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Plant breeders, scientists, and commercial producers commonly use growth rate as an 
integrated signal of crop productivity and stress. Plant growth monitoring is often done 
destructively via growth rate estimation by harvesting plants at different growth stages 
and simply weighing each individual plant. Within plant breeding and research applications, 
and more recently in commercial applications, non-destructive growth monitoring is done 
using computer vision to segment plants in images from the background, either in 2D or 
3D, and relating these image-based features to destructive biomass measurements. 
Recent advancements in machine learning have improved image-based localization and 
detection of plants, but such techniques are not well suited to make biomass predictions 
when there is significant self-occlusion or occlusion from neighboring plants, such as 
those encountered under leafy green production in controlled environment agriculture. To 
enable prediction of plant biomass under occluded growing conditions, we develop an 
end-to-end deep learning approach that directly predicts lettuce plant biomass from color 
and depth image data as provided by a low cost and commercially available sensor. 
We test the performance of the proposed deep neural network for lettuce production, 
observing a mean prediction error of 7.3% on a comprehensive test dataset of 864 
individuals and substantially outperforming previous work on plant biomass estimation. 
The modeling approach is robust to the busy and occluded scenes often found in 
commercial leafy green production and requires only measured mass values for training. 
We then demonstrate that this level of prediction accuracy allows for rapid, non-destructive 
detection of changes in biomass accumulation due to experimentally induced stress 
induction in as little as 2 days. Using this method growers may observe and react to 
changes in plant-environment interactions in near real time. Moreover, we expect that 
such a sensitive technique for non-destructive biomass estimation will enable novel 
research and breeding of improved productivity and yield in response to stress.

Keywords: controlled environment agriculture, deep learning, biomass, monitoring, lettuce, computer vision, 
artificial intelligence, phenotyping algorithms
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INTRODUCTION

Plant growth is a foundational biological process that underlies 
both agricultural and ecological productivity. Biomass 
accumulation is the final product of photosynthetic CO2 
assimilation and its rate is closely tied to traits such as productivity 
and stress response (Muchow, 1988; Scully and Wallace, 1990). 
Growth rate is linked to crop productivity and yield for grain, 
fruit, and vegetable crops. Vegetative crop growth rate, for 
example, is a strong predictor of final grain production in 
rice, soybean, wheat, and maize (Egli and Zhen-wen, 1991; 
Karimi and Siddique, 1991; Takai et  al., 2006; Egli, 2019). 
Among leafy vegetables, growth rate is even more directly tied 
to yield as the leaves, and often stems, are harvested as the 
final product. Due to its close link to yield, growth rate is 
commonly measured in response to limitation and excess 
application of inputs such as light (Zhou et al., 2019), temperature 
(Zhou et  al., 2019), nutrients (Sapkota et  al., 2019), and water 
(Gallardo et  al., 1996). Consequently, growth rate in response 
to variable inputs provides an optimization criterion for breeding 
higher input efficiency crops (e.g., nitrogen and water use 
efficiency; Zotarelli et  al., 2009). Beyond breeding, growth rate 
monitoring provides commercial agricultural producers a means 
for detecting stress and understanding growth over time, both 
of which can lead to more precise planning and optimization 
of management practices (Kacira et  al., 2005). Thus, plant 
growth monitoring is a critical tool for breeders, scientists, 
and commercial producers in their efforts to manage and 
develop more productive and stress tolerant crops.

The most direct method of determining plant biomass growth 
is via destructive sampling, which requires harvesting and 
weighing each individual (Catchpole and Wheeler, 1992). The 
destructive nature of this method reduces its utility in breeding 
and commercial settings as it often necessitates prohibitive 
numbers of individuals to generate the representative samples 
required for daily or sub-daily population biomass estimates. 
On the other hand, non-destructive biomass estimation allows 
for continuous measurement of individual plants which 
substantially reduces plant number requirements for effective 
experimentation and monitoring. Hand-gathered allometric 
methods that relate volume and height data to biomass are 
time-consuming, laborious, and may generalize poorly (Pottier 
and Jabot, 2017). The recent development of proximal and 
remote sensing-based approaches offers the promise of lower 
data acquisition cost and increased throughput and accuracy. 
Such methods generally involve computer vision-based analysis 
of color (Jung et  al., 2015; Jiang et  al., 2018) and 3D data 
modalities (Mortensen et  al., 2018; Hu et  al., 2018; Jin et  al., 
2020). Data is typically acquired from one or more viewpoints 
using color sensors, RGB-D cameras, or LiDAR systems. Then, 
plant pixels (or in the case of 3D data, voxels or 3D points) 
are segmented from the background via either classical or 
machine learning methods (Jung et al., 2015; Jiang et al., 2018; 
Mortensen et  al., 2018; Loresco et  al., 2019; Jin et  al., 2020). 
The segmented data is used to generate features that can serve 
as predictors of biomass such as pixel counts (Jiang et  al., 
2018), 3D volume (Mortensen et  al., 2018; Jin et  al., 2020), 

