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The rapid analysis of biopolymers including lignin and sugars in lignocellulosic
biomass cell walls is essential for the analysis of the large sample populations
needed for identifying heritable genetic variation in biomass feedstocks for biofuels
and bioproducts. In this study, we reported the analysis of cell wall lignin content,
syringyl/guaiacyl (S/G) ratio, as well as glucose and xylose content by high-throughput
pyrolysis-molecular beam mass spectrometry (py-MBMS) for > 3,600 samples derived
from hundreds of accessions of Populus trichocarpa from natural populations, as
well as pedigrees constructed from 14 parents (7 x 7). Partial Least Squares (PLS)
regression models were built from the samples of known sugar composition previously
determined by hydrolysis followed by nuclear magnetic resonance (NMR) analysis.
Key spectral features positively correlated with glucose content consisted of m/z 126,
98, and 69, among others, deriving from pyrolyzates such as hydroxymethylfurfural,
maltol, and other sugar-derived species. Xylose content positively correlated primarily
with many lignin-derived ions and to a lesser degree with m/z 114, deriving from a
lactone produced from xylose pyrolysis. Models were capable of predicting glucose and
xylose contents with an average error of less than 4%, and accuracy was significantly
improved over previously used methods. The differences in the models constructed
from the two sample sets varied in training sample number, but the genetic and
compositional uniformity of the pedigree set could be a potential driver in the slightly
better performance of that model in comparison with the natural variants. Broad-sense
heritability of glucose and xylose composition using these data was 0.32 and 0.34,
respectively. In summary, we have demonstrated the use of a single high-throughput
method to predict sugar and lignin composition in thousands of poplar samples
to estimate the heritability and phenotypic plasticity of traits necessary to develop
optimized feedstocks for bioenergy applications.

Keywords: biomass cell wall composition, high-throughput analysis, pyrolysis-molecular beam mass
spectrometry, bioenergy, glucose, xylose, heritability
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INTRODUCTION

The composition of lignocellulosic biomass cell walls is a
crucial factor in the feasibility of a feedstock for use as a
renewable source of fuels and chemicals. Lignocellulosic biomass
cell walls are composed of biopolymers including cellulose,
hemicelluloses, and lignin that could be used to produce
bio-derived products. Carbohydrates, including cellulose,
hemicelluloses, and pectins, comprise a large fraction of
Populus wood cell walls (approximately 45% cellulose, 20%
hemicelluloses, and 3% pectins) while lignin constitutes the
remaining ~25% (Mellerowicz et al., 2001; Sannigrahi et al,,
2010). Cell wall composition is not only a crucial feedstock
characteristic due to the number of products that can be obtained
through the processing of the lignocellulosic biomass but also
because the interaction of these components may affect biomass
recalcitrance (Foston et al,, 2011; Gilna et al.,, 2017). Thus, the
optimization of biomass composition could be used to improve
biomass processing and conversion. To do so, several approaches
could be taken in order to control the composition such as
plantation management (e.g., logging intervals, watering, or
spacing) and genetic modification [through genetic engineering
or breeding (Harman-Ware et al., 2021)].

Breeding uses the natural variation within species complexes
to attain desirable values of a trait of interest, both mean
and variance values of the traits. Aside from the inherent
complexity and cost of managing a breeding program, one
underlying biological factor is key for success: the traits of
interest must be under at least moderate genetic control and
not strongly negatively correlated with each other. Previous
studies have shown that the heritability of components of
wood is moderate to high. A study on Populus nigra showed
that broad-sense heritability (H?) values were 0.48, 0.46, 0.58,
and 0.70 for C5, C6 sugars, lignin, and syringyl/guaiacyl
(S/G) ratio units in lignin, respectively (Guerra et al.,, 2013).
More recently, our study that controlled for technical and
micro-spatial error on several controlled crosses in Populus
trichocarpa were similar: H? was 0.56 for lignin content
and 0.81 for the S/G ratio (Harman-Ware et al., 2021).
Correlations between C5 and C6 sugars, lignin content, and
S/G ratio have been observed in P. trichocarpa (Guerra
et al, 2016; Happs et al., 2021); for example, lignin and
the S/G ratio displayed a moderate positive correlation
(rg = 0.37). Other phenotypes such as enzymatic sugar
release (a biomass recalcitrance metric) have also shown
correlations with biomass composition phenotypes such as
S/G ratio, as demonstrated recently in willow (r, = ~0.4)
(Ohlsson et al., 2019).

