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Monitoring leaf Chlorophyll (Chl) in-situ is labor-intensive, limiting representative sampling 
for detailed mapping of Chl variability at field scales across time. Unmanned aeria-l vehicles 
(UAV) and hyperspectral cameras provide flexible platforms for observing agricultural 
systems, overcoming this spatio-temporal sampling constraint. Here, we evaluate a 
customized machine learning (ML) workflow to retrieve multi-temporal leaf-Chl levels, 
combining sub-centimeter resolution UAV-hyperspectral imagery (400–1,000 nm) with leaf-
level reflectance spectra and SPAD measurements, capturing temporal correlations, selecting 
relevant predictors, and retrieving accurate results under different conditions. The study is 
performed within a phenotyping experiment to monitor wild tomato plants’ development. 
Several analyses were conducted to evaluate multiple ML strategies, including: (1) exploring 
sequential versus retraining learning; (2) comparing insights gained from using 272 spectral 
bands versus 60 pigment-based vegetation indices (VIs); and (3) assessing six regression 
methods (linear, partial-least-square regression; PLSR, decision trees, support vector, 
ensemble trees, and Gaussian process; GPR). Goodness-of-fit (R2) and accuracy metrics 
(MAE, RMSE) were determined using training/testing and validation data subsets to assess 
the models’ performance. Overall, while equally good performance was obtained using 
either PLSR, GPR, or random forest, results show: (1) the retraining strategy improved the 
ability of most of the approaches to model SPAD-based Chl dynamics; (2) comparative 
analysis between retrievals and validation data distributions informed the models’ ability to 
capture Chl dynamics through SPAD levels; (3) VI predictors slightly improved R2 (e.g., from 
0.59 to 0.74 units for GPR) and accuracy (e.g., MAE and RMSE differences of up to 2 SPAD 
units) in specific algorithms; (4) feature importance examined through these methods, 
revealed strong overlaps between relevant bands and VI predictors, highlighting a few 
decisive spectral ranges and indices useful for retrieving leaf-Chl levels. The proposed ML 
framework allows the retrieval of high-quality spatially distributed and multi-temporal SPAD-
based chlorophyll maps at an ultra-high pixel resolution (e.g., 7 mm).

Keywords: chlorophyll, hyperspectral image, SPAD – leaf greenness, machine learning, UAV, multitemporal 
analyses, vegetation indices, digital phenotyping
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INTRODUCTION

Chlorophyll (Chl) is the primary pigment that drives the 
exchange of energy required for sugar production through 
photosynthesis, which ultimately sustains life, produces oxygen, 
and regulates CO2 for the entire planet. From the interaction 
of visible solar radiation with leaves (approximately 400–750 nm), 
around 85% is absorbed by leaf pigments to fuel the 
photosynthesis processes, 10% is reflected, 2% is emitted as 
fluorescence, and the rest is transmitted (Lambers and Oliveira, 
2019). However, this balance can vary depending on the 
chlorophyll content and concentration throughout the plant 
developmental phases, which itself is subject to environmental 
factors that influence physiological responses like growth, 
structural changes, and stress. The importance of Chl 
quantification, beyond its inherent ecosystem value, is widely 
documented in the agricultural literature, with efforts exploring 
its role in underpinning gross primary productivity (Houborg 
et al., 2015a), leaf nitrogen monitoring (Schlemmer et al., 2013), 
assessing health status (López-López et  al., 2016), supporting 
fertilization management practices (Gabriel et  al., 2017), and 
senescence detection (Noodén et  al., 1997). Despite the 
importance of chlorophyll for phenotyping and agricultural 
purposes, accurately quantifying its temporal dynamics at 
different spatial scales (i.e., leaf, canopy, or field) remains a 
significant challenge, given the laborious and time-consuming 
sampling procedures required for its accurate characterization. 
From the diversity of methods available for examining leaf 
chlorophyll content, two of the most widely used include a 
destructive laboratory procedure based on in vitro 
spectrophotometric techniques (Wellburn, 1994; Porra, 2002; 
Netto et  al., 2005) and a non-destructive method based on 
in-situ observations collected via chlorophyll meters, such as 
the Soil Plant Analysis Development (SPAD) system  
(Yuan et  al., 2016; Shah et  al., 2017; Dong et  al., 2019).

However, despite the high accuracy provided by the 
laboratory method, or the portability offered by handheld 
sensors, both procedures face limitations when covering large 
study areas, where numerous samples are required to assess 
entire plant populations. An alternative and complementary 
approach to tackle this limitation is through combining field-
based sampling (or scouting) with remote sensing based 
observations. Total chlorophyll can be tracked by its reflectance 
response using optical sensors (Curran, 1989), which can 
detect spectral absorption peaks within the visible wavelengths, 
centered at the 400–450 nm range and around 680 nm for 
Chl-a, and at the 450–500 nm range and around 650 nm for 
Chl-b. In recent decades, progress has been made in using 
multispectral satellite observations in combination with field 
data to estimate a range of “greenness” indices and gross 
primary productivity using MODIS (Wang et  al., 2020), 
Landsat (Croft et  al., 2015; Houborg et  al., 2015b) and 
Sentinel-2 (Clevers and Gitelson, 2013; Delloye et  al., 2018) 
platforms. Other initiatives have explored space-borne 
hyperspectral imagery from the EO-1 Hyperion sensor, tracking 
yield dynamics based on Chl content and leaf area index 
(Wu et  al., 2008; Houborg et  al., 2016). However, recent 

advances in miniaturizing optical sensors and systems, which 
can capture high spatial, spectral and temporal resolution 
data, offer new research opportunities to progress open 
questions in retrieval models and dynamics of Chl at both 
leaf and canopy scales. For example, studies based on unmanned 
aerial vehicles (UAVs) coupled with hyperspectral cameras 
have examined pigments content estimation (Zarco-Tejada 
et  al., 2013a) by replicating modeling approaches already 
implemented with satellite and airborne-base data. With the 
enhanced spatial and temporal resolution afforded by such 
systems (Aasen et  al., 2018), these technologies also bring 
new challenges in terms of the computational efficiency 
required to process, model, and analyze the large volumes 
of data collected.

Translating these massive quantities of hyperspectral imagery 
and in-situ data into useable information and knowledge 
requires improved and targeted modeling strategies. Early 
studies using UAV-based imaging spectroscopy were often 
focused on monitoring and characterizing croplands, retrieving 
Chl content, and other specific physiological properties using 
a range of methods. Broadly speaking, these approaches can 
be  grouped into parametric, machine learning (ML), radiative 
transfer models (RTM), or hybrid methods (see Verrelst et al., 
2019 for a full review). Parameterized relationships between 
spectral bands sensitive to physiological traits, more generally 
referred to as vegetation indices (VIs), are probably the most 
common approach to map pigments content (Haboudane et al., 
2002), with examples including the Photochemical Reflectance 
Index (PRI; Zarco-Tejada et  al., 2013b), the optimized soil-
adjusted vegetation index (OSAVI) and the modified chlorophyll 
absorption in reflectance index (MCARI; Domingues 
Franceschini et  al., 2017), among many others. Statistical 
regression approaches are routinely employed to capture 
relationships between spectral features and biophysical traits. 
For example, one of the more widely used linear methods is 
partial least squares regression (PLSR), which has been 
implemented to simultaneously estimate Chl and LAI (Kanning 
et al., 2018). ML regression algorithms have become increasingly 
popular due to their diversity of model types and utility for 
analyzing large datasets, with examples including random forest, 
and support vector machines. Bayesian algorithms, such as 
the Gaussian process regression (GPR; Rasmussen and Williams, 
2006; Verrelst et  al., 2012; Camps-Valls et  al., 2016), have 
gained popularity in remote sensing applications due to their 
capacity to measure uncertainty and include prior knowledge 
about the modeled variables by using kernel functions. Together 
with GPR, an ensemble of multiple algorithms (Feilhauer et al., 
2015; Vanbrabant et  al., 2019) has been shown to outperform 
what can be  achieved from application of any single method. 
Finally, more recent developments have sought to combine 
elements from the approaches mentioned above, resulting in 
hybrid methods that have the advantage of complementing 
the biophysical properties of VIs and RTMs with the 
computational efficiency and flexibility of non-parametric 
models, especially when dealing with large datasets (Capolupo 
et al., 2015). Hybrid-combinations remain an open and promising 
research path for phenotyping at canopy and leaf–level, with 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Angel and McCabe Machine Learning for Leaf-Chl Retrieval

Frontiers in Plant Science | www.frontiersin.org 3 March 2022 | Volume 13 | Article 722442

applications including training ML regression approaches with 
simulated VIs retrieved by RTMs (Liang et  al., 2016; Houborg 
and McCabe, 2018) or producing ensembles of dimensionality 
reduction (DR) and MLR methods able to filter critical spectral 
predictors (Rivera-Caicedo et  al., 2017; Shah et  al., 2019) to 
boost hyperspectral derived results.