plant height (Hu et  al., 2018; Jin et  al., 2020), projected leaf 
area (Mortensen et  al., 2018; Jin et  al., 2020), and other color 
and structural features (Hu et  al., 2018; Jin et  al., 2020). More 
recently, promising results have been achieved with deep learning 
methods which do not rely on initial scene segmentation, but 
instead estimate biomass by directly mapping input images to 
biomass (Zhang et  al., 2020).

Of these prior works, most rely on idealized scene conditions 
containing isolated individuals within field-of-view of the 
image. Only the methods of Jin et  al. (2020) and Mortensen 
et al. (2018) are designed to estimate individual plant biomass 
within scenes containing the dense plant canopies typical of 
commercial agricultural settings. In commercial agriculture, 
high planting densities result in neighboring plants that create 
occlusions with each other, significantly increasing the 
complexity of the segmentation task. Furthermore, even with 
an effective segmentation algorithm, occlusions can cause 
large holes within the resulting segmented plant pixels, 
potentially reducing the accuracy of calculated biomass 
predictors. These problems are greatly exacerbated in leafy 
green production, where canopies can become near continuous 
(Figures 1A–C). While both works developed effective plant-
from-plant segmentation schemes, neither tested their methods 
on extremely high density continuous canopies (Mortensen 
et  al., 2018; Jin et  al., 2020). Further, both methods rely to 
some degree on human input, greatly reducing the throughput 
and advantage of remote sensing based biomass estimation.

To solve the challenge of accurate and autonomous individual 
plant biomass estimation within high density canopies, 
we  propose an end-to-end deep learning approach. Our 
end-to-end approach eliminates the need to perform explicit 
individual plant segmentation and instead allows a deep 
convolutional neural network (DCNN) to implicitly perform 
segmentation by learning a mapping from input image space 
to individual plant biomass. Motivated by previous biomass 
estimation work that relies on 3D data as well as the ability 
of DCNNs to jointly learn from color and depth imagery 
(Gupta et  al., 2014; Eitel et  al., 2015; Ophoff et  al., 2019; Ward 
et  al., 2019), our model incorporates both color and depth 
data as provided by an inexpensive and commercially available 
stereovision RGB-D camera. We  hypothesize that DCNNs are 
well suited to understanding not only plant structure and size, 
but the influence of neighboring plant occlusion on the resulting 
view presented in overhead imagery of dense plant canopies.

In this work we develop a novel approach to non-destructively 
monitor crops by estimating the fresh biomass of individual 
lettuce plants grown in a typical commercial hydroponic cropping 
system from a proximal overhead viewpoint. By combining RGB-D 
sensing with a deep learning regression approach, we demonstrate 
state-of-the-art performance for quantifying biomass across the 
entire range of the lettuce growth cycle, from transplant (< 1 g) 
through maturity (> 30 g). Our approach and results not only 
have implications for leaf lettuce but can more broadly be applied 
to estimate biomass and other phenotypic traits of crops grown 
in occluded environments. To validate our model’s ability to 
function as a crop monitoring system, we  perform an additional 
experiment which subjects plants to various heterogeneously 
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applied nutrient stresses. This rigorously tests the model’s ability 
to capture varying trends in growth between neighboring individuals 
and shows that monitoring growth dynamics at the individual 
plant scale is possible under non-idealized cropping conditions.

MATERIALS AND METHODS

Dataset for Deep Learning Model Creation
Our dataset used in model creation is composed of pairs of 
overhead images and biomass values of the baby leaf lettuce 
cultivar Lactuca sativa var. Powerhouse grown in a high density 
hydroponic cropping system. Every image was centered upon 
a unique individual lettuce plant and the associated biomass 
value was the measured fresh above ground biomass of the 
corresponding center plant in the image.