Another approach to feedstock improvement is to identify
the loci that control variation in lignocellulosic biomass
composition and then specifically target those through breeding
or genetic engineering. Genome-wide association studies
(GWAS) and quantitative trait loci (QTL) mapping have been
used to identify genes associated with wood anatomical and
morphological traits (including growth and composition)
in various types of Populus (Porth et al., 2013; Muchero
et al, 2015; Fahrenkrog et al, 2017; Chhetri et al., 2020).

Similar to heritability and breeding studies, GWAS and
QTL analyses require large populations and replication to
maximize diversity, statistical power, resolution, and accuracy
of resulting maps and associations. Therefore, an important
technical factor needs to be considered: reliable and affordable
phenotyping procedures are required to guide breeding and
genetic association processes.

Currently, there is a need to utilize rapid techniques capable
of analyzing large datasets to determine the sugar composition
derived from cellulose and hemicelluloses in biomass in an
effort to inform systems biology models, to develop sustainable
and consistent feedstocks, and to inform field-to-fuel insights
to track changes in biomass composition. The high-throughput
analysis of cell wall sugars in lignocellulosic biomass is
difficult to achieve as typical methodologies require many steps,
including hydrolysis, prior to the analysis of released sugars
by high-performance liquid chromatography (HPLC) or nuclear
magnetic resonance (NMR; Sluiter et al., 2011; Happs et al,
2020). Various types of high-throughput methods have been
developed to estimate sugar composition in biomass and typically
involve the use of hydrolysis steps, robotics, and plate reading
technology (Decker et al., 2018). Gjersing et al. (2013) and Happs
et al. (2021) have developed high-throughput methods for the
determination of sugar content in biomass by means of hydrolysis
followed by the analysis of hydrolyzates using NMR. The NMR
analysis of biomass hydrolyzates is capable of estimating the
composition of major and minor sugars present in lignocellulosic
biomass cell walls but is still limited in throughput by laborious
hydrolysis steps prior to the rapid analysis of the products on
the spectrometer.

Pyrolysis-molecular beam mass spectrometry (py-MBMS) has
also previously been used to estimate the sugar composition
of different types of biomass using Partial Least Squares (PLS)
models (Sykes et al., 2015). However, mixed species models
cannot accurately predict the sugar compositions of large
populations of single species sets. Since there is no need to
hydrolyze the samples prior to the py-MBMS analysis and less
biomass sample is required, this method is advantageous for
the high-throughput estimation of biomass sugar composition
if improvements in accuracy and precision can be made.
Additionally, lignin content and monolignol composition can
be simultaneously measured making py-MBMS potentially
capable of comprehensive secondary cell wall analysis in
lignocellulosic biomass.

In this study, we reported the development of an accurate
high-throughput py-MBMS method that was used to determine
the glucose and xylose composition of a large set of P. trichocarpa
natural variants and a large pedigree set of P. trichocarpa by
means of PLS models constructed from P. trichocarpa of varying
sugar content and composition. We compared the cell wall
composition of the natural variants and the pedigrees as well as
the models that are used to predict the sugar compositions, and
also reported the heritability of glucose and xylose composition in
the pedigree set. We also used py-MBMS to rapidly predict lignin
content in the samples, thus reporting the use of a single method
to predict cell wall composition of major components in poplar
at a rate of approximately 1 min per sample.
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MATERIALS AND METHODS

Populus trichocarpa Sample Collection

In total, 924 P. trichocarpa natural accessions were grown in OR,
United States, and sampled as described previously (Muchero
et al., 2015; Chhetri et al., 2019; Happs et al., 2020). In brief,
increment cores from 3-year-old trees were debarked, dried, and
milled. P. trichocarpa pedigrees were grown in OR, United States,
and collected as previously described for the construction of
a separate model and subsequent prediction of the remaining
samples of sugar composition.