Machine learning has shown considerable potential for 
delivering novel insights in leaf Chl retrieval, yet there are 
numerous implementation challenges that can frustrate 
application, including algorithm choice, training data, learning 
strategies, and predictors selection (Verrelst et  al., 2019). 
Identifying the right algorithm among the many available 
depends on evaluating elements such as accuracy, interpretability, 
complexity, scalability, and computational cost: pre-analysis 
steps that are not always followed. Some approaches make 
particular assumptions about the data structure (i.e., distribution), 
demanding an exhaustive exploratory data analysis prior to 
modeling. Establishing a learning strategy has important 
implications for making the most of limited training data and 
prediction purposes. For instance, a data integration strategy 
for multi-temporal observations is required to understand how 
dynamics in Chl content combine to affect spectral responses. 
Likewise, the idea of strengthening the predictive power by 
using hundreds of spectral bands as predictors may result in 
computationally expensive models and multicollinearity issues, 
thus requiring coupled DR methods or testing transformed 
variables that bolster the spectral features sensitive to Chl (i.e., 
VIs). Overall, although there is not a generic recipe that can 
be  applied to most ML problems, a modeling framework that 
integrates the above-highlighted aspects provides a much-needed 
road-map for retrieving biophysical variables from hyperspectral  
data.

The present study aims to assess the robustness of a machine 
learning framework to map a metric of leaf-Chl through the 
use of multi-temporal ultra-high spatial resolution (e.g., order 
of millimeters) UAV-based hyperspectral imagery. This is done 
using a training dataset composed of multi-temporal in-situ 
SPAD observations, together with VI estimates from field-based 
spectra measurements (350–2,500 nm) at the leaf level. Coincident 
and high-spatial resolution UAV-based hyperspectral scans 
(400–1,000 nm across 272 continuous bands) were also collected 
to provide a spatially distributed extension to the point scale 
in-situ training collections. A novel aspect of this work is that 
the modeling framework provides strategies for selecting the 
best-suited training/retrieval combinations based on accuracy 
assessment, using multiple learning models, spectral bands, 
and VIs predictors, and performed under both sequential and 
retraining learning techniques. Three particular research 
objectives are explored in this study: (1) examining the ability 
of different training strategies (retraining versus sequential) to 
capture and exploit temporal correlations in leaf-Chl; (2) quantify 
any potential gain (via a feature selection method) from using 
pigment-based VIs as Chl content predictors versus individual 
spectral bands; and (3) evaluate the performance of different 
ML regression approaches to accurately model and retrieve a 
SPAD-based Chl metric under dynamic training and field  
conditions.

MATERIALS AND METHODS

Study Area and Experimental Design
As part of a phenotyping study of a wild tomato (Solanum 
pimpinellifolium) crop, data were acquired over an experimental 
farm located in the valley of Hada Al-Sham, approximately 
250 m above sea-level and 60 km east of Jeddah, Saudi  Arabia 
(Figure  1). The regional climate is tropical and subtropical 
desert, with annual rainfall averages of around 100 mm. Although 
there was no rainfall during the study period, several sandstorms 
occurred through the growing cycle. 1,200 individual tomato 
plants were planted across the field, spaced equally at 1.5 m 
intervals and comprising 60 rows aligned along the north-east 
direction at approximately 2 m separation. The area was divided 
into four plots, containing a total of 300 plants each. The 
substrate was predominantly sandy loam soil. Five field campaigns 
were conducted between the fall and winter seasons (from 
November 2017 to January 2018), capturing crop growth stages 
corresponding to establishment, development, flowering, fruiting, 
and pre-harvest. As the primary purpose of the original 
phenotyping study was to identify salinity tolerance within 
the chosen selections, the experiment included duplicate saline 
and freshwater irrigation across four sub-areas (see Barreto 
et  al., 2019 for further details). Here we  focus our analyses 
on a single quadrant in order to reduce the computational 
burden involved in multi-quadrant processing (considering the 
terabytes of imagery involved). Ultimately, results can 
be  expanded to the rest of the field to explore the impacts 
of salt-stress.

Field Spectra Data Collection
During each campaign, field-based reflectance spectra were 
collected close to solar noon using an ASD FieldSpec-4 
(Analytical Spectral Devices Inc., Boulder, CO, United States) 
spectroradiometer, which samples data in the visible (VIS) 
and shortwave infrared (SWIR) spectral range (from 350 nm 
to 2,500 nm), with a resampled spectral resolution of 1 nm. 
From the total population of 1,200 plants, 36 individuals 
were randomly selected, and the reflectance response from 
three of their top leaflets measured (i.e., 108 samples for 
each campaign). Eleven sampling plants died before the last 
campaign (20180114, pre-harvest) due to strong winds,  
reducing the number of samples from 108 to 75 leaflets. An 
8-degree fore optic lens was attached to a pistol grip to limit 
the field of view (FOV) diameter to 1.5 cm, measuring at a 
constant 10 cm zenith distance from each leaflet, which was 
placed on a black background. A white spectralon reference 
panel was used to calibrate the spectral measurements during 
the collection process. Five reflectance measurements were 
recorded for every leaflet, averaged, and spectrally resampled 
from 400 nm to 1,000 nm to match the spectral resolution 
of the UAV-based hyperspectral imagery (272 bands; see 
“Hyperspectral Imagery Collection and Calibration”) by using 
a Gaussian model based on the FWHM spacings and 
wavelengths information from the hyperspectral camera in 
the software ENVI.
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Ground-Truth Data Sampling
Non-destructive measurements of relative chlorophyll content 
(Chl) per leaf surface area were collected from the same 
spectrally sampled leaflets each day between 9:00 and 11:00 am 
local time, using a handheld SPAD-502 optical chlorophyll 
meter (Konica Minolta, Inc., Osaka, Japan). The operation of 
the SPAD meter is based on light transmittance at red and 
near-infrared wavelengths through a plant leaf. The instrument 
has two LEDs, one of which emits red radiance at 650 nm, 
with the other emitting near-infrared radiance at 940 nm. Most 
of the red light is absorbed by plants for photosynthesis, whereas 
longer near-infrared light passes through the leaf or is reflected. 
The ratio of transmittance at the near-infrared and red 
wavelengths is estimated and expressed as a unitless indicator, 
commonly referred to as SPAD units, which can range between 
0 and 50 under standard measurement conditions (relative 
humidity <85% at <35°C) with a ± 1 unit accuracy, and up to 
70 under high humidity/temperature conditions, with a drift 
of ±0.04 units per °C (Konica Minolta, 2009). Several studies 
have demonstrated near-linear and mostly exponential 

correlations between SPAD values and leaf chlorophyll content, 
although they can vary among species and growth habit groups 
(Markwell et  al., 1995; Uddling et  al., 2007; Cerovic et  al., 
2012; Parry et  al., 2014; Shah et  al., 2017). Since chlorophyll 
is not uniformly distributed in leaves and the device covers 
a small area of 6 mm2 (2 ×3 mm) per measurement, the SPAD 
average of five different locations across each leaflet surface 
was considered as a metric of its chlorophyll content.

Hyperspectral Imagery Collection and 
Calibration
Spatially dense hyperspectral imagery was collected using a 
Nano-Hyperspec (Headwall Photonics, 2020a) push-broom camera 
integrated onboard a DJI Matrice 600 (M600) hexacopter (DJI, 
2020). The Nano-Hyperspec was fitted with a 12 mm lens that 
afforded a horizontal field of view (FOV) of 21.1°, and collected 
data across the 400–1,000 nm spectral range in 272 continuous 
bands, with a 6 nm full-width half-maximum (FWHM). Flights 
were performed close to solar noon under clear sky conditions 
for all campaigns (see Figure  1 for specific dates), with a view 

FIGURE 1 | Temporal maps of the studied quadrant at the Hada Al-Sham experimental facility (Lat. = 21.797°, Long. = 39.725°), where a wild tomato species was 
cultivated. Five different collections were performed between November 2017 and January 2018. The globe map is part of a series of SVG locator maps of countries 
including elements that have been adapted from the file: Afro-Eurasia on the globe (red).svg, and distributed under CC-BY-SA-3.0 license.
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zenith angle of zero and at an altitude of 15 m above the ground. 
Raw data were translated into radiance values using Headwall’s 
SpectralView package (Headwall Photonics, 2020b), including 
the specific sensor calibration files for each band (Barreto et  al., 
2019). Automated georectification and mosaicking were performed 
to obtain geometrically accurate data-cubes with a ground 
sampling distance (GSD) of 0.007 m. Further details on the 
geometric calibration process can be  found in (Angel et  al., 
2020). For the spectral calibration, at-sensor radiance data-cubes 
were converted into surface reflectance by performing an empirical 
line correction method (Wang and Myint, 2015), which estimates 
a linear regression for each band, matching ground-truth reflectance 
with its correspondent radiance spectra in the hyperspectral 
image. Following the procedure of (Barreto et al., 2019), reflectance 
data were collected from six near-Lambertian gray-scale panels 
(60 ×80 cm) placed in the middle of the field before each 
hyperspectral scanning. The ASD FieldSpec-4 bare fiber optic 
(25°) was attached to the pistol grip measuring at a constant 
50 cm zenith distance, limiting the FOV diameter to approximately 
22 cm. A chess-patterned target and soil reflectance measurements 
taken from across the field were also used for validation. Finally, 
reflectance mosaics were spectrally enhanced by applying a pixel-
based Savitzky–Golay smoothing filter (Savitzky and Golay, 1964) 
and running a de-noising process with the minimum noise 
fraction (MNF) transformation approach (Green et  al., 1988), 
in order to attenuate any artifacts that may lead to distorted 
spectra shapes affecting the data reliability (Ruffin and King, 1999).

