 16 mm diameter. The same type of foggers
was used for both the pyramidal and the tower aeroponic systems.

The lettuce (cv. LimorHyb.) plants were obtained from the
Institute of Horticulture Research, Giza, Egypt. In the hydroponic
systems, the plants were grown in high-density sponges of
3 cm thick. They were cultivated for 3 weeks in 5 cm deep
cups filled with nutrient solution to generate complete rooting.
The plants were placed in different hydroponics systems after
rooting on April 01, 2018, and March 01, 2019. Irrigation water
was sourced from two tanks filled with a nutrient solution
in the environmentally controlled greenhouse. The EC of the
nutrient solution was approximately 1.5 dS/m which also had the
following chemical properties: N = 51, P = 219.29, K = 358.3,
Ca = 135, Mg = 45, Fe = 2.7, Mn = 0.75, Cu = 0.375, Zn = 0.113,
B = 0.188, and Mo = 0.009 (Jackson and McGonigle, 2005).

Climate Conditions
The range of temperature during the two seasons was 23–25 and
20–22◦C, and the relative humidity was 60–65%. These weather
conditions were controlled and monitored by the greenhouse
tools (i.e., cooling pad, suction van, and monitoring sensor) and
were checked by a Hygrometer Thermo-Anemometer Model
407412 (accuracy ±0.8◦C and ±3%) and monitoring sensor
CSP60BA252M with a nominal resistance of 2,500 ohms. Light
intensity was 1981:1992 in the lux unit, and it was measured by
light meter Model YK-10LX (accuracy±5% and 4 days).

Plant Variables and Scenarios
The systems were designed to contain 64 plants per square meter
in each system. The harvest occurred after 50 days from planting
in the systems at the same time. For each harvest, three plants
were taken from each system. Then, the explanatory features, or
variables used interchangeably, of leaf number, stem length, stem
diameter, and dry weight, as well as the water consumption, and
the dependent feature of fresh head weight (yield) were recorded.
Descriptive statistical analysis of the collected data during the
growing season of 2 years is shown in Table 1 for the three
complete datasets. The explanatory features were divided into
three scenarios: scenario 1 (leaf number and water consumption),
scenario 2 (leaf number, water consumption, and dry weight), and
scenario 3 (leaf number, water consumption, dry weight, stem
length, and stem diameter, i.e., all input variables) (Table 2).

Machine Learning Models
Support Vector Machine
The SVM is a supervised learning algorithm that can also be
used as a regression model. The main objective is to minimize
the errors and individualize the hyperplane that increases the
tolerance limit. The approximated function in the algorithm of
SVM is given as follows:

f (x) = ωϕ(x)+ b (1)

where ϕ (x) is a feature space of higher dimension converted
from the input vector x, ω represents the weights vector, and b
are thresholds that are estimated by minimizing the following
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FIGURE 2 | Flowchart of the treatments implemented and models applied.

regularized risk function:

R(C) = C
1
n

n∑
i=1

L(di, yi)+
1
2
‖ ω ‖2 (2)

where C is the penalty parameter of the error, di is the desired
value, n is the number of observations, and C 1

n
∑n

i=1 L(di, yi)
is the empirical error in which the function Lε is determined as
follows:

Lε(d, y) =
∣∣d − y

∣∣− ε
∣∣d − y

∣∣ ≥ ε or 0 otherwise (3)

where 1
2 ‖ ω ‖2 is the so-called regularization term and ε is the

tube size. The approximated function of Equation (1) is expressed
in an explicit form by introducing Lagrange multipliers and
exploiting the optimality constraints as follows:

f (x, αi, α
∗
i ) =

n∑
i=1

(αi − α∗i )k(x, xi)+ b (4)

where k(x, xi) is the kernel function. Vapnik (2016) and
Fan et al. (2018) have provided detailed information and the
computational procedures of the SVM algorithm.

TABLE 1 | Descriptive statistical analysis of the collected data.