Cultivation System
Plants used in this work were grown indoors within a laboratory 
facility at the University of California, Davis campus. Plants 
were grown in continuously recirculating nutrient film technique 
hydroponic systems (SananBio, Xiamen, Fujian, China; Figure 1A). 
The systems were composed of four vertical tiers, with each 
tier holding two growing trays. One growing tray contained 54 
plants arranged in a nine by five grid pattern with an approximate 
spacing of three inches. Seeds were germinated in one-inch 
rockwool cubes and transplanted into the SananBio system 
growing trays after first emergence of true leaves. Plants were 
grown until imaging and destructive measurement of fresh 
biomass was performed. Each rockwool cube contains the plant’s 
root system which is free to grow beyond the cube into a 
drainage channel. Photosynthetic photon flux was maintained 
continuously at an average of 135 μmol·s−1·m−2 over the canopy 
area. Temperature was maintained between 72 and 85°F.

Imaging System
The chosen imaging system utilized an Intel RealSense d435i 
(Intel Corp., Santa Clara, CA, United  States) camera mounted 

vertically over the imaging bay at a height of 37 cm (Figures 1C,D). 
It was actuated to positions directly above each plant by a 
stepper motor and belt driven positioning system. While the 
theoretical tolerances of the positioning system are on the order 
of 1 mm, inaccuracies due to deformations of the plastic trays 
and alignment with the imaging system resulted in observed 
positional tolerances of approximately 1 cm. Images were always 
taken while the camera was not in motion. Data collected 
consisted of an 848 pixel by 480 pixel 8-bit color RGB image 
as well as an associated depth image. The depth image is a 
2D image, where each pixel represents the distance between 
the sensor and the in-scene object with a precision of 0.1 mm. 
No filtering was applied to the depth images. We  chose to 
utilize a depth to color image alignment scheme with the Intel 
RealSense 435i, which involves a transformation of the depth 
image centered at one monochromatic sensor origin to the 
designated color sensor origin. The result was a depth image 
aligned to the color image (i.e., they share a coordinate system).

Data Collection
Data collection was performed on single trays, which correspond 
to a 54 plant subsample of the growth trial. During each data 
collection event a tray was removed from the cultivation system 
and placed under the imaging system. The illumination within 
the imaging system was maintained at approximately 100 lux 
and 6,500 K. Immediately after imaging, fresh above ground 
biomass was recorded. This was accomplished by severing the 
plants directly below the cotyledon and weighing them to a 
precision of 0.001 g or 0.1 g, depending upon the plant’s size 
and ability to fit within an analytical balance chamber. Each 
data collection event therefore yielded 54 RGB images, 54 
aligned depth images, and 54 plant biomass values.

Growth Trials for Destructive Biomass 
Measurements
Six growth cycles were conducted sequentially over a 5 months 
period. Each cycle featured a varying number of total trays 

A B C D E

FIGURE 1 | (A,B) The SananBio vertical cultivation system with individual lettuce plants at various growth stages. (C,D) The 2-axis imaging system equipped with 
an RGB-depth camera that was used to image lettuce plants and weigh destructively weigh individual plant mass values. (E) Our modified top fed drip system for 
growth monitoring under controlled nutrient stress.
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and plant count, although individual trays always contained 
a full 54 plants. During each growth cycle, data collection 
events started 1 week after transplant at a rate of three to four 
events per week and continued until all trays were harvested. 
This resulted in plants with a harvest date between 7–30 days 
after transplant. A total of 3,888 plants were harvested and 
their biomass values destructively measured.

Non-destructive Growth Monitoring in 
Response to Stress Induction
After achieving satisfactory biomass prediction accuracy, 
we  implemented the model in a plant monitoring application 
to track growth over time from transplant to harvest. 
We  modified our previous hydroponic system from nutrient 
film technique, where every plant received the same fertigation 
solution, to a top-fed drain to waste system (Figure  1E). 
This allows for the application of unique fertigation solution 
to four subsets of plants in a random spatial arrangement. 
Each plant site was fertigated by a single 0.5 gallon per 
hour pressure compensating emitter for 1 min every 7 h. Four 
separate pumps supply the system, each connected to drip 
lines arranged in an alternating pattern along each axis. By 
supplying each pump with a certain fertigation solution, 
we can dynamically select the fertigation solution experienced 
by any particular subset of the plants. The entire growing 
system was canted to facilitate draining and reduce the uptake 
of shared leachate by plant roots. We  maintain equivalent 
lighting and transplanting conditions as the original dataset.