Sugar Composition Analysis

Biomass that had been dried, debarked, milled, and sieved to
—20/4-80 mesh, ethanol extracted, and destarched was used to
determine cell wall sugar composition using high-throughput
hydrolysis followed by the NMR analysis of hydrolyzates based
on methods described previously (Sluiter et al., 2011; Gjersing
et al., 2013; Happs et al., 2021). This method was chosen as it
was able to quickly obtain the sugar composition of biomass
to build models for sugar prediction by py-MBMS and for the
validation of sugar composition estimates. In brief, biomass
was hydrolyzed using two-stage acid hydrolysis with H,SOy,
neutralized with CaCO3, and filtered. The liquid hydrolyzate was
added to D,O with a final concentration of 0.01 mg/ml TSP-
dy for 'H NMR analysis. The 'H NMR analysis was conducted
on a Bruker Avance III spectrometer at 14.1 T (600.16 MHz)
using the following experimental parameters: NOESY-1D with
presaturation for water suppression, 5-s recycle delay, and 64
scans. The spectrometer was equipped with a SampleJet sample
changer and a Bruker 5-mm BBO probe. Sugar composition
by the NMR analysis of hydrolyzates was achieved using PLS
modeling approaches described previously (Happs et al., 2021).
Notably, 93 samples representing a range of sugar composition
were selected from the 924 natural accessions to use as calibration
samples to create a model using py-MBMS spectral data. The
remaining accessions were analyzed by hydrolysis followed
by NMR using the same methodology to validate the sugar
composition determined by the py-MBMS analysis. Additionally,
the 14 parents plus 10-20 progeny from each of the seven
maternal half-sib families were selected, for a total of 121 samples
from the 7 x 7 cross pedigree (Supplementary Table 1). These
were used for the analysis of sugars by hydrolysis and NMR
based on the py-MBMS analyses to cover a range of lignin and
sugar-derived ion abundances.

Pyrolysis-Molecular Beam Mass

Spectrometry Analysis

A Frontier PY2020 unit pyrolyzed 4 mg of biomass that had been
dried, debarked, milled, and sieved to 4+-80/—20 mesh, ethanol
extracted, and destarched. Pyrolysis occurred at 500°C for 30 s
(analysis took about 1 min total to analyze a single sample) in 80-
il deactivated stainless steel cups, and each sample was analyzed
in duplicate. An Extrel Super-Sonic MBMS Model Max 1000 was
used to collect mass spectra, which was processed using Merlin
Automation software (V3). Spectra were collected from m/z 30

to 450 at 17 eV and mean normalized or total ion chromatogram
(TIC) normalized for data analysis and composition prediction.
Lignin content was estimated as described elsewhere using a
standard of known Klason lignin content and comparing samples
based on the summation of ion intensities of m/z 120, 124 (G),
137 (G), 138 (G), 150 (G), 152, 154 (S), 164 (G), 167 (S), 168 (S),
178 (G), 180, 181, 182 (S), 194 (S), 208 (S), and 210 (S) where
monolignol S/G ratio was calculated by dividing the sum of (S)
ions by the sum of (G) ions (Sykes et al., 2008, 2009; Decker et al.,
2018). Xylan content was estimated by the use of a PLS regression
model that was built using 93 samples whose xylose content was
previously determined by the high-throughput NMR analysis of
two-stage acid hydrolysis. Additionally, xylose was estimated by
the summation of ion intensities of C5 ions m/z 57, 73, 85, 96,
and 114. Glucose content was estimated by the summation of C6
ions m/z 57, 60, 73, 98, 126, and 144 and also determined by PLS
regression models built using the data from the high-throughput
NMR analysis of hydrolyzates.