Mean Max Min SD Q1 Q3

Stem diameter 22.05 28.20 17.00 2.84 19.98 23.98

Leaf number 26.88 37.00 21.00 3.51 24.00 29.00

Stem length 41.15 52.00 32.00 4.28 38.00 43.00

Dry weight 18.20 27.90 13.10 3.17 16.25 19.05

water/area 0.32 0.42 0.25 0.05 0.26 0.34

Fresh head weight 329.81 416.20 275.20 36.48 301.73 346.10

Extreme Gradient Boosting
The extreme gradient boosting (XGB) algorithm proposed by
Chen and Guestrin (2016) is a novel implementation method
for Gradient Boosting Machine which is based on RTs. The
algorithm depends on the “boosting” idea which combines
all the predictions of a set of “weak” learners to develop
a “strong” learner during strategies of additive training. The
general function for the prediction at step t is given as follows:

fi(t)
=

t∑
k=1

fk (xi) = f (t−1)
i + ft (xi) (5)

where ft (xi) is the learner at step t, fi (t) and fi (t-1) are the
predictions at steps t and t-1, and xi is the input variable.

To avoid the overfitting problem without any influence on
the model computational speed, the XGB applies the analytic
expression given below to evaluate the “goodness” of the model

TABLE 2 | Summary of the combination of the input variables for the applied
models.

Scenario Model Input variables
combination

1 SVR1 XGB1 RF1 DNN1 Leaf number, water
consumption

2 SVR2 XGB2 RF2 DNN2 Leaf number, water
consumption, dry

weight

3 SVR3 XGB3 RF3 DNN3 Leaf number, water
consumption, dry

weight, stem length,
stem diameter

SVR1, XGB1, RF1, and DNN1 for the first scenario, 2 is the second scenario, and
3 is the third scenario.
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from the original function:

Obj(t)
=

n∑
k=1

l
(
−
yi, yi

)
+

t∑
k=1

�
(
fi
)

(6)

where l is the loss function, n is the number of observations, and
� is the regularization term which is defined as follows:

�
(
f
)
= γT +

1
2
λ||ω||2 (7)

where ω is the vector of scores in the leaves, λ is the regularization
parameter, and γ is the minimum loss needed to further
partition the leaf node. More information and procedures of
the computation of the XGB algorithm can be found in the
study by Chen and Guestrin (1994).

Random Forest
The RF model was developed by Breiman (2001) and uses
the “bagging” idea to ensemble a collection of decision trees
with controlled variance. The RF model is commonly used
for regression and prediction problems. An RF regression is a
specific type of bootstrap ensembles. It deals with random binary
trees that use a subset of the observations via bootstrapping,
where a random subset of the training dataset is sampled from
the raw dataset and utilized to evolve the model. The detailed
computational procedure of the RF model can be found in the
studies by Breiman (2001) and Ferreira and da Cunha (2020). To
get the best score, an RF was trained using 200 trees, 5 max depth,
and the default values of the other hyperparameters. During the
tuning phase, the following sets of hyperparameters and their
respective values were used: n estimators (number of trees) (100,
200, 300, and 500) and max depth (1, 2, 5, and 10).

Deep Neural Network
The DNN is a powerful DL model (Montes-Atenas et al., 2016;
Achieng, 2019). It is an artificial neural network (ANN) with
multiple layers between the input layers, hidden layers, and
output layers to learn more complex non-linear relationships
between input and output. In this study, the rectified linear unit
(ReLU) was applied as an activation function which is commonly
employed to establish input-output relationships and defined as
follows (Xu et al., 2015; Ghimire et al., 2019):

ReLu(s) =
{

x(x > 0
0(x ≤ 0

}
(8)

The loss function in the DNN model is expressed as follows:

loss =
1

2n

n∑
i=1

(
Ti − T

′

i

)2
(9)

where n is the number of observation data T, and T′is the
estimated value by the DNN model which can be defined for
a three-hidden-layer DNN model with the ReLU activation
function as follows:

T′ = ReLu-4(-3(ReLu(-2(ReLu)(-1 + b1))+ b3))+ b4
(10)

where ω1, ω2, ω3, and ω4 are the weights in the network and b1,
b2, b3, and b4 are the bias terms.