Experimental Design
Our experiment consisted of 108 plants that were completely 
randomly distributed into four groups of 27 plants (n = 27; 
Figure  1E). Each group was subjected to a different schedule 
of nutrient stress inductions and reductions designed to 
dynamically modify the growth rate of each treatment group 
over time (Table 1). Since the plants were grown hydroponically, 
nutrient stress was induced by providing pure distilled water 
through the irrigation system. To return to non-stress conditions, 
fertigation was resumed with half strength Hoagland solution. 
We  composed a schedule of nutrient stress applications for 
each of three treatments and a control (Table  1). For each 
treatment we  indicate the number of days after transplant 
(rounded to the nearest imaging date) that stress conditions 
were induced or reduced. All treatments started with Hoagland 
solution after transplant (Day 0). The “control” treatment receives 
no stress induction and is provided Hoagland solution for the 
entire growth period.

Data Collection
We utilized the same imaging system as in the original model 
training dataset. The only modification made was within our 
software to allow for automated image capture according to a 
set interval. Images were taken every 8 h for the duration of 
the experiment, with each imaging event consisting of 108 
images. This resulted in a sequential representation of plant 
growth composed of 96 images per plant over the 32-day 
experiment (a total of 10, 368 sets of RGB and depth images). 
Imaging of the entire tray of 108 plants required 5 min to complete.

In addition to the collected image data, we measure per-plant 
width (defined as the largest horizontal extent of the plant) 
and height (distance from the top of the growth tray to the 
tallest portion of the plant) at three separate dates (day 12, 
16, and 23 from transplant). These non-destructive measurements 
provide us with some understanding of ground-truth plant 
growth, helping verify that our stress treatments truly induce 
the changes in plant growth that our model illustrates.

Model Detection of Stress Treatments
As the purpose of this work is to evaluate the suitability of 
a deep learning-based biomass estimation model as a crop 
monitoring technique, we evaluate how well the model predictions 
can capture changes in growth induced by controlled nutrient 
stresses applied heterogeneously over time and space. 
We  approach this by examining the per-treatment model 
predicted mass, as well as the derived metrics growth rate 
(GR) and relative growth rate (RGR; Equation 1). For each 
metric we  test for treatment effects by determining when the 
per-treatment means become statistically separable from each 
other over time. Based on our understanding of expected 
treatment effects, we  can utilize the results of our statistical 
tests to determine which growth metrics are the most responsive 
determinants of nutrient stress.

Our test consists of applying Tukey’s HSD test (Tukey, 1949) 
for multiple pairwise comparisons to determine whether the 
treatment means are distinguishable at p  ≤ 0.05 between any 
two treatments. We  calculate this for each growth trait across 
the entire time series. RGR is calculated for each plant within 
a given data collection event by first applying a backwards 
looking moving-average with a window size of 3, followed by 
a gradient based RGR calculation given by Equation 1.

           RGR GR
mt
t

=  with 
−−

=
∆

1t tm m
GR

t  (1)

where mt = moving average biomass at time t and ∆t = difference 
in time between t and t-1 (units are 8 h). Boundary cases in the 
moving average and RGR calculations are dropped.

TABLE 1 | Treatment schedules as begun on particular days (“Solution” = half strength Hoagland solution; “Water” = De-ionized distilled water).

Treatment n Day 0 Day 6 Day 11.7 Day 15.7 Day 15.7

A 27 Solution Water Solution Solution Solution
B 27 Solution Solution Water Water Solution
C 27 Solution Solution Water Solution Water
D (control) 27 Solution Solution Solution Solution Solution
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RGB-D Regression Network Architecture
Our choice of architecture is modeled from successful work 
in RGB-D object detection and classification utilizing 
feedforward neural networks (Eitel et  al., 2015; Ward et  al., 
2019). We  utilize a dual-branch architecture for each input 
data modality along with feature map fusion (Figure  2). In 
particular, Ophoff et  al. (2019) empirically demonstrated that 
a mid to late fusion architecture performs best for real-time 
object detection when utilizing YOLOv2 as the feature extraction 
network for each branch. We  utilize ResNet-50 for feature 
extraction and retain the final 1,000 × 1 fully connected layer 
from ImageNet’s 1,000 classes while removing the softmax 
activation function. The fully connected layer from each branch 
is then end to end concatenated into a feature vector of 2000 
× 1. This feature vector is passed to the regression head, 
which consists of one fully connected 1,000 × 1 layer and 
one 1 × 1 layer. Rectified linear unit functions are utilized 
as the activation function between all layers besides the final, 
which is simply a linear activation. In testing we  found no 
benefit to increased depth of the regression head. The resulting 
late fusion network can leverage transfer learning with ImageNet 
pretrained weights for fast convergence with our relatively 
small dataset (Figure  2).