Partial Least Squares Regression Models
and Other Data Analyses

The PLS models were constructed using sugar composition data
obtained from the NMR analysis of biomass hydrolysis from
93 natural variants of P. trichocarpa samples to predict sugar
composition in the natural variant population. Natural variant
models were cross-validated using both the 93 calibration/model
samples and were also later validated on the remaining >800
samples by hydrolysis followed by the NMR analysis of
hydrolyzates. PLS models were also separately constructed using
hydrolysis followed by the NMR analysis for sugar composition
from a pedigree set consisting of 121 samples to predict sugar
composition in the remaining ~2,600 pedigree samples. The
121 pedigree samples were used to validate the sugar models,
but further validation by the hydrolysis-NMR analysis of the
remaining samples was not possible due to the substantial size
of the population. The Unscrambler X version 10.5 was used
to build PLS models for py-MBMS spectra from m/z 30 to
450. Glucose models were constructed from 4-factor models,
and xylose models were constructed from 5-factor models.
Other methods of data analysis including descriptive statistics,
principal component analysis, and so on were performed
using The Unscrambler X version 10.5 and using R Studio
(R Core Team, 2013).

RESULTS

Glucose and Xylose Models and
Contents in P. trichocarpa Natural

Variants

The P. trichocarpa natural variants analyzed by NMR for sugar
composition are described in detail by Happs et al. (2021). In
brief, the glucose content of the set ranged from approximately
43 to 57% of dry weight (DW) biomass [average of 48 DW%,
glucose NMR model root mean square error (RMSE) = 0.01 mg
glucose/mg biomass], and the xylose content ranged from 11
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to 20% DW biomass (average 17 DW%, xylose NMR model
RMSE = 0.01 mg xylose/mg biomass). Of note, 93 training
samples for the construction of the py-MBMS PLS model ranged
in the glucose content of 43-54% (average 48%) and in the xylose
content of 12-20% (average 17%). Previously, C5 (primarily
xylose) and C6 (primarily glucose) contents in biomass have been
estimated using the py-MBMS data by comparing the relative
abundance of C5 and C6 ions described previously, to reference
materials of known sugar composition (Sykes et al., 2015).
However, this method (reduced-ion, single-point, or response
factor comparison) is not sufficient for the estimation of glucose
and xylose content in a large sample set of a single biomass
type as validated using hydrolysis followed by the NMR analysis
(Supplementary Figure 1). The R? for the reduced-ion single-
point comparison method for xylose content was 0.05 and for
glucose content was 0.22 using data from the entire (>900)
sample set. Since this simplified ion method is not accurate for the
analysis of a single biomass type, PLS models were constructed
using glucose and xylose contents determined by hydrolysis
followed by the NMR analysis to predict the content of these
components in P. trichocarpa based on the py-MBMS data.

The errors associated with the PLS model used to determine
the glucose content of the natural variant poplar samples using
py-MBMS spectra are outlined in Supplementary Table 2 (RMSE
of the py-MBMS glucose model was 0.01 mg glucose/mg biomass,
total average error including NMR and MBMS error = 0.03 mg
glucose/mg biomass). The training set had R?* = 0.74 for the
calibration of measured and predicted values and had Pearson’s

correlation coefficient (PCC) of 0.86 (Figure 1A). The error in
the values of the training samples ranged from —5.8 to +5.7%
(relative to the value) with an average error of | 1.4%| (SD = 1.2%)
(Supplementary Table 2). The validation of the glucose content
estimates for the full natural variant sample set (n = 924) by the
NMR analysis of hydrolyzates based on the model constructed of
the 93 samples resulted in larger errors (Supplementary Table 2
and Figure 1B).