Extraction of Vegetation Indices
Vegetation indices (VIs) are mathematical formulations of spectral 
bands that are widely used to quantify structural, physiological, 
and biochemical plant characteristics. These relationships are based 
on established correlations between reflectance spectra features 
and specific phenotypic traits. In addition to band specific ratios, 
narrowband (or hyperspectral) VIs often combine many continuous 
bands to capture spectral profile features, such as slopes, curvatures, 
and absorption depths (Thenkabail et  al., 2019). Our study 
investigates 60 significant VIs that have previously been reported 
in the hyperspectral literature to be correlated with leaf chlorophyll 
content at various stages. For instance, from the Index DataBase 
(Henrich et  al., 2009; one of the most comprehensive online 
resources) we selected VIs that were reported in studies conducted 
with spectrally similar sensors (i.e., covering the 400–1,000 nm 
range, including CASI550 and PHI, with 288 and 244 bands, 
respectively). We  also include the Chl indices used by (Zarco-
Tejada et  al., 2019) to generate large-scale chlorophyll content 
maps, as well as the summary of derivative VIs in (Thenkabail 
et  al., 2019). In addition, the VIs explored by (Shah et  al., 2019) 
to retrieve leaf Chl in wheat, and those studied by (Houborg 
et  al., 2016) to detect leaf Chl dynamics from hyperspectral 
satellite imagery were added. In total, 145 unique spectral bands 
were used in the formulations of the 60 indices, which were 
arranged into nine groups based on their calculation of similar 
phenotypic properties (see Supplementary Table  1, including 
formulations and key citations, and Figure  2). The field spectral 
profiles and the hyperspectral imagery were used to calculate 
the VIs at a leaf scale and pixel level, respectively.

MACHINE LEARNING MODELING 
WORKFLOW

In this study, a variety of regression approaches were evaluated 
under a proposed machine learning framework for multi-
temporal mapping of leaf chlorophyll content (in SPAD units). 
The retrieval process combines five steps, including feature 
selection, learning different methods, cross-validating each 
model, assessing their performance, and mapping the SPAD 
predictions. SPAD data described in “Ground-Truth Data 
Sampling” are used as the response variable y, and the predictor 
variables x are derived from the field spectra samples (“Field 
Spectra Data Collection”). Two training strategies are tested: 
one considers sequential learning, and the other a time-series 
or retraining prediction (Dietterich, 2002). In sequential learning, 
the entire sequence of ground-truth observations is used to 
train each model and make all the predictions. In retraining 
prediction, models are cumulatively trained or retrained, and 
predictions are retrieved with the sampled data starting from 
the first stage t1 up to a time t1 (i.e., i = 5 growth stages). 
Retraining implies a repetition of the workflow that generated 
the previously fitted model, but based on a new training dataset 
that reflects the most recent and current status of the plants, 
which is composed of the previous data and the new data 
(i.e., t1, t1 + t2, t2 + t3, t3 + t4, t4 + t5), thus re-fitting the model 
while keeping its underlying architectural components (i.e., 
predictor variables, hyperparameters). This is an important 
strategy to explore because models can be retrained progressively 
with newly sampled data.

The learning workflow (see Figure 3) starts with the selection 
of predictor features, where each model is trained by using 
either all spectral bands (272 bands) or the set of vegetation 
indices (60 VIs), derived from the field spectra samples, allowing 
an investigation of the correlation and relevance of these 
variables as predictors. In addition, the subset of 145 bands 
that are used in the calculation of the various VIs were 
considered to examine any gain from transforming the spectral 
bands into VIs and the capability of the models to capture 
relevant and unknown relations between these selected bands 
and SPAD levels. The framework is evaluated with the most 
common nonparametric ML regression methods reported in 
retrieving biophysical variables from remote sensing applications 
(Verrelst et  al., 2019). It is worth noting that the word 
nonparametric does not imply the lack of parameters, but 
that such parameters are adjustable and can be  tuned by 
minimizing the estimation error while training takes place. 
In order to identify an optimal model structure, a total of 
17 algorithms from three main categories are trained (e.g., 
linear-based, decision tree-based, and kernel-based). These 
include multivariate linear regression, partial-least-square 
regression (PLSR), decision trees, ensemble trees, support vector 
machines (SVM), and Gaussian processes regression (GPR). 
Kernel-based methods allow for an exploration of different 
types of mathematical functions (or kernels) to model the 
unknown or non-explicit relationships in the input data under 
a specific kind of function. For instance, those most commonly 
used in Earth Observation (EO) studies include linear, 
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polynomial, and radial basis function (RBF) for SVM, and 
covariance-kernels for GPR (e.g., exponential, rational quadratic, 
RBF, and Matern; Camps-Valls et  al., 2016; See more details 
in Supplementary Material). The architecture of some of these 
nonparametric approaches have embedded automated 
dimensionality reduction (DR) mechanisms, or band analysis 
tools (BAT; Rivera-Caicedo et  al., 2017), to select relevant 
predictors, which is critical when dealing with hundreds of 
variables. For instance, the PLSR reduces the predictors to a 
smaller set of uncorrelated components, while the decision 
and ensembles of trees rely on pruning strategies, and GPR 
implicitly infers the feature’s relevance from a length-scale 
parameter enclosed in the covariance functions. 80% of the 
input dataset is used to train and test each model under a 
5-folds cross-validation routine, with their goodness of fit 
estimated using the R2 metric (1) The remaining 20% of 
observations are used to identify the best performing model 
by assessing two prediction accuracy metrics: the root mean 
square error (RMSE), (2) the mean absolute error (MAE), 
and (3) Using these metrics, the most accurate model per 
method is employed to retrieve the multi-temporal SPAD 

predictions for each data-cube at a pixel-level. Since the pixel 
size is in the order of millimeters (e.g., 7 mm), the spectral 
profile of a pixel vector is assumed at a leaf scale. Using a 
plant delineation mask to exclude soil background (see Barreto 
et  al., 2019 for further details), the best overall ML models 
are feed with the masked datacube to retrieve the SPAD maps 
and determine the most relevant predictors.
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FIGURE 2 | Spectral ranges covered by the 60 vegetation indices (VIs) explored in this study (gray bars; see Supplementary Table 1 for complete list). The 
absorption spectrum for photosynthetic pigments (Chl-a, Chl-b, and Car; dark green, light green and yellow lines, respectively; Lambers and Oliveira, 2019) and the 
typical leaf reflectance spectra (red dashed line) overlapping these ranges show the dominant pigments considered for each index. A total of 145 unique spectral 
bands were used in the formulations of the 60 VIs.
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In addition to retrieving SPAD maps, another useful output 
to examine from the selected methods is the importance of 
the features estimated by each approach while fitting the models. 
Feature selection approaches used for dimensionality reduction 
(DR), allow for the determination of each predictor’s relevance 
in any particular model by scoring the features with a relevancy 
metric. They also help to better understand the dynamics 
between dependent and independent variables and enable a 
subset of less redundant features that could lead to model 
improvement (Mladenić, 2006).

RESULTS

Exploratory Input Data Analysis
The various modeling trials performed in this study, as outlined 
in the workflow described in Figure 3, evaluate both sequential 
and retraining learning strategies. Ground-truth data comprise 
a total of 108 observations of SPAD samples and leaf spectra 
per field campaign, randomly split into two subsets: training/
testing (80%) and validation (20%), assuring their distributions 
are as similar as possible. SPAD observations, considered as 
the prediction response, are variable, symmetrically distributed, 

and rising across the growing season (Figure  4A). For the 
first date, 50% of the data ranged between 29 and 38 SPAD 
units, with a median of 33. Half of the samples reached a 
higher median of 49 for the second date, within a range of 
45–54 SPAD units. For the third campaign, the observations 
have a narrower distribution than the previous collection, with 
a minimum and maximum value of 38 and 67 units, respectively, 
although reaching a slightly higher median of 52 units. SPAD 
data for the fourth campaign were more widely distributed, 
with half ranging between 48 and 59 units, with a median 
value of 53 units. For the last date, observations were less 
variable, spanning between 40 and 66 SPAD units, with a 
median of 55 units. Although training/testing and validation 
datasets show a slightly different distribution, their median 
values follow a similar trend over time (Figure  4A).

Each of the 272 bands from the resampled field spectra 
data are considered as an individual prediction feature. Figure 4B 
shows the multi-temporal spectra mean and their standard 
deviation, which in general follow a similar pattern in the 
blue (450–510 nm) and red edge (660–730 nm) regions, although 
differing along the green (510–660 nm) and near-infrared 
(740–1,000 nm) wavelengths. For the first date (20171109), the 
maximum average green and NIR reflectance reached 18 and 

FIGURE 3 | Machine learning workflow for the retrieval of multi-temporal leaf chlorophyll dynamics using ultra-high-resolution UAV-hyperspectral imagery. The 
retraining loop should operate using the selected algorithms by starting from the first dataset (i.e., t = 1), then re-running the fitting process on the next training 
datasets, but using the previously fitted predictor variables and hyper-parameters (i.e., t1 + t2, t2 + t3). In this way, the model is updated as new training data is used in 
the learning process, and predictions are estimated accordingly.
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49%, with a standard deviation of 2 and 3%, respectively. For 
the second, third, and fourth campaigns, the mean green peak 
decreased to ~15%, with a standard deviation of ~3%, and 
the mean NIR response increased to ~50%, with a standard 
deviation of ~10%: although the NIR response during the 
second date is up to ~13% higher. For the last date, green 
reflectances were similar to previous collection times, yet the 
average NIR responses dropped to 45%, with a standard deviation 
of ~10%.