Model Loss Function
We train the network to minimize a mean average percent 
error (MAPE) loss function (Equation 2). While known to 
produce biased under estimations in statistical prediction problems, 
in our testing an MAPE loss function resulted in more even 
model performance across the entire range of possible plant 
sizes than either L1 or L2 loss functions. We  speculate that 
this is due to the MAPE loss function driving model learning 
as a function of relative, rather than absolute, difference between 
the model predictions and ground truth. This phenomenon is 
especially pronounced in our dataset, which features a range 
of plant mass values in the order of 300x—from 0.1 g to more 
than 30 g. It should be  noted that we  favor relative error and 
consistent model performance across all plant sizes as it better 
pertains to our goal of utilizing plant mass estimation models 
to inform crop status across the entire growth cycle.
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where n = number of samples, Ai = i-th sample ground truth 
mass, and Fi = i-th predicted mass.

FIGURE 2 | The late fusion multimodal regression network. Depth and RGB data are processed by two separate ResNet50 branches. The output of each branch, 
a 1,000 × 1 layer, are concatenated and then used as input into the regression head, whose final layer produces the biomass prediction.
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Model Input Preprocessing
While our color data may be  utilized directly by the RGB 
branch of the model, the single channel depth data lacks 
the 3-channel dimension expected by the first layer of the 
pre-trained Resnet50 depth branch. Possible solutions of 
adapting non 3-channel input data for use with RGB pre-trained 
networks generally fall into two distinct pre-processing schemes: 
(1) Expanding the third dimension of the input data to 3 
channels or (2) replacing the first layer of the network with 
a new convolutional kernel that expects a different size channel 
dimension. The former solution allows for full retention of 
pre-trained weights, while the second requires a new, untrained 
weight initialization for the first convolutional layer. We  find 
that encoding of the single channel depth input to three 
channel RGB, as proposed by Eitel et  al. (2015), results in 
improved learning compared with other pre-processing schemes 
tested: (1) single channel depth combined with a new, randomly 
initialized first convolutional layer and (2) three times replicated 
depth channel input with pretrained first convolutional layer. 
We  follow a “jet” color scheme that maps the depth output 
of the RealSense camera to RGB color. The depth and 
corresponding color images are linearly normalized to [0, 
1] and maintain their precision via a 32-bit floating-point 
number. Normalization is achieved by first filtering out large 
depth data values corresponding to the non-plant scene, 
defined as any depth value larger than 380 mm (a number 
arrived at by taking into account the camera field of view 
and height from the growing tray). This reduces the range 
of depth values from [0, 12,000] (the maximum distance 
possible in the scene) to [0, 3,800] while maintaining all 
relevant scene information. Reducing the depth data range 
increases the contrast of the resulting RGB mapping. Finally, 
both color and depth images are center cropped to 480 by 
480 pixels.

Model Training Details
The model is implemented using the PyTorch framework 
within Python (Paszke et  al., 2019). Each branch of the 
RGBD network is initialized from modality-specific pre-trained 
weights. This is achieved by first training each branch 
separately as its own model to predict lettuce biomass. Those 
branches are initialized via ImageNet pre-trained weights 
available from the PyTorch’s model zoo and are trained 
with a regression head consisting of a single 1000×1 fully 
connected layer. The regression head is then removed and 
the remaining branch weights used to initialize the weights 
for final fine-tuning of the RGBD model. All relevant training 
parameters are kept consistent across the RGB, depth, and 
RGBD networks.

The training dataset is composed of 2,484 plants, 
corresponding to the remaining data from the validation and 
test sets as described in Section 2.4. (Figure  3A) The weights 
and biases of the network are learned using the AdamW 
optimizer with a weight decay of 0.001. The learning rate is 
set to 0.0001 and is decreased by 50 percent at epochs 20, 
40, 60, 80, and 100. We  use a mini batch size of 16 on a 
single Nvidia Titan RTX GPU. Training is terminated at 

convergence, defined as when no decrease in epoch validation 
loss is observed for 60 continuous epochs.