Performance Evaluation of the Models
In this study, the mean absolute error (MAE), the root mean
square error (RMSE), and the mean bias error (MBE) were used
to evaluate the applied models. In addition, uncertainty with
a 95% confidence level (U95) was estimated (Gueymard, 2014;
Behar et al., 2015). The model deviations and the T-statistic test
(Tstat) were used to evaluate the significant differences between
the predicted and the observed yield (Stone, 1994; Gueymard,
2014). The performance statistics are defined as follows:

MAE =
1
n

n∑
i=1

|Oi − Pi| (11)

RMSE =
√

1
n

∑
(Pi − Oi)

2 (12)

MBE =
1
n

n∑
i=1

(Oi − Pi) (13)

SI =
RMSE

O−
(14)

Tstat =

√
(1− n) MBE2

RMSE2 −MBE2 (15)

U95 = 1.96
√(

SD2 + RMSE2
)

(16)

where
−

O represents the average values of the observed yield,
Oi and Pi are the observed and predicted yield, respectively, and
i is the number of observations. SD is the standard deviation of
the difference between the observed and estimated values. The
range of the Scatter Index (SI) for the classification of the models
is “excellent” if SI < 0.1, “good” if 0.1 < SI < 0.2, “fair” if
0.2 < SI < 0.3, and “poor” if SI > 0.3. Notably, the MBE and
T-statistics take both negative and positive values.

In this study, the datasets were divided into 70% for training
and 30% for testing. The ML models were implemented using
the Python programming language library Scikit-learn 0.22.1.
A virtual machine was established on Google Cloud Platform
which was used for the computations. The hyperparameter
tuning was performed using a grid search method for each
model to get the best score as well as the best parameter sets
that gave the lowest prediction errors in the testing stages (Al-
Fugara et al., 2020; Fan et al., 2021). For support vector regressor
(SVR), two different kernels (i.e., radial basis function and linear)
were applied, as well as regularization parameter C from the
set (1, 2, 3, 4, and 5), and maintained the default values of
the remaining hyperparameters. To get the best score, an XGB
was applied by using 400 trees, 10 max depths, a learning
rate of 0.1, and the other hyperparameters that are the default
values. The following sets of hyperparameters were applied: n
estimators (number of trees) (100, 200, 300, 400, and 500);
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FIGURE 3 | The performance statistics values for different model scenarios.

max depth (1, 2, 5, 10, and 12); and learning rate (0.05, 0.1,
and 0.5). RF was trained using 400 trees, where 10 max depth
and the default values of the other hyperparameters were used.

During the hyperparameter tuning stage, the following sets of
hyperparameters were assessed: number of trees (100, 200, 300,
400, and 500) and max depth (1, 2, 5, 10, and 12). For the DNN
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model, the neuron numbers in the four hidden layers were 256,
128, 128, and 64 neurons, respectively, and the iterations (epochs)
were optimized as 500 epochs.

RESULTS AND DISCUSSION

Evaluation of the Machine Learning
Models
The results of the application of the ML models are shown in
Figure 3. The XGB model with scenario 3 yielded the lowest
RMSE value of 8.88 g followed by SVR with scenario 3 at 9.55 g,
and the highest value was in XGB with scenario 1. With regard
to MAE, XGB reported the lowest value with scenario 3 as 7.1 g,
and the same model yielded the highest value with scenario 1 as
12.1 g. In terms of the coefficient of determination (R2), all model
scenarios registered more than 0.88 except for XGB with scenario
1 which recorded a modest value of 0.78 (Figure 3).