Table 1 lists the ions with the highest correlation to glucose
content (also refer to model correlation Factor 1 loadings,
Figure 1C). Several of the ions with the highest correlation
coeflicients to glucose content have previously been associated
with estimating glucose and C6 content of biomass (Sykes et al.,
2015). However, additional ions that have also been attributed
to sugar-derived pyrolyzates (Evans and Milne, 1987; Sykes
et al., 2015) were also among those most strongly correlated
with glucose abundance. These glucose-derived ions were also
generally negatively correlated with ions derived from lignin
(Figure 1C) including m/z 154 (S), 167 (S), 180, 194 (S),
and 210 (S) (e.g., PCC for glucose content determined by
NMR and S-derived lignin ions is approximately —0.5). There
was no strong correlation observed between the S/G ratio
and the glucose content (PCC = —0.2). The contribution of
ions 69, 70, 84, and potentially 96 is likely important for
predicting glucose content, particularly in comparison with
the single-point comparison method previously reported. These
findings indicate that the simplified ion summation with single-
point response prediction previously used for estimating C6

A
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TABLE 1 | Pearson’s correlation coefficients (PCCs) for selected ions as they
relate to glucose content in P, trichocarpa natural variant biomass samples.

m/z Pearson’s correlation Known source
coefficient - glucose content

126* 0.69 C6
98* 0.64 C6
69 0.58 C5, C6
70 0.57 C5, C6
84 0.57 C6
57* 0.44 C5, C6
60* 0.38 C5, C6
73* 0.36 C5, C6
144> 0.28 C6
96 0.25 C5, C6

*Reduced-ion single-point comparison method to estimate glucose content sums
and compares the intensities of m/z 57, 60, 73, 98, 126, and 144.

content did not consist of all ions of interest needed for
accurate analyses.

The py-MBMS PLS model used to determine the xylose
content of the natural variant training poplar samples (n = 93)
had R? = 0.86 for the calibration of measured and predicted
values, and errors are outlined in Supplementary Table 3 and
shown in Figure 2A. RMSE of the py-MBMS xylose model was
0.004 mg xylose/mg biomass, when combined with the error
of NMR model = 0.05 mg xylose/mg biomass total error. The
predicted and measured xylose content of the training set had a

PCC of 0.93. While the xylose content estimates of the natural
variant set had higher R? and correlation coefficients for the
training set and entire validation set (Figure 2B) in comparison
with the glucose content estimates, the range of error of xylose
estimates was substantially higher. Similar to glucose estimates,
the errors associated with the entire set based on the model
constructed from the training set were substantially higher.

Interestingly, ions with the highest correlation to xylose
content were primarily attributed to lignin-derived species,
including m/z 165, 180, 168, and 167 (Table 2 and Figure 2C).
Ions previously used to estimate xylose content and otherwise
known to derive from sugars actually had a negative correlation
with xylose content, with an exception for m/z 114 which
only moderately correlated with xylose content. The positive
correlation between xylose and lignin content likely has genetic
origins related to carbon allocation and may not necessarily be
extrapolated to other biomass types and may also be a reason
for the higher errors observed for xylose content determination.
There was no strong correlation observed between S/G and xylose
content (PCC = 0.2). Additionally, these findings also support the
need for PLS models to more accurately predict C5 sugars such as
xylose content in a single biomass type in comparison with the
previously used simplified ion summation method.

Glucose and Xylose Models and

Contents in P. trichocarpa Pedigrees
The py-MBMS PLS model that was used to determine the
glucose content of the pedigree poplar samples had R* = 0.85

Xylose content validation for natural variant
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training set, (B) xylose content validation for all natural variants tested, and (C) factor-1 spectral loadings for natural variant xylose model.

Frontiers in Plant Science | www.frontiersin.org

5 February 2022 | Volume 13 | Article 757810


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Harman-Ware et al.

Composition Variation of Populus trichocarpa

TABLE 2 | PCCs for selected ions as they relate to xylose content in P, trichocarpa
natural variant biomass samples.

m/z Pearson’s correlation Known source
coefficient - xylose content

X lignin ions 0.54 lignin

165 0.54 S lignin

180 0.52 lignin

168 0.50 S lignin, vanillic acid

167 0.47 S lignin

163 0.47 S lignin, vanillic acid

114* 0.32 C5

160 0.28 C5, lignin, ferulate

103 0.27 C5

57* —0.41 C5, C6

73" —0.34 C5, C6

85* —0.04 C5, C6

96* -0.23 C5, C6

*Reduced-ion single-point comparison method for the estimation of xylose content
sums and compares the intensities of m/z 57, 73, 85, 96, and 114.