Pearson correlation matrices were calculated to visualize 
any multicollinearity in both predictor sets, bands and VIs 
(Figure  5). In the case of spectral bands, SPAD data has a 
low negative correlation (−0.2 < r < −0.3) with bands in the 
blue (400–510 nm) and red ranges (650–680 nm), but more 
highly negatively correlated (r < −0.6) with the green spectral 
window (510–650 nm) and the red-edge bands (680−730 nm). 
In contrast, near-infrared bands (730–1,000 nm) are weakly 
correlated (r ≈ 0) with SPAD, but with high multicollinearity 
between them (r > 0.8): recognized as the Hughes phenomenon, 
which is thoroughly documented in the literature (Thenkabail 
and Lyon, 2012). Concerning the VIs (Supplementary Table 1), 
the narrowband greenness indices have a stronger correlation 
with SPAD than the broadband greenness indices. In contrast, 
photosynthesis efficiency, senescence, and pigments–based indices 
are weakly correlated with both SPAD and the other indices. 
For the set of VIs that evaluate leaf chlorophyll based on 
reflectance and derivative spectra, most show a high correlation 
with SPAD, while several (10 out of 31) have low inter-correlation 

with the rest. Finally, the group of continuum-removed VIs 
exhibit a low correlation with SPAD, with two negatively 
correlated with the other indices. Overall, although some of 
the indices are strongly inter-correlated (r > 0.8), this is only 
a measure of the association between them, not their causation. 
All the bands and VIs were included as predictor variables 
to let the MLR methods evaluate their relevance in predicting 
leaf chlorophyll.

Multiple Model Regression Assessment
Three different metrics, R2, RMSE, and MAE, were used to 
undertake a comparative accuracy assessment of the models. 
R2 was used to assess the performance of the models from 
the k-fold cross-validation, and RMSE and MAE to evaluate 
their actual accuracy by using ground-truth validation data. 
Figure  6 summarizes these metrics for all the algorithms 
tested under the two training scenarios and three sets of 
predictors: all bands, selected bands used for calculating the 
VIs, and VIs.

For the sequential strategy case, PLSR coupled with band 
predictors achieved the best fitted models, either using all the 
bands (R2

AllBands = 0.80) or the selected subset (R2
SelectedBands = 0.89); 

although retrieving more accurate results when using all of them 
(RMSESelectedBands = 5.45, MAESelectedBands = 4.27 > RMSEAllBands = 4.40, 
MAEAllBands = 3.50). As can be  seen in Supplementary Table  2, 
the various GPR models, along with SVRLinear and 
SVRMediumGaussian, were the best-performing algorithms across 
both types of predictors, reaching low RMSE and MAE around 

A B C

FIGURE 4 | (A) Traditional boxplots show the multi-temporal distribution of SPAD observations divided into training/testing (left) and validation sets (right). Median 
values are shown as the horizontal lines near the box centers, and the quartiles are delimited by the horizontal lines above and below the median. Whiskers indicate 
the variability outside upper and lower quartiles, locating the maximum and minimum scores at the top and bottom ends, respectively. An outlier observation (21 
SPAD units) is shown during the second campaign (t2) in the training/testing dataset. (B) Reflectance profiles collected per field campaign (format YYYYMMDD). The 
continuous lines indicate the mean spectra, and the filled areas define the range of reflectance measured each time. Dashed lines indicate the wavelengths where 
reflectance data reaches the lowest (~650 nm) and the highest (~950 nm) variability.
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5 SPAD units when using spectral bands and below 3 SPAD 
units for the VIs case (and with an R2 above 0.7). In comparison, 
multivariate linear regression and SVRCubic models produced 
the poorest results, with higher errors (RMSE > 5, MAE > 6) and 
R2 below 0.3. Overall, the GPRSquaredExponential (i.e., with a 
squared exponential kernel) achieved the second-best scores 
when considering both types of prediction features 
(RMSEAllBands = 5.17, RMSESelectedBands = 5.09, RMSEVIs = 2.28, 
MAEAllBands = 4.06, MAESelectedBands = 3.96, MAEVIs = 1.98, R2

AllBands  
= 0.76, R2

SelectedBands = 0.76, R2
VIs = 0.77). In general, most of the 

models coupled with band predictors reached comparable R2 
and accuracy results, except for PLSR and the multivariate linear 
approaches; whereas modeling with the set of VI predictors 
was more accurate and better fitted than performing with the 
spectral bands.

For the retraining strategy, accuracy and goodness-of-fit of 
the models were assessed date by date. Overall, improved RMSE 
and MAE metrics were achieved using band predictors when 
compared to the sequential strategy case, although the R2 

decreased gradually over time (Supplementary Table 2). Results 
using VI predictors provided models that were comparable 
(i.e., similar R2) to those produced by band features, but also 
recorded a similar drop in R2 through time and producing 
slightly less accurate predictions. Particularly for the last campaign 
(t5), a considerable drop (R2 > 0.4 for all models) can be explained 
by the reduced number of spectral leaflet samples used to 
train/test the models (see “Field Spectra Data Collection”). 
For the first date (t1), the GPRSquaredExponential was the 
most accurate (RMSEAllBands = 2.14, MAEAllBands = 1.73) when paired 
with all the bands, and the best fitted (R2

AllBands = 0.86, 
R2

SelectedBands = 0.75, R2
VIs = 0.83) using the three sets of predictors: 

although beaten by PLSR when coupled with VIs (RMSEVIs = 1.93, 
MAEVIs = 0.86). For the second campaign (t2), the 
GPRSquaredExponential again produced the most accurate 
results from the all bands-based case (RMSEAllBands = 2.71, 
MAEAllBands = 2.13), while the PLSR model was better fitted using 
the selected bands (R2

SelectedBands = 0.95). In the VIs-based case, 
the PLSR was the most accurate (RMSEVIs = 2.56, MAEVIs = 0.98), 

FIGURE 5 | Correlation matrices showing Pearson’s r coefficient between SPAD and individual VIs (left-hand side), and between SPAD and individual spectral 
bands (right-hand side). The first column in the SPAD versus VIs matrix (left) and the last column in the SPAD versus Bands matrix (right) show the coefficients for 
the dependent variable SPAD. The color scale represents correlation coefficients between 1 and − 1. VIs are grouped and organized according to Supplementary 
Table 1.
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but GPRSquaredExponential was better fitted (R2
VIs = 0.74). For 

the third date (t3), the GPRSquaredExponential model achieved 
the highest accuracy (RMSEAllBands = 3.62, MAEAllBands = 3.01) under 
the all bands-based setup, and RandomForest the best fitting 

(R2
AllBands = 0.67); whereas in the selected bands-based and the 

VIs-based case, PLSR was the best fitted (R2
SelectedlBands = 0.75, 

R2
VIs = 0.79), and the most accurate (RMSESelectedBands = 3.77, 

MAESelectedBands = 2.66, RMSEVIs = 1.72, MAEVIs = 0.78). For the 

FIGURE 6 | A comparative assessment was performed between the 17 trained models by comparing three different metrics: R2, RMSE, and MAE. Model-fit and 
accuracy were evaluated under both training strategies (sequential and retraining) and considering different sets of prediction features (all spectral bands, selected 
bands from VIs, and VIs). An average prediction error threshold of 5 SPAD units was established to evaluate individual model accuracy (dashed line). Base-10 log 
scale is used for the x-axis (RMSE).

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Angel and McCabe Machine Learning for Leaf-Chl Retrieval

Frontiers in Plant Science | www.frontiersin.org 11 March 2022 | Volume 13 | Article 722442

fourth campaign (t4), the PLSR trained with the selected bands 
was the best-fitted model (R2

SelectedlBands = 0.97), although it was 
poorly accurate (RMSESelectedBands = 6.37, MAESelectedBands = 5.30) to 
the others performance. In contrast, the GPRSquaredExponential 
was the second best-fitted model (R2

AllBands = 0.61, R2
VIs = 0.64), 

reaching the highest accuracy when trained with all the band 
features (RMSEAllBands = 4.49, MAEAllBands = 3.99). However, this 
model was exceeded by the RandomForest (RMSEVIs = 3.35, 
MAEVIs = 1.53) when using VI predictors. For the last date 
(t5), the RandomForest model shown the highest accuracy 
(RMSEAllBands = 5.59, MAEAllBands = 4.37) and best-fitting 
(R2

AllBands = 0.41) when coupled with all the bands; whereas PLSR 
was the most accurate when trained with VIs (RMSEVIs = 2.89, 
MAEVIs = 0.96). Overall, sub-optimal results were retrieved using 
the selected set of bands, and all the models were poorly 
fitted with R2 below 0.1.

Under both training strategies, the three sets of predictors 
showed comparable performance, yet most of the VIs-based 
models achieved better scores than the band-based ones. Slightly 
better results were reached by most of the models when trained 
with all the bands than with the selected ones (i.e., between 
~0.1 and 0.4 units in R2 scores), except for the PLSR. Also, 
despite being the weakest approach (with the highest RMSE 
and MAE, and the lowest R2) across the different strategies 
and predictors, the multivariate linear (or linear) model scores 
were considerably improved when using the subset of selected 
bands (see Supplementary Table  2; Figure  6). For instance, 
the linear model improved relative to the medium tree model 
performance and was comparable to the random forest model 
results under the sequential strategy. Considering the slightly 
better scores retrieved by the full set of spectral bands than 
the set of selected bands, the models trained with all 272 
bands were considered together with the VIs-based ones to 
perform the predictions and select the best among them to 
produce the SPAD maps.