The lowest T-statistic was recorded by SVR with scenario 2,
and the highest was recorded by DNN with scenario 2. For the
uncertainty, XGB with scenario 3 recorded the lowest value as
24.8, and the highest value of 46.8 was recorded by the same
model but with scenario 1, following the same trend as RMSE
and MAE. In terms of the MBE, the highest value was reported
by the DNN model with scenario 3 as 3.95 g followed by DNN
with scenario 2 as 3.8 g. All model scenarios produced SI values
of <0.1, which is an indication of excellent performance by all
models. This may be related to the strong correlation between
the input and output variables. However, the selection of input
variables is one of the most important aspects for ML models to
achieve better results.

The ML models performed well at the controlled environment
level. Our methodology is scalable, simple, and inexpensive
for estimating lettuce fresh weight. It is observed that the
prediction accuracy of the models varied and also depended on
the scenario input variables. Prediction of crop yield is extremely
challenging due to its dependency on multiple factors, such as
crop genotype, environmental factors, management practice, and
their interactions (Khaki et al., 2020). There are many studies
discussing crop genotype and environmental factors, but our
study is focused on the effect of plant components and water
consumption on yield (fresh head weight). The DL subset of ML
can be further improved by combining with crop models, adding
detailed farming management data, and higher spatiotemporal
input variables (Cao et al., 2021).

We predicted lettuce crop yield depending on the input
variable scenarios. Scenario 1 consisted of leaf number and
water consumption, scenario 2 combined leaf number, dry
weight, and water consumption, and scenario 3 included all
features (i.e., stem diameter, leaf number, stem length, dry
weight, and water consumption). Our results are in agreement
with previous studies that showed that the RF model can
accurately estimate crop yields (Fukuda et al., 2013; Everingham
et al., 2016). There was no overfitting during the training stage
for the RF model yet it had the lowest R2 for scenarios 2
and 3 and the second lowest value after XGB for scenario
1. In contrast, the results of Jeong et al. (2016) reported

FIGURE 4 | Taylor diagram displaying a statistical comparison of the applied
models used for predicting fresh head weight (yield).

that the algorithm of RF may suffer overfit to data because
its algorithm consists of an ensemble of a large number of
decision trees that may not be fully described mechanistically.
Also, RF may cause a loss of accuracy when extreme ends are
expected or responses are outside the limits of the training data
(Jeong et al., 2016).

Model Comparison
As shown in Figure 3, the XGB model reported the lowest
RMSE and MAE values of 2.69 and 2.2%, respectively, and
also the highest R2 value (0.94) for scenario 3. According to
the SI statistics, the SVR model with scenario 3 had excellent
performance (Li et al., 2013). The second model was XGB as
judged by the RMSE (2.89%) and MAE (2.4%) performance
statistics. Figure 4 presents a Taylor diagram that shows how
much the observations are matched by the predictions and the
degree of compliance by the model (Taylor, 2001; Maroufpoor
et al., 2019). It is clear that the best models were SVR with
scenario 3 and DNN with scenario 2. However, SVR with
scenario 3 (i.e., leaf number, water consumption, dry weight,
stem length, and stem diameter) is superior, and DNN with
scenario 2 (i.e., leaf number, water consumption, and dry weight)
is equally good. It needs to be mentioned that DNN with
scenario 2 has less input features than SVR with scenario 3,
making DNN with scenario 2 the preferred model. Nevertheless,
all four models that were applied have a high correlation
coefficient in excess of 0.95, and the SD was close to the
observed values.

A boxplot to compare the models based on the residuals
(estimation error) is shown in Figure 5. Positive and negative
estimation errors show under- and overestimations, respectively.
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FIGURE 5 | Boxplots showing the distribution of the estimation errors in the
test stage for support vector regressor (SVR), extreme gradient boosting
(XGB), deep neural network (DNN), and random forest (RF) models. Q25,
lower quartile of errors; Q75, upper quartile of errors; IQR, interquartile range
for each model.