(Figure 3A) for the calibration of measured and predicted values,
and the error ranged from —3.8 to +5.8% of the value with an
average error of | 1.3%| (SD = 1.0%, n = 121). The predicted
and measured glucose content of the training set had a PCC
of 0.92. RMSE of both the NMR and py-MBMS models for
glucose prediction was 0.01 mg glucose/mg biomass, for a total
error of 0.03 mg glucose/mg biomass. The validation of the
glucose (and xylose) content estimates was not established for all
samples due to the size of this sample set (an additional 2,600
test samples in addition to the training samples), although the
high degree of correlation and relatively low error range of the

training set indicated reasonable accuracy of glucose prediction
of this sample set.

Similar to the natural variant set, the model constructed for
xylose content estimates of the pedigree set had higher R? and
PCCs as well as higher error ranges in comparison with the
glucose models. The validation of the training set (n = 121) of
pedigree samples for xylose content (Figure 3B) had R? = 0.94
for the calibration of measured and predicted values with a PCC
of 0.97. The xylose content error of the training set ranged from
—6.3 to +6.3% of the value with an average error of | 1.8%|
(SD = 1.5%). RMSE of the py-MBMS xylose model was 0.004 mg
xylose/mg biomass, when combined with the error of NMR
model = 0.05 mg xylose/mg biomass total error. In summary, the
PLS models for xylose prediction were acceptable for the training
set in the pedigrees although the remaining samples in the set
could not be validated.

Also similar to the natural variants, Factor 1 loadings for the
model for glucose (Figure 3C) consisted of ions including m/z 60,
69,73, 98, and 126 were positively correlated with glucose content
whereas lignin-derived ions such as m/z 154 (S), 167 (S), 180, 194
(S), and 210 (S) are negatively correlated with predicted glucose
content (PCC with S-derived ion = —0.4) and glucose-derived
ions, although there was no correlation observed between S/G
and glucose content (PCC = 0). Xylose content in the pedigree
samples, such as the natural variants, also confirmed a positive
correlation between xylose content and lignin-derived species
[including m/z 124 (G), 137 (G), 154 (S), 167 (S), 180, 194 (S), and
210 (S), refer to Figures 3D, 4C,F and Supplementary Figure 2],
although there was no correlation observed between S/G and
xylose content (PCC = 0).

The glucose and xylose content predictions of the pedigree
set were strongly negatively correlated (R* = 0.89, PCC = 0.94,
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Figure 4B). Glucose and lignin contents were moderately
negatively correlated (PCC = —0.61, R* = 0.37, Figure 4A)
while xylose and lignin contents were weakly positively correlated
(PCC = 0.48, R? = 0.23, Figure 4C). An average of 88 wt%
of the mass of the material in the pedigree set was accounted
for in glucose, xylose, and lignin contents. The remaining mass
was likely metabolites, particularly phenolics and salicylates
(Harman-Ware et al,, 2021), free sugars and other carbohydrates
not accounted for (including pectins), as well as inorganic ash
components and proteins.

Comprehensive Composition of

P. trichocarpa Natural Variants

The py-MBMS analysis of the P. trichocarpa natural variants was
also used to determine the lignin content and lignin monomeric
S/G ratios of the samples, where the lignin information of a subset
of these samples was provided in the previous study (Happs
et al,, 2021). The lignin content and S/G variation of the natural
variants are shown in Table 3 and are similar to that of the
pedigree set [i.e., the extensive analysis of the lignin content, S/G
ratio, and corresponding ions in the pedigree set is reported in
Harman-Ware etal. (2021)]. The principal component analysis of
the natural variant spectra shows that the majority of the variance
is explained by a negative relationship between lignin and sugar-
derived ions [i.e., the first principal component (PC-1) explains
57% variance, refer to Supplementary Figures 2, 3]. The second
principal component (PC-2), explaining 15% of the variance,
shows variance generally attributed to a positive correlation in C5
sugar-derived ions and S-lignin-derived ions, together negatively
correlated with G-lignin ions.