Multiple Model SPAD Predictions
Based on the assessment metrics, a criteria model selection 
was established to map the SPAD predictions. Different factors, 
such as leaf water content and irradiance changes, can introduce 
between 2 and 4 unit biases in SPAD readings (Martínez and 
Guiamet, 2004), in addition to the instrumental accuracy of 
±1 units. Accounting for these influences and equating the 
quality of the SPAD predictions with the SPAD readings, 
we defined an error threshold of up to 5 units for both metrics 
(RMSE and MAE) under the assumption that all of the errors 
would have the same magnitude, which is the only theoretical 
case when RMSE and MAE would be  equal. Under these 
criteria, models with average prediction errors above 5 SPAD 
units were excluded from the final selection, and the best-
fitting model from each approach was used to retrieve the 
predictions from the hyperspectral imagery (see Figure  6). 
Accordingly, PLSR, the medium trees, random forest, SVR 
linear, and GPR squared exponential models were selected 
together with the linear regression, which was only included 
for comparison purposes despite it showing inferior performance 
among all model configurations. These trained models were 

used to retrieve the SPAD values at a pixel level on the multi-
temporal hyperspectral data-cubes, then averaged at a plant 
level to evaluate the spatial and temporal distribution of the 
predictions across the study area. Figure  7 shows an array of 
the results organized by learning strategy, type of predictors, 
time, and types of models, where each box comprises a matrix 
of cells that represent the mean predicted SPAD per plant, 
following the same sowing arrangement of the field 
(rows × columns).

In the sequential strategy (Figure  7A), most of the models 
retrieved homogeneous SPAD maps across time, hence not 
showing significantly different changes during the growing 
season. Of note, the multivariate linear model produced results 
at the extremes when using different predictors, underestimating 
(≤ 20 units) when using bands, and overestimating (≥ 70 units) 
when using VI predictors. Similarly, PLSR estimates diverge 
under different predictor scenarios, realizing homogeneous 
result series (~30–50 units) through the band predictors while 
overestimating with VIs (≥ 60 units). In contrast, the medium 
tree model retrieved almost identical results for both cases, 
with SPAD values ranging around ~40 units: comparable with 
the performance of random trees when only using VI predictors. 
However, when using band features, random forest yielded 
similar results to SVR linear and GPR squared exponential 
models, with more variable retrievals between ~30 to 50 units 
(although the GPR-based map for the fourth date shows higher 
values around ~60 units). Using VI features, SVR-based results 
were more heterogeneous (around ~45 units) during the first 
two campaigns than the retrievals (≥ 60 units) during the last 
three dates. Overall, following a sequential learning strategy, 
GPR squared exponential predictions were the most dynamic 
across time, indicating its flexibility to learn and model temporal 
dynamics. However, this performance was degraded when using 
a more straightforward set of predictors like vegetation indices.

In general, for the retraining strategy (Figure  7B), the 
performance of the learning algorithms over both types of predictors 
was similar, with SPAD estimates varying over time and space  - 
except those calculated by the multivariate linear regression and 
PLSR, which led to poor retrieval performance. Again, medium 
tree and random forest methods, combined with both predictor 
sets, reached matching results, increasing across time between 
~30 and ~ 60 SPAD units during the first and last campaigns, 
respectively (although the VIs-based maps present slightly lower 
values than the bands-based ones). In the case of the SVR linear 
method, contrasting results were produced by each class of 
predictors, showing an ascendant trend across the time when 
using band features, comparable to the decision trees and GPR 
results. However, the SVR linear method underestimated results 
using VIs, even yielding values below 20 SPAD units for some 
plants during the last three campaigns (t3, t4, t5). In contrast, the 
GPR squared exponential results are congruent with the decision 
trees-based predictions under both types of predictors, although 
different estimates were achieved for the second and last dates. 
When using band features for the last campaign, the GPR-based 
map overestimated results, with values above ~60 SPAD units.

Together with the mean SPAD estimates, GPR reports the 
standard deviation at 95% (σ95%) confidence interval for each 
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prediction, which is used as an uncertainty metric to assess 
the variance of the retrievals. For the sequential learning case 
(Figure  7A), homogeneous variances were achieved across the 
whole series, with low uncertainties between 4 and 6 SPAD 
units, when training with the band predictors, but high 
uncertainties ranging between 10 and 15 SPAD units when 
using VI features. In contrast, under the retraining strategy 
(Figure  7B), heterogeneous variance levels were observed 
throughout the series. For instance, an increase in the uncertainty 
was reported when using band features, starting from 5 to 

6 units in the first date (20171109), then between 6 and 7 units 
during the second date (t2), until reaching standard deviations 
between 9 and 11 units during the third collection (t3). After 
this, the uncertainty levels decreased slightly to around 10 units 
on the fourth date (t4), achieving the lowest variance in the 
last date (t5) with 4 SPAD units. More stable variances were 
achieved using VI predictors, starting with low uncertainty 
levels between 5 and 6 SPAD units in the first three dates, 
with a minor rise of variance for the last two dates, with 
values between 6 and 8 units.

A

B

FIGURE 7 | Multi-model comparison of averaged SPAD predictions and GPR uncertainties at a plant level. (A) Sequential strategy results using All Bands versus 
VIs. (B) Retraining strategy results using All Bands versus VIs. Each box comprises a matrix of cells representing the mean predicted SPAD per plant, following the 
field sowing arrangement (rows × columns).
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Model Selection
The identification of suitable learning algorithms and predictors 
is a critical step to develop accurate SPAD retrieval maps. 
Therefore, an additional evaluation of the previously selected 
methods was performed by comparing the retrieved and original 
distributions of the validation dataset. Figure  8 presents the 
variability of SPAD predictions and in-situ collected 
measurements used for validation, with colored and gray 
delineated box-plots, respectively. As can be seen, the multivariate 
linear regression results were widely dispersed, either 
overestimated or underestimated, and divergent from the 
measured data distribution. In the case of PLSR, the distribution 
of the estimates reflected the validation reference only under 
the sequential training strategy using band predictors. Overall, 
most of the pre-selected algorithms achieved relatively consistent 
results, except SVR linear when combined with VI predictors.

For the sequential approach (Figure 8A) with band features, 
predictions from all models, except for the medium trees, 
followed the ascending trend across time observed in the in-situ 
data, although exceeding them by up to 15 units on the first 
date, if comparing their medians. The best distribution matches 
with the observations were obtained by random forest, and 
GPR squared exponential only on the third date (t3). In contrast, 
when using VI predictors, overall median estimates were below 
the ground-truth data distribution by between 10 and 20 SPAD 
units for the decision trees models, and between 3 and 10 units 
for the GPR model.

For the retraining case (Figure  8B), the performance was 
generally higher relative to the sequential strategy and more 
consistent between the assessed algorithms. In particular, the 
distribution of the results from the medium trees and random 
forest were comparable, reaching similar medians, although 
with different dispersion, over the different campaigns. The 
GPR squared exponential model achieved better results when 
combined with VI predictors, following the SPAD observations 
trend, although with less dispersed distributions and reaching 
median values between 1 and 5 SPAD units below the in-situ 
data. The best predictions were achieved by combining random 
forest with VI features, retrieving minor discrepancies between 
1 and 3 units in the median values compared to the SPAD 
measurements, and yielding matching spread distributions, as 
shown by the minimum and maximum values of each 
campaign dataset.

Based on the accuracy assessment and the analysis of the 
prediction distributions achieved by all the evaluated methods, 
three out of the 17 regression models were selected to retrieve 
the multi-temporal SPAD maps at a pixel scale. The selected 
methods included the PLSR using all bands under the sequential 
strategy, and random forest and GPR squared exponential, 
using vegetation indices as predictor variables under the 
retraining strategy.

Multi-Temporal Spatial Predictions of 
SPAD
The hyperspectral mosaics, and the vegetation index data-cubes 
derived from them for each campaign, were used as input to 

feed the three selected regression models and to retrieve the 
multi-temporal SPAD maps at a pixel scale. Figure  9 depicts 
a comparison of the results achieved by each method over some 
of the sowed furrows, showcasing the differences between PLSR, 
random forest and GPR squared exponential estimates throughout 
the study period. For the first three campaigns, the PLSR model 
reached different results than the other two methods, with a 
slight increase from an average of 48 units in the first stage (t1) 
to 50 units in the third (t3), whereas random forest and GPR 
squared exponential reached similar estimates, with an increase 
in SPAD values from an average of 30 units in the first stage 
(t1) to 55 units in the third (t3). The PLSR and GPR-based 
estimates were uniformly distributed in leaves, changing over 
time without marked differences between stages, especially during 
the last two dates. However, some negative retrievals from the 
PLSR approach during the third and fourth campaigns can 
be  seen as gap pixels in the showcased plants in Figure  9. On 
the other hand, random forest-based predictions differed from 
time to time, with a slight decrease in the last stage and showing 
more clustered estimates toward the center of the plants surface.