Training Data Augmentation
We apply regularization by utilizing several problem and data 
appropriate data augmentation schemes at train time; all of 
which were done using PyTorch Torchvision augmentation 
functions (Paszke et  al., 2019). The first is a random, image 
center-based rotation of both depth and color images from 0 
to 360 degrees. We speculate that this is an effective augmentation 
strategy that preserves the input data distribution due to the 
symmetrical nature of lettuce plant growth combined with the 
location of the plant apex at the image center. The second is 
a random manipulation of brightness, contrast, saturation, and 
hue by a factor of 0.5–1.5. The third is a grayscale transformation 
of the color image applied with a probability of 0.1. The second 
and third augmentation schemes are applied to the color input 
image only and serve to reduce model dependency on color. 
The color images in our dataset are not of uniform quality due 
to unaccounted for changes in scene brightness relative to camera 
exposure time. We  choose not to apply similar augmentation 
schemes to the depth data, as the mapped RGB channel distribution 
and intensity values are directly related to scene geometry as 
a result of their encoding from depth information.

Model Selection and Evaluation
For the purpose of model selection, we  created a validation 
set that better represents all possible plant conditions than 
the overall dataset (Figure  3B). This involved sampling from 
the overall dataset such that the validation set achieved a 
more, although not perfectly, uniform distribution across 
biomass values. We  selected eight trays (378 plants) that 
represent harvest times from 14 to 35 days since germination. 
From this distribution, we  subsample 100 individual data 
points via a weighted sampling scheme: biomass values are 
discretized into 35 bins corresponding to 1 g increments, and 
then are sampled by weighing each bin inversely to its count. 
Best performing models were selected based upon the lowest 
loss achieved on the validation dataset at model convergence.

Model evaluation criteria is an important factor for determining 
model performance in regression tasks. Common criterion for 
biomass estimates include MAPE (Equation 2) and root mean 
squared error (RMSE; Equation 3). However, for the problem 
of plant mass estimation, single value summary statistics give 
incomplete insight into model performance as they mask potential 
heteroscedasticity as well as imbalances in dataset distribution. 
The nature of our problem changes significantly over the range 
of biomass values and corresponding stage of development of 
the plants in the scene. Plant structure and size varies significantly 
over time, while larger neighboring plants introduce increasing 
occlusions. Additionally, the end user of such a model may 
have varying use cases and accuracy requirements.
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Where n = number of samples, Ai = i-th sample ground truth 
mass, and Fi = i-th predicted mass.

For these reasons, during model evaluation we  report RMSE 
and MAPE on a per-group basis for ranges of ground truth mass 
values. These groups were chosen based upon the relative levels 
of occlusion experienced by plants of those mass values on average. 
We  present the results of all models evaluated on the unseen 
test dataset. Our test set was composed of 864 plants sourced 
from a single growth cycle not present in either the training or 
validation sets (Figure 3C). Sourcing all test data from a separate 
growth cycle reduces the possibility of overfitting to variations 
in phenotypic expression within the different growth trials.

Model Ablation Study
The rationale for utilizing joint RGB and depth data modalities 
as predictor variables in a biomass estimation model centered on 
three facets: (1) the current state of the art detection and semantic 
segmentation models utilize RGB data, (2) many current biomass 
estimation methods utilize 3D representations, and (3) DCNNs 
can effectively learn jointly from each modality. However, we find 
it worthwhile to further investigate whether the combined data 
modalities truly result in superior predictive performance over 
either modality individually. We  conduct an ablation study which 
tests the ability of each data modality to predict plant biomass. 
In this study, we  present the predictive results of the RGB and 
depth only networks that also form the weights used during the 
initialization of the RGBD network. Each network mirrors the 
RGB-D regression network, with identical training parameters as 
well as input preprocessing, pretraining, and similar regression head.

Model Interpretation via Gradient Class 
Activation Mapping
Intuitively, the problem of individual plant biomass estimation 
requires an understanding of the extent and physical characteristics 
of the plant of interest in the scene, including an approximation 
of any occluded or out of scene portions. Due to the nature of 
our loss function, there is no strict enforcement of localization, 
leaving us unsure as to whether the model is in fact learning 
center plant mass, or simply some other mapping of common 
scene features of the dataset to biomass. This limits our trust in 
the model—and its broader applicability to problems involving 
individual plant mass estimation—by potentially reducing its 

generalizability outside of the dataset distribution. Due to our 
homogenous environmental conditions, our dataset generally features 
scenes of plants of similar size and age. An ability to generalize 
outside of this distribution becomes important when considering 
certain applications of the model, such as growth rate abnormality 
detection where estimation of unlike neighbors may become 
important. While one could answer the question of generalizability 
through extensive testing within a target distribution, we  forgo 
that additional expense and explore the question instead by 
investigating model decision making and predictive behavior. In 
particular, we utilize Gradient Class Activation Mapping (GradCAM; 
Selvaraju et  al., 2016) to explore model localization via the latent 
space as well as examine examples of the success and failure 
modes of the model. GradCAM is a generalization of the class 
activation map method (Zhou et al., 2015) that allows for visualization 
of important latent space features in pixel space. We apply GradCAM 
to the final block of the RGB Resnet50 branch of our RGBD 
network, ignoring the depth branch contribution in favor of 
simplicity in understanding model localization. We  report the 
visualizations of Guided GradCAM for the top five best and worst 
predictions over four different binned ranges of plant mass.