Since the full natural variant set was validated using the NMR
data, other sugars including mannose, arabinose, and galactose
were fully accounted for, although these sugars occurred in lower
abundance and were not able to be predicted using the py-MBMS

data. The total sum of material averaged 95% recovery, indicating
that a large amount (approximately 7 wt%) of the missing
pedigree mass could be explained by the abundance of minor
sugars. There was a strong negative correlation in the glucose
and xylose composition of the natural variant P. trichocarpa
set (using hydrolysis NMR data to minimize error propagation,
PCC = —0.76, R* = 0.87, Figure 4E; Happs et al, 2021)
and a slight negative correlation between lignin content and
glucose content, R? = 0.35, (Figure 4D). Lignin ions, particularly
S-derived such as m/z 154, 194, and 210 and the predicted xylose
content from the PLS models using MBMS data, showed a weak
positive correlation (using the sum of S-derived ions, PCC = 0.47,
R? = 0.22, Supplementary Figure 3 and Figure 4F).

Heritability of Sugars in P. trichocarpa

The comprehensive py-MBMS spectral analysis of the pedigree
set with a particular focus on lignin content and composition
was described previously (Harman-Ware et al., 2021). Table 4
highlights the broad-sense heritability of ions positively
correlated with glucose and xylose contents (or more broadly,
known to originate from C6 to C5 sugars) and the broad-sense
heritability of those sugars based on estimates by the py-MBMS
analysis after spectral correction for the microspatial variation

TABLE 3 | Lignin content and lignin syringyl/guaiacy! (S/G) ratio determined by the
py-MBMS analysis of R trichocarpa natural variants.

S/G Lignin content (%)
Mean 2.1 24.6
Max 2.6 27.0
Min 1.4 19.3
Range 1.1 7.8
Std. deviation 0.1 1.0
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of the individuals and for the instrumental variation. Prior to
the removal of the microspatial and instrumental variation,
the broad-sense heritability of the predicted sugars was lower
for glucose (0.31 before and 0.32 after spectral adjustments
accounting for the microspatial and instrumental variance) and
slightly higher for xylose (0.36 before and 0.34 after). The reduced
xylose broad-sense heritability after spectral data correction may
originate from many sources which will be discussed later;
and the increased heritability for glucose is consistent with
the increase in lignin heritability (Harman-Ware et al., 2021).
However, the differences may be considered minor (within
error), and the broad-sense heritability discussed here focuses
on the values obtained after the microspatial and instrumental
variance correction. Of the sugar-derived ions, m/z 60 had the
highest heritability, and all ions in Table 4 required thin-plate
spline (TPS) correction, indicating that these ions and their
corresponding biomass components (sugars) were impacted
by microspatial variation in the field, and hence, the sugar
contents exhibited some phenotypic plasticity (Harman-Ware
et al., 2021). The heritability of glucose and xylose contents was
0.32 and 0.34, respectively, and the heritability of sugar-derived
ions was generally lower than that of lignin and phenolic-
derived ions in P. trichocarpa, which ranged from 0.31 to 0.79
(Harman-Ware et al., 2021).

DISCUSSION

Models and Sugar Analysis Methodology

The py-MBMS analysis of hardwood biomass for sugars is rapid
but requires the use of a large number of calibration samples
with a priori sugar compositional analysis and construction of
PLS models. While previous studies using different biomass
types demonstrated the potential use of py-MBMS for C5 and

TABLE 4 | Broad-sense heritability of glucose and xylose contents and ions
positively correlated with glucose and xylose contents and annotated based on
the py-MBMS analysis of the R, trichocarpa pedigree set [heritability of ions and
annotations summarized from Harman-Ware et al. (2021)].

m/z Source Heritability
57 C5 and C6 0.28
60 C5 and C6 0.35
69 C5 and C6 0.29
70 C5 and C6 0.32
73 C5 and C6 0.35
84 C6 0.13
85 C5 and C6 0.21
96 C5 and C6 0.13
98 C6 0.23
108 C5 0.13
114 C5 0.34
126 C6 0.22
144 C6 0.05
Glucose content 0.32
Xylose content 0.34