The plant growth dynamics can be described from the multi-
temporal SPAD retrievals detailed in Figure 9. As can be observed, 
leaf chlorophyll content increases as plants grow and increase 
their leaf density from the establishment stage (t = 1), reaching 
a maximum value at the start of flowering (t = 3). Plants reach 
a mature state and produce fruits (t = 4), where SPAD estimates 
from PLSR increase slightly, whereas random forest results 
remain at the same level, and retrievals from GPR decrease 
slightly. At the pre-harvesting stage (t = 5), leaves and stems 
gradually age, turning yellowish, which is evident from the 
low SPAD levels predicted by all the methods. These dynamics 
are consistent with the distribution analysis described previously 
(Figure  8B), and illustrate how SPAD results from the three 
methods follow a similar temporal trend, albeit with GPR 
retrievals presenting a more homogeneous and tighter distribution 
than PLSR and random forest estimates. The uncertainty maps 
retrieved by the GPR algorithm were plotted to assess the 
variance of the predictions at the pixel level. As previously 
noted, the uncertainty of the estimates varies across the map 
series, starting with low (~4–6) standard deviations during the 
first three stages and slightly higher values during the fruiting 
and pre-harvesting phases (~6–8 units). The uncertainty of the 
predictions could come from either the propagation of 
uncertainties through time or high variations in the leaf-Chl 
levels’ dynamics. Moreover, when zooming into the maps at a 
plant level, the spatially distributed uncertainty levels can 
be observed over the plant projected areas, although with some 
higher variances associated with either bright or shadowed pixels.

Important Features
The PLSR, random forest, and GPR approaches include feature 
selection mechanisms in their architecture to score the band 
and VI predictors base on their relevance toward the SPAD 
variable (see Supplementary Material). Various metrics are 
reported in each model: for instance, feature importance for 
the random forest, weakness index for GPR, and weight index 
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for PLSR (Figure  10). The PLSR weights are retrieved for 
each of the components used to fit the model, which describes 
how strongly each component depends on the original 
predictors. The number of components (i.e., seven) was tuned 
by minimizing the error of the predictions through 

cross-validation during the training/validation stage 
(Figure  10D). The predictor scores were extracted from the 
three selected models when trained under the strategy they 
perform the best (Figure  8). Thus, the fitted models under 
the sequential strategy were used for comparing the spectral 

A

B

FIGURE 8 | Assessment of multi-temporal predictions distribution (gray colored boxes) against the actual distribution (gray delineated boxes) of the validation data, 
showing (A) distribution per model under the sequential strategy using band and VI predictors; and (B) distribution per model under the retraining strategy using 
band and VI predictors.
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bands’ metrics, whereas their results under the retraining 
strategy were gathered for the VIs case.

Since each model has its own metric, their predictors’ scores 
cannot be directly compared. Thus, we use a quartile classification 

to rank the top features of each method, where each quartile 
contains 25% of the total predictors. For PLSR (Figure  10D) 
and random forest (Figure  10C), the highest quartile (Q3) was 
set as the threshold to denote the most important features, 

FIGURE 9 | Comparison of multi-temporal SPAD prediction maps generated with PLSR coupled with band predictors, random forest and GPR squared 
exponential models, using vegetation indices predictors (lower panels). True color-balanced pictures of a showcase plant (upper panel) depict changes throughout 
the growing cycle. The gradient-colored bars represent the estimated SPAD values in the range between 20 to 70 units, with a bin size of 2. The SPAD uncertainties 
are shown in the range between 0 to 15 units, with a bin size of 1.
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D

FIGURE 10  (A) Summary of the top predictors (bands and VIs) that were identified by either one (orange), two (yellow), or three (green) of the selected 
methods. A quartile classification was used to rank the top features of each method. (B) For random forest, the highest quartile was set as threshold to 
identify the most important bands (Q3 = 0.21) and VIs (Q3 = 0.27). (C) For GPR squared exponential, the lowest quartile was set as threshold to classify the 
less weak bands (Q1 = 8.02) and VIs (Q2 = 7.16). (D) The predictor weights were retrieved for the first seven components used to fit the PLSR model. The 
highest quartile was set as the threshold to denote the most relevant bands (Q3 = 0.48) and VIs (Q3 = 0.04).
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whereas the lowest quartile (Q1) was set for the GPR squared 
exponential (Figure  10B) to indicate the less weak (or most 
relevant) variables. A summary of the top predictors retrieved 
by either one, two, or three of the selected methods were 
highlighted (see Figure  10A), allowing the identification of 
those variables that might play a physically meaningful role 
in predicting Chl levels. The spectral information contained 
by the highlighted VIs can be  traced in Figure  10A. Only 
three VIs contain information from the blue spectral region 
(~450 nm), followed by a small group of VIs that gather 
information from the green wavelengths (500 nm −550 nm). 
However, most of the important indices comprise the information 
from the red edge region (650–750 nm), and few individual 
VIs collect the information from narrow spectral ranges along 
the near-infrared (~800, 870, and 970 nm).

A combination of both individual bands and band ranges 
were identified as the most relevant for each model 
(Supplementary Table  3). Groups of continuous bands 
comprising less than 10 nm spectral range were counted as a 
single variable around the central band. For instance, the bands 
around 405 nm were identified as relevant by random forest 
and GPR, but weighted low by PLSR, although with a broader 
range for the random forest (i.e., 400–410 nm) where Chl-a 
is highly absorbed. The spectral variables between 450 and 
490 nm were ranked as relevant by all the methods, coinciding 
with the most substantial Chl-b absorption. Bands from the 
green spectral range (i.e., 530 and 590 nm), where Chl reflectance 
peaks, were also highlighted as relevant by random forest and 
GPR, but not highly weighted by the first and seventh PLSR 
components. Toward the red wavelengths, random forest 
identified two narrow ranges (i.e., 610 and 620 nm), that agreed 
with GPR and PLSR in the Chl-a and Chl-b absorption crest 
(i.e., 650–670 nm). From 690 nm to 750 nm, the red-edge region 
was also highlighted as relevant by all models, although GPR 
identified two specific ranges: one spanning from 695 to 710 nm 
at the beginning of the red-edge, and another from 720 to 
760  nm, where the red-edge inflection point shifts accordingly 
to Chl content. The three methods identified a critical thin 
region between 760 and 770  nm at the end of the red-edge. 
Near-infrared (NIR) bands indicated variable relevancy levels 
among the methods: PLSR highly ranked the region between 
800 and 830  nm, while the flat sill on the plant reflectance 
spectra (i.e., 910–1,000 nm) was identified by random forest 
and PLSR, whereas GPR highlighted the very end of the NIR 
(i.e., 980–1,000 nm).

A total of 15 VIs were scored as relevant by each method 
(Supplementary Table  3; Figure  10). From the greenness 
indices, PLSR identified two of the broadband VIs (i.e., SRI 
and LAI) as significant and corresponding with random forest 
in selecting the narrowband red-edge position index REPI4. 
However, random forest highlighted two other indices of this 
category as relevant (i.e., VREI1, VRE2). The light use efficiency 
indicators (PRI and SIPI) were considered by GPR and random 
forest as critical, while the senescence index (PSRI) was only 
highlighted by random forest. In contrast, the stress-on-pigments 
production indices were highly scored by the three methods 
(i.e., CRI1, CRI2, ARI1, and ARI2). The water content index 

(WBI) was classified as relevant by the GPR and the PLSR 
models. From the 15 leaf Chl indices, random forest selected 
four of them (i.e., MTVI2, TCARI, GNDVI, and NDCI1), 
GPR selected just one (SAVI), while the PLSR model selected 
three (i.e., MCARI, MCARI/OSAVI, and NDCI2). From the 
derivative-based leaf Chl indices, all the methods highlighted 
the Datt index as critical, although random forest identified 
three more (i.e., D720, EGFN, and DSR1) and GPR identified 
another two (i.e., DPI and FDNDVI)—coinciding with PLSR 
in selecting the FDNDVI index. Finally, GPR and PLSR both 
identified ANMB from the continuum removed-based indices, 
whereas only GPR highlighted the area under the curve index 
(AUC) and the leaf plant stress detection index (LPSDI).

The feature importance analysis was extended to the models 
trained with the subset of 145 bands (i.e., the source of the 
VI predictors) to investigate how the feature selection operates 
on a smaller dataset. The same training strategies and ML 
approaches were used to retrieve, score, and classify the 145 
selected bands, following the rationale presented previously 
(Supplementary Figure 1). Supplementary Table 4 summarizes 
the relevant bands and spectral ranges identified from the 145 
bands subset.

DISCUSSION

Sequential Versus Retraining Learning
Modeling physiological traits such as leaf Chl content throughout 
a crop growing season requires treating plant traits as continuous 
processes across time, which can be  accounted for through 
implementing sequential and retraining learning strategies. 
Sequential learning is a common practice in remote sensing, 
wherein the full observed series is used to fit a single model 
assuming that the relationships between the prediction features 
and the independent variable remain fixed through time 
(Dietterich, 2002). In contrast, the retraining strategy uses a 
loop to learn a model progressively as new data is collected. 
Deciding whether to follow one or the other relies on the 
modeling problem and the data itself, since both are data-
driven strategies after all. This study followed a simple and 
useful diagnostic suggested in the machine learning literature 
by examining the target variable distribution (Sculley et al., 2014).

Leaf chlorophyll and reflectance response change significantly 
through time, which is evident in this study by analyzing the 
distributions of sampled SPAD and spectral data (Figure  4A). 
Hence, the correlation between SPAD and predictors, either 
by bands or VIs, are dynamic as well. The temporal distribution 
of the SPAD validation dataset can be  used as a reference to 
assess the coherence of the SPAD retrievals (Figure  8). In 
doing this, the accuracy metrics (MAE, RMSE) can be  used 
jointly to determine the best candidate models to retrain (i.e., 
PLSR, random forest, GPR squared exponential). That is, the 
retraining loop should operate using the selected algorithms 
by starting from the first dataset (i.e., t = 1), then re-running 
the fitting process on the next training datasets (i.e., t = 2, 
t = 3), but using the previously fitted predictor variables and 
hyper-parameters. In this way, the model is updated as new 
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training data is used in the learning process, and predictions 
are estimated accordingly.