In addition to GradCAM, we  explore the model prediction 
success and failure modes by visually examining the best and 
worst predictions. We  hypothesize that a model that has truly 
learned center plant mass is likely to succeed and fail under 
different scene conditions than a model that has learned an 
unrelated mapping. For instance, the former might succeed 
when the center plant is less occluded, while the latter might 
succeed under scene conditions where plants are relatively 
similar (i.e., median of dataset distribution). Similarly, failure 
modes are likely to differ, such as when the center plant is 
under heavy occlusion, or when the center plant is of greatly 
different size than its neighbors (dataset distribution outlier). 
While this analysis is speculative in nature, we  found it 
worthwhile to publish some best and worst case examples that 
may help illustrate what mapping the model has learned.

RESULTS

Lettuce Image and Biomass Dataset
The resulting dataset contains comprehensive representations 
of the lettuce cultivar ‘Powerhouse’ over its entire life cycle, 

A B C

FIGURE 3 | (A) Training, (B) validation, and (C) test data distributions.
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FIGURE 5 | Examples of the color image data collected (at native resolution) and scene composition for plants at various ages and mass.

totaling 3,888 RGB images, 3,888 aligned depth images, and 
3,888 plant biomass values (Figure 4). Due to its size, a variety 
of phenotypic expressions are present, including variations in 
leaf color from green to dark purple. Some trays also exhibited 
stem elongation, likely a physical response to either shade 
condition or low air temperature.

There are some qualities of the dataset that are worth noting. 
Due to the exponential nature of plant growth, the dataset 
distribution is skewed towards smaller and younger plants 
(Figures 3, 4). Additionally, the plants were grown under well-
watered and adequate nutritional conditions, and therefore the 
dataset contains no representations of plants under water stress 
or severe nutritional stress. A variety of possible environmental 
parameters exist that could result in phenotypic responses that 
are not represented in the dataset.

Lettuce Image Data
In their native resolution of 848 by 480, the images contain 
up to 15 plant sites, although this is reduced to nine plant 
sites at a resized 480 by 480 resolution for model use (Figure 5). 
At larger plant sizes, the scene changes significantly, with far 

fewer plants represented. In fact, the center plant’s full extent 
is often not completely represented in the resized images 
(Figure  5).

The color data were well focused and generally of high 
quality, although issues related to the RealSense camera’s 
automatic exposure algorithm resulted in some over- (low 
contrast, larger average pixel values) and under- (low contrast, 
smaller average pixel values) exposed images. Depth images 
contained some missing pixels due to errors in stereo matching 
due to occlusion and specular effects. The extent of missing 
data was generally greater for larger plants (Figure  5). The 
depth data were not evaluated for absolute measurement accuracy, 
although visualizations of the depth data show good 
representation of the scene despite missing data.

RGBD Model
The model shows strong predictive performance over the entire 
854 plant test set, achieving an RMSE of 1.13 g, a MAPE of 
7.3%, and a Pearson’s correlation coefficient of 0.989 (Figure 6A). 
Some heteroscedasticity can be  observed, and the greatest 
average relative errors occurred on the smallest and largest of 

FIGURE 4 | Biomass accumulation over time for the (A) training and validation and (B) test datasets measured destructively. Each data point represents one or 
more samples harvested at a certain age since germination. Points represent the median value while vertical extent bars indicate 25–75% quantiles.
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plant masses, in addition to some variability in predictive power 
between that ranges (Figure  7).

Model Data Modality Comparison
The RGBD model outperforms both RGB and depth only 
models in MAPE while the RGB model outperforms in RMSE 
(Figures 6B,C). Among the smallest plants, RGBD significantly 
outperforms each modality separately while the RGB and depth 
models achieve very similar relative and absolute error (Figure 7). 
As the plants increase in mass, the RGBD model generally 
outperforms the RGB and depth models while RGB outperforms 

depth. However, for plants between 10–15 g and 15–25 g, RGB 
shows comparable performance and even outperforms the 
combined RGBD modality in both MAPE and RMSE metrics.