C6 estimates using simplified ion summation methods, those
techniques were not accurate for the analysis of a large sample set
of a single biomass type (Supplementary Figure 1). Differences
between the models from the natural variant population and
the pedigree samples were minimal although the accuracy was
overall greater for the pedigree samples. The higher accuracy
of the pedigree models likely results from higher uniformity in
the population composition and the use of a larger calibration
set. Errors in the predicted major sugar composition could
result from the relative abundance of lignin, celluloses, and
hemicelluloses where the less abundant sugars in the cell walls
as well as inorganic components impact the product distribution
of sugar pyrolysis and may contribute to spectral features not
fitting within the model ranges. Limitations to this methodology
also include the indirect measurement methodology, requiring
maintenance of the calibration, as well as the ability to obtain
enough representative feedstocks of known sugar composition
for model training. However, these results outline a reasonable
method for the high-throughput analysis of all major secondary
cell wall biopolymers in lignocellulosic biomass by py-MBMS.

Relationships Between Biopolymers in

Biomass

Both the natural variants and the pedigree samples exhibited a
strong negative relationship between glucose and xylose content
(Figures 4B,E). While this observation may be partially due to
artifacts in the models (potentially in the NMR data as well), it is
consistent across the sets, and the relationships between xylose
and lignin provide further insights. For example, the model
predicting xylose content consists of a significant contribution
of lignin-derived ions; however, the relationships between lignin
and xylose content predictions show weak correlations (R? = 0.23
and 0.29 for pedigree and natural variants, respectively). Our
observations are in contrast to those observed previously, likely
due to the fact that C5 and C6 sugars were previously calculated
using the simplified ion method (Guerra et al., 2016). The
heritability of xylose and glucose contents estimated here are
also similar or higher than previously reported, again due to the
improvement in the accuracy of the measurements based on the
models used as well as the correction of the data to account for
microspatial variation in the field. However, the heritability of
the xylose values using uncorrected spectral data was slightly
higher, potentially due to the inclusion of confounding ion
intensities that are partially sourced from the components of
higher heritability. There may also be differential phenotypic
plasticity that would explain a higher broad-sense heritability of
xylose content prior to the microspatial correction of the data.
The relationships between and the heritability of the biomass
components including glucose, xylose, and lignin content as
well as S/G are very important for the design of bioenergy
crops as these components directly impact the economics
associated with the conversion of biomass to fuels, materials,
and energy (Happs et al, 2021; Harman-Ware et al,, 2021).
Additionally, the relative abundance of biomass components may
also play important ecological roles and impact the sustainability
associated with a given crop.
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CONCLUSION

Multivariate models need to be constructed to predict glucose
and xylose contents present in the cellulose and hemicellulose
biopolymers in cell walls for the py-MBMS analysis of large sets
of P. trichocarpa. Models constructed from different training sets
confirm the relationships between specific ions and sugar sources
as well as the relationships between different biopolymers in
P. trichocarpa. The py-MBMS was able to rapidly (approximately
1 sample/min) determine the contents of all the major cell wall
components in P. trichocarpa including glucose, xylose (from
cellulose and hemicelluloses, respectively), and lignin contents as
well as lignin S/G ratios in order to inform the variability and
heritability of biomass cell wall compositional phenotypes. The
heritability of sugar contents in P. trichocarpa is lower than that of
lignin content and lignin monomeric ratios based on py-MBMS
analyses. These results show that we can use a single high-
throughput method to measure biomass composition to identify
the relationships between biopolymers in natural variants and
pedigrees of P. trichocarpa which could potentially be leveraged
to design P. trichocarpa crops of specific compositions to
optimize economics, conversion, and sustainability metrics. It
will be important to understand the relationships between
biopolymer and cell wall composition to efficiently domesticate
the lignocellulosic crops for the large-scale production of bio-
derived products in moving toward a bio-based economy.
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