The predicted SPAD maps averaged at a plant level and 
retrieved under the retraining strategy (Figure 7B) are coherent 
with the SPAD distributions of the in-situ validation dataset 
(Figure  8B). Such a result demonstrates the capability of the 
selected models to learn from in-situ data using a retraining 
routine, and thereby enhances the capacity to turn UAV-based 
hyperspectral imagery into valid multi-temporal SPAD maps. 
It also proves the capability and flexibility of the retraining 
strategy to capture temporal dynamics in chlorophyll levels 
from series of hyperspectral imagery by fitting multi-temporal 
regression models and advancing, for instance, uni-temporal 
approaches that develop individual growth-stage models (Aasen 
and Bolten, 2018). Such a strategy also offers a solution to 
open questions raised in some related studies, where sequential 
learning was implemented to map Chl series from satellite 
(Houborg et  al., 2016) and UAV (Vanbrabant et  al., 2019) 
hyperspectral images, and advising further investigation in 
learning regression approaches capable of capturing subtle 
temporal dynamics linked to short-term variations in plant traits.

Most of the selected algorithms performed significantly better 
under the retraining learning strategy, although the goodness-
of-fit (R2) estimated from the training/testing dataset can 
be  affected as new training data is introduced. Further 
experiments can be conducted to incorporate a time component 
(i.e., hyper-parameter, kernel) in the regression algorithms 
definition, which can be  fully dedicated to capturing temporal 
correlations, and non-stationary behavior associated to Chl 
content dynamics. One candidate to consider for advancing 
more specialized modeling structures is the Gaussian process, 
which can be  composed of temporal and spectral covariance 
kernels, as already demonstrated by other applications in 
modeling solar irradiation predictions (Camps-Valls et al., 2016).

Leaf Chl Retrieval Using Spectral Bands 
Versus Vegetation Indices
Feature transformation is a critical task in any machine learning 
framework, especially when involving datasets comprising of 
hundreds of variables. This aspect should be carefully reviewed 
by evaluating the types of variables that are part of the dataset 
and exploring possible transformations and reductions to optimize 
the model performance (Guyon and Elisseeff, 2003). In this 
study, three elements can be  highlighted regarding evaluating 
VIs as transformed variables out of reflectance spectral bands. 
First, using VIs slightly improves the goodness-of-fit and 
prediction accuracy of different types of ML models. Second, 
the VI predictors approach provide an alternative way to use 
spectral variables without affecting the capturing of temporal 
dynamics. Third, hyperspectral VI predictors add specific 
biophysical background to the training knowledge, hence 
enriching model interpretability.

Few studies in the literature have explored retrieving SPAD-
based Chl levels using VI predictors derived from hyperspectral 
datasets. For example, linear regressions (Qi et al., 2020), random 
forest (Shah et al., 2019), or Cubist (Houborg and McCabe, 2018) 

have been combined with different types of VIs, reaching more 
accurate results than using spectral bands, which has also been 
achieved in this study. Although higher R2 scores were reached 
when using all bands as predictors than the 145 selected bands 
(i.e., all except for the PLSR model). In terms of accuracy, 
higher accuracies (i.e., up to 3 SPAD units below) were  
reported when using the VI features. Indeed, these results 
follow what has been suggested in other studies regarding the 
low (or no) impact of the number of variables in the accuracy 
estimates, but rather the importance of identifying the marginal 
effect of the explanatory variables in the dependent variable 
(Alin, 2010).

Dimensional reduction can be  made via pruning spectral 
bands or transforming them into new variables related to plant 
biochemical traits (as is done herein). (Feilhauer et  al., 2015) 
pruned bands based on regression coefficients (R2) and metrics 
that measure band importance, managing to reduce predictors 
to dozens of Chl absorption channels within the range of 
500–750 nm. The same spectral region was fully covered in 
our study by 15 derivative and continuum-removal based VIs 
that also inform on Chl content. If we  apply this pruning 
approach to our dataset, it would require approximately 110 
bands (Figure  2) to train the models, which is still a large 
number compared to the available observations (i.e., three 
samples per plant and 36 plants, for a total of about 108 
samples per campaign), leading to the question: what is the 
impact of not having much larger samples than predictors? 
A clear example of the impact is evident in the performance 
of the multivariate linear regression approach presented in this 
study (“Multiple Model Regression Assessment” and “Multiple 
Model SPAD Predictions”). When observations do not sufficiently 
exceed the number of predictors, the least square cost function 
may overfit the training set, consequently producing poor 
retrievals. While the other algorithms can cope with this 
dimensionality issue, a lower-dimensional dataset is desired to 
improve the computational efficiency of the workflow, and thus 
feature transformation is a suitable alternative to follow.

Rivera-Caicedo et al. (2017) have investigated dimensionality 
reduction approaches such as principal components 
transformation and partial least squares (PLSR), among others. 
Although some of their trials led to better-fitted models than 
using all bands, only slight improvements were achieved in 
terms of accuracy. Similar results were reached in our study 
when comparing the different ML methods against PLSR 
(Supplementary Table  2; Figure  6). PLSR reached the best 
fitting and accuracy scores under the sequential strategy by 
using band predictors; however, it was exceeded by the random 
forest and GPR models when using the VIs features under 
the retraining strategy. Multicollinearity causes this performance 
by increasing the vulnerability of the predictor weights to vary 
whenever there is a small change in data, resulting in unstable 
model performances. Based on the ML algorithm designs (i.e., 
their mathematical formulations), some are inherently able to 
handle multicollinearity better than others. For instance, random 
forest deals well with large dimensional problems due to its 
pruning strategy, which uses bootstrapping and feature sampling 
to pick different sets of data and features, and estimate relative 
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importance while training each tree (Supplementary Material; 
Figure  10B). Alternatively, GPR kernels are coupled with a 
length scale parameter that measures how strong is each 
predictor variable in a model (Supplementary Material; 
Figure 10C). It was possible to perform a comparative analysis 
through such feature engineering methods to account for 
coincident relevant variables identified under each approach 
(Figure  10A). However, although few VIs and spectral ranges 
were classified as relevant by all three methods, results could 
still be  affected by multicollinearity, especially when features 
reach similar scores, leading to difficulties in ranking their 
importance. Developing reduction and transformation 
dimensionality approaches for hyperspectral data remains a 
challenge (Thenkabail and Lyon, 2012). As such, new ways to 
construct alternative prediction variables require 
continued investigation.

VIs can be  considered as a transformed version of the 
spectral bands that involve known relationships between spectral 
response and biophysical traits, and hence, are suited to track 
temporal dynamics along the phenological growth stages. At 
first glance, such patterns are traceable in our results. For 
instance, evident Chl dynamics were retrieved by retraining 
random forest and GPR squared exponential coupled either 
with VIs or spectral bands under the same strategy (Figure 7B). 
Such agreement among methods reveals that VIs can be  used 
alternatively as predictor variables. Even more, an exhaustive 
comparative analysis on the importance of the predictors 
(“Important Features”) allowed us to trace the spectral 
information in the most relevant bands and indices 
(Supplementary Tables 3, 4), revealing that although most of 
the assessed indices contain the same spectral information 
covered by the relevant bands, VIs transform the spectral data 
into new explanatory variables. As such, the VIs approach 
should be considered as a feature transformation strategy more 
than a dimensionality reduction method, with the advantages 
of providing interpretable results and being straightforward to 
implement in production.

Which ML Model to Use for Multi-Temporal 
Retrieving Leaf Chl?
Considering the wide gamut of non-parametric ML methods, 
the present study sought to examine the most commonly used 
types of supervised algorithms (Verrelst et  al., 2019). Beyond 
indicating which, if any, particular method could be  identified 
as being the best in estimating Chl metrics from high spatial, 
spectral and temporal data, some findings can be  highlighted 
based on this study’s data characteristics, the learning strategies, 
and the subsequent results.

One of the explored methods was support vector regression 
(SVR) using three different types of kernels and scales 
(Supplementary Material). Our results showed that SVR linear 
was the best performing kernel when using the 272 reflectance 
bands as predictors, although retrieving poorer results when 
the number of predictors was reduced to 60 VIs. Such behavior 
suggests that SVR algorithms require a preliminary kernel and 
feature engineering to fit the regression relationship. In a 

previous study, (Malenovský et al., 2017) found that the Gaussian 
SVR outperformed random forest in retrieving total chlorophyll 
(Cab) for Antarctic moss by using uni-temporal UAV-based 
hyperspectral data at a sub-decimeter resolution, training with 
continuum-removed bands as predictors, and advising to optimize 
feature selection if intending to use fewer predictors.

Another approach explored in this study was the ensemble 
of trees. Two general algorithms, boosted and bagged, were 
tested by training multiple individual medium trees (i.e., 
ntrees = 60). Specifically, the random forest was explored from 
the bagged approach, which in general outperformed the boosted 
ensemble, reaching higher accuracies and better-fitted regressions 
(Figure  6). However, some of these differences were minor: 
for instance, when using VI predictors under sequential learning, 
and for the first and fourth stages under retraining learning, 
which suggest both methods are suitable for modeling and 
retrieving multi-temporal Chl content dynamics. The choice 
of random forest over boosted trees was based on ease of 
use, since it relies on less tuning parameters than boosted 
ensembles, and is less prone to overfit when training highly 
variable or noisy data (Breiman, 2001). It is advised to perform 
a comparative analysis by training both algorithms, carefully 
tuning the shrinkage or learning rate parameter in boosting 
trees, which is decisive in its performance. Similar results have 
been reported in studies that followed a sequential learning 
strategy (Shah et al., 2019), finding slightly improved accuracies 
(i.e., from 5.5 to 3.5 μg/cm2 in the RMSE) and better-fitted 
models (i.e., up to 0.89–0.95 units in the R2) when training 
random forest with VIs than when using spectral bands. 
However, random forest retrievals and validation distributions 
did best with the retraining learning routine.