TABLE 3 | The performance statistics of support vector regressor (SVR), extreme
gradient boosting (XGB), deep neural network (DNN), and random forest (RF)
models for lettuce.

Model Scenario SI T U95 MBE

SVR 1 0.035 0.647 31.90 1.59

2 0.032 0.015 29.35 0.034

3 0.029 1.600 26.10 3.10

XGB 1 0.051 0.780 46.80 2.84

2 0.031 0.110 28.70 –0.25

3 0.027 0.540 24.80 1.04

DNN 1 0.037 0.630 34.50 1.70

2 0.033 1.650 30.30 3.80

3 0.035 1.630 31.90 3.95

RF 1 0.039 0.160 36.2 –0.45

2 0.035 0.135 32.1 –0.34

3 0.033 0.087 30.3 –0.21

SI, Scatter Index; Tstat, T-statistic test; U95, Uncertainty with a 95% confidence
level; MBE, mean bias error.

The DNN with scenario 2 model appears to be the best model
having the lowest error in comparison with the others. It has
a lower quartile (Q1) value of –10.33, while XGB has a value
of –9.99, and SVR, a value of –10. Third quartile (Q3) error
analysis is better than Q1 because it contains 75% of the error.
It is reported that the DNN with scenario 2 model has a
difference of 1Q3 = 3.48 compared with XGB with scenario
3 which has 1Q3 = 0.79 compared with SVR3. Moreover, the
smaller interquartile range (IQR = Q3–Q1) by DNNs compared
with the other three models clearly show that its distribution
of error is much better than the others (Figure 5), and it is
therefore preferred.

As mentioned earlier, the highest R2 and the lowest RMSE
were recorded by XGB (0.94 and 8.88, respectively) with scenario
3, followed by DNN with scenario 2 (0.93 and 11.11, respectively).
Also, XGB with scenario 3 had the lowest MAE followed
by XGB with scenario 2. These results do not agree with

Fan et al. (2021) who reported that the best model results were
given by DNN models (R2 = 0.816–0.954), slightly outperforming
SVR models (R2 = 0.731–0.948) during the testing stage,
followed by XGB models (R2 = 0.739–0.929) under the four-
input combination, but their research was about summer maize
in Northwest China. The DNN model had a high prediction
performance of yield which is similar to those reported by
Khaki and Wang (2019), where RMSE for the validation dataset
was around 11% of their respective values. The accuracy for
the prediction of the crop yield was slightly higher than that
reported by Khaki and Wang (2019) because they used average
yield. In Table 3, the SI values are lower than 0.1 for all
model scenarios, meaning the accuracy of the models can be
characterized as “excellent” (Li et al., 2013; Maroufpoor et al.,
2019).

CONCLUSION

This study presented ML approaches for the prediction of
lettuce crop yield cultivated in three different hydroponic systems
which interacted with three different kinds of magnetic water.
Three samples were collected from each system 50 days after
transplanting, at the same time, for all systems for 2 years.
The datasets were divided into 70% for the training of the four
ML models (i.e., RF, XGB, SVR, and DNNs) used to predict
lettuce crop yield based on the three scenarios of input plant
and water features, and 30% of the remaining data were used for
testing the models.

The lowest RMSE was recorded in XGB with scenario 3
followed by SVR with scenario 3, and the highest, by RF with
scenario 1. The R2 was more than 0.77 for all applied model
scenarios. Based on the SI, all models performed excellently,
especially XGB with scenario 3 and SVR with scenario 3. Based
on all performance statistics, the two best models were SVR with
scenario 3 and DNN with scenario 2. However, the latter model
scenario is preferred because it requires fewer input variables.

The methods developed in this study can be further improved
by combining the input variables with climate variables, farming
management data, and higher resolution spatiotemporal input
variables for the successful prediction of crop yield on a large
scale. The ML models could be a rapid tool for predicting crop
yield and disaster evaluation over a large area.
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