Finally, we also examined one of the most promising approaches 
in hyperspectral remote sensing data analysis: a Bayesian kernel-
based method referred to as Gaussian process regression (GPR; 
Camps-Valls et  al., 2016). Four different kernels or covariance 
functions were compared: exponential, squared exponential (SE), 
Matern, and rational quadratic, with all of them integrated with 
a maximum likelihood technique for auto-tuning their parameters. 
Any of these covariance functions captures the similarity between 
pairs of observations under the assumption that if the input 
predictors are close to each other, it is expected that their SPAD 
values will also be  close. Although marginal differences were 
found among the tested formulations in terms of accuracy with 
MAE and RMSE (<2 SPAD units), the SE kernel stood out 
from the rest (Figure  6). Moreover, the assessment metrics for 
the SE kernel outperformed most of the models examined in 
this study: only barely surpassed by random forest in some 
trials using VI predictors and retraining learning. However, SE 
estimates were associated with high uncertainties when using 
VIs under sequential learning (~10–15 SPAD units), and for 
the last two stages when using band features under the retraining 
routine (~10–12 SPAD units). Accordingly, distributions of the 
same trials showed discrepancies between the estimates and actual 
SPAD values from the validation samples, indicating that the 
GPR model should be  subject to optimization routines (Verrelst 
et  al., 2016; Rivera-Caicedo et  al., 2017), despite its flexibility 
and robustness to deal with multi-temporal hyperspectral data.
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Few studies in the vegetation spectroscopy literature have 
extensively compared GPR with other non-parametric regressions 
(Ashourloo et  al., 2016). In two notable examples, (Verrelst 
et  al., 2012); (Rivera-Caicedo et  al., 2014) found SE kernel 
performance exceeded decision trees, neural networks, support 
vector regression, and kernel ridge methods. To date, most of 
the ML implementations in hyperspectral applications have tended 
toward random forest implementations to retrieve biophysical 
variables (Shah et  al., 2019; Vanbrabant et  al., 2019). Based on 
this previous research and the analysis above, the GPR squared 
exponential, PLSR and random forest were moved to production 
in the last stage of our workflow, in order to plot the multi-
temporal SPAD maps at a pixel level, and including the uncertainty 
maps produced by GPR, which provides an additional level of 
information regarding the quality of the estimates. Further analysis 
based on deep learning and neural networks is recommended 
to compare their performance under the same dataset.

Practical Considerations on the Learning 
Workflow for Chl Retrieval
In general, any non-linear ML approach can be  implemented 
to model and retrieve multi-temporal physiological traits such 
as Chl content or SPAD levels. However, different strategies and 
techniques should be  explored in order to ensure the efficiency, 
accuracy, and transferability of model selections. The first general 
task to pursue in a ML framework should include an exploratory 
comparative assessment of different models within the training 
workflow, using the full training/testing data, but predicting over 
a validation subset. Numerous learning libraries and toolboxes 
(Rivera-Caicedo et  al., 2014) are available for both open-source 
and commercial applications, including multiple regression 
algorithms that can be  easily implemented to run a preliminary 
comparative analysis as soon as the first collection of data is 
available. Selecting the methods to further explore should rely 
on the data characteristics, such as spatial, spectral, and temporal 
resolution, and the number of ground-truth samples available.

For chlorophyll monitoring applications specifically, 
non-destructive in-situ sampling can be conducted using chlorophyll 
meters that provide a relative indicator of leaf Chl content (i.e., 
SPAD), which can be  considered the dependent variable to 
estimate. However, if the formulations to translate relative units 
to physical units (i.e., μmol/m2) are available, it is advised to 
translate the data and use Chl content as the dependent variable 
to estimate (Parry et  al., 2014). It is also preferable to use field 
spectra data to train and fit the models, assuring its comparability 
with the UAV hyperspectral imagery, which must be radiometrically 
calibrated and processed in advance (Angel et  al., 2020). For 
structurally vertical, complex, and mixed-species, e.g., orchards 
or cereals, it is also essential to include BDRF corrections (Aasen 
and Bolten, 2018). If field spectra data are not available, it may 
potentially be  replaced by synthetic spectral datasets generated 
through inverting radiative transfer models, although field data 
is necessary for validation (Feilhauer et  al., 2015).

A final consideration relies on quality assessment tasks. Ensuring 
sufficient observations to split between training, testing, and 
validation will improve the learning routines and the assessment 

and model selection stages. In particular, validation is a decisive 
phase in the ML workflow, and it can be  performed by cross-
validation when few data are available. When multi-temporal 
data is involved, poor results can be  overlooked if evaluating the 
validation dataset across time is skipped. Since phenotypic data 
is dynamic, modeling should be  treated as a continuous process 
by periodically retraining and validating the models, particularly 
if the new incoming data distribution varies significantly from 
the first dataset. Such a phenomenon is known as model drift 
in machine learning literature (Webb et  al., 2016) and has to 
be continuously assessed through different metrics. Complementary 
to analyzing quality metrics (i.e., RMSE, MAE, R2), some algorithms 
like GPR can provide the uncertainty associated with each prediction, 
allowing uncertainties to be mapped together with model estimates. 
Accounting for uncertainties associated with SPAD retrieval is 
of particular interest, since small variations in SPAD units will 
lead to exponential variations in the actual Chl content (Parry 
et al., 2014). Multiple evaluation techniques can be further explored 
to assess different metrics and make improvements accordingly 
until accurate and coherent results are obtained.

CONCLUSIONS

An innovative machine learning retrieval framework for mapping 
leaf chlorophyll content across a crop cycle was developed using 
ultra-high-resolution UAV-based hyperspectral imagery, in-situ 
SPAD observations, and field-based leaf spectra. The workflow 
evaluates a range of model scenarios to determine the best-
performing methods based on the production of accurate and 
coherent multi-temporal retrievals. The intercomparison of six 
different ML approaches, including some variations and kernel 
formulations, accounted for a total of 17 different models. In-situ 
observations were split into a training/testing subset used to fit 
the models through cross-validation and estimate R2, and a 
validation subset was employed to assess the accuracy of the 
models via RMSE and MAE. Three main aspects can be highlighted 
as innovations from the proposed framework, which match the 
particular research objectives explored in this study:

 • Strategies for selecting the best-suited training/retrieval 
combinations based on accuracy assessment.

 • Evaluation of sequential versus retraining learning strategies.
 • Comparison of VIs and spectral band predictors in explaining 

the SPAD variable.

It was determined that a retraining learning strategy, whereby 
a model is updated as new data becomes available, proved 
superior in capturing the temporal dynamics of SPAD-based 
Chl. In contrast, if models are trained using the full data 
series at any instance in time (i.e., a sequential learning strategy), 
only a few model combinations could yield results close to 
the validation data, vanishing Chl-level changes over time. It 
was determined that the best combination of training conditions 
was achieved by coupling sequential learning with spectral 
bands, and retraining learning with VI predictors. However, 
given the link that VIs establish between plant traits and 
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spectral responses along the phenology stages, VI predictors 
may be  preferred over spectral bands in order to add 
interpretability to the models without deteriorating their 
performance or accuracy. In this direction, PLSR, GPR and 
random forest were selected as the most promising approaches 
to optimize and estimate the SPAD predictions. Overall, PLSR 
and GPR squared exponential outperformed the other models 
in terms of accuracy and goodness-of-fit when operated under 
the sequential and retraining strategies, respectively. However, 
random forest estimates were closer than GPR to the actual 
validation data distribution, which was used as a reference to 
evaluate the multi-temporal coherence of the results. An 
additional assessment element is provided by uncertainty metrics 
that are included as part of the GPR results. Filtering of the 
most relevant predictors (bands and VIs) resulted from the 
inherent feature importance mechanisms of the PLSR, random 
forest, and GPR approaches. By scoring and classifying the 
predictors, the selected models reached some agreement on 
strong individual bands and VIs that highlighted a few decisive 
spectral ranges and indices useful for retrieving Chl levels.

While a comprehensive assessment of factors contributing 
to model accuracy and performance was evaluated herein, there 
remain several further opportunities to advance upon the 
evaluated approaches, considering the wide range of learning 
strategies, optimization, and assessment techniques available in 
open source and commercial applications. Of particular note, 
there is a need to develop approaches capable of capturing 
non-evident relationships within large, high-spectral, −temporal, 
and -spatial datasets to cover canopy scales, and solving prediction 
problems even under limited in-situ training data. Hybrid machine 
learning with radiative transfer models is a further option to 
explore the particular leaf and canopy optical properties of 
agricultural species, integrating other information from UAV 
systems (e.g., lidar-based canopy height), allowing to account 
for biochemical and structural traits simultaneously. As data-
collection technology evolves, producing ever-larger volumes of 
data, identifying how best to retrieve accurate informatics quickly 
and efficiently is an area of critical and much needed research 
interest. If such techniques and approaches are not developed, 
we  risk being overwhelmed by information, thereby losing the 
capacity for process insight and knowledge advancement.
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