Model Prediction Performance 
Examination
Among the best predictions, the model shows strong localization 
of the center plant (Figure  8). This tends to hold true across 
plant sizes, with important activations indicated along occlusion 
boundaries for larger plants. We  notice a similar outcome 
among the worst predictions, although some cases show 
activations that are not centered on the center plant or appear 
to contain additional activations of neighboring plants that 
are not part of an occlusion boundary.

Examining the best and worst case model predictions reveals 
a nuanced relationship between prediction error and scene 
composition. We  notice that in comparison to the high error 
predictions, low error predictions generally involve less occluded 
scenes. However, some examples of high error scenes show 
similar levels of occlusion to their low error counterparts, 
especially among examples of bins [2, 5] (Figure  8). In this 
bin, the worst performing cases do not appear contain stronger 
occlusion, but rather the center plant is significantly smaller 
than its neighbors.

Model Predicted Biomass Response to 
Stress Treatments
The control (Treatment D) exhibits an expected sigmoidal 
biomass accumulation pattern approaching an asymptote after 
day 30 (Figure 9). All other treatments resulted in less biomass 
accumulation over the experimental period compared with 
the control.

Starting after the stress induction of treatment A on day 
6, the mean biomass accumulation decreases. The mean 
separation (as calculated via Tukey HSD test) between treatment 
A and the other treatments occurs on day 9.3, approximately 
3.3 days after the stress induction. No mean separation occurs 
before this day. At day 11.7, treatment A begins to receive 
nutrient solution, removing the nutrient stress and increasing 
biomass accumulation until day 24.3. Here, a malfunction 

A B C

FIGURE 6 | Predicted vs. observed mass values for the test set for each model. (A) RGBD, (B) RGB, and (C) Depth.

FIGURE 7 | Binned evaluation metrics for the test set.
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A E

B F

C G

D H

FIGURE 8 | Sample best (A–D) and worst (E–H) predictions from the test set along with GradCam output for varying mass ranges. Each represents a mass range. 
Starting from the top are [0, 2] (A,E), [2, 5] (B,F), [5, 10] (C,G), and [10, 25] (D,H).

of the irrigation system caused extensive wilting in some of 
the individuals within the treatment. This was remediated 
on day 26, and recovery can be  seen at that time in the 
wilted plants (Supplementary Figure S1), as well is in the 
biomass predictions (Figure  9). After this recovery, the 
confidence interval associated with treatment A mean biomass 
estimation increases dramatically.

The response of biomass accumulation to the nutrient stress 
applied simultaneously to treatments B and C on day 11.7 is 
evident by their decrease in biomass accumulation compared 
with treatment D (control). There is a delay in the separation 
of the means between treatments C and D of 2.3 days after 
stress induction (day 14), and of 3 days between treatments 
B and D (day 14.7). No mean separation between these 
treatments occurs before day 14.

The response to the nutrient stress reduction applied to 
treatment C on day 15.7 is evident in the increase of biomass 
accumulation of treatment C compared with treatment  
B (Figure  9). Treatment C’s mean biomass becomes 
significantly larger than treatment B’s on day 20.7 (5 days 
after stress reduction).

The final scheduled stress event occurs on day 21, when 
treatment C begins to receive water and treatment B receives 
Hoagland solution. This results in the treatment means becoming 

inseparable at day 26, where it remains as such for the remaining 
duration of the trial.

Model Predicted Growth Rate and Relative 
Growth Rate as Stress Response 
Indicators
In contrast with the model predicted biomass accumulation, 
the derived growth metrics GR and RGR exhibit significantly 
more daily fluctuation (Figures 10, 11). A result of this variation 
is the potential for mean separation between treatments that 
are experiencing identical growing conditions. Because of this, 
a simple difference in treatment mean GR or RGR is not a 
suitable metric for stress detection. Instead, we  propose a 
criterion of two consecutive differences in GR or RGR means 
to indicate a significant change in growth dynamics between 
treatments. Stress response detection based on this criterion 
for GR is indicated at day 8.7 for treatment A compared with 
treatments B, C, and D; day 13.7 for treatments B and C 
compared with treatment D (control), and day 18.3 for treatment 
B compared with treatment C. Stress response detection for 
RGR is indicated at day 8.7 for treatment A compared with 
treatments B, C, and D; day 13.3 for treatments B and C 
compared with treatment D (control), and day 17.7 for treatment 
B compared with treatment C (Table  2).
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DISCUSSION

In this study we  present a powerful technique for accurate 
non-destructive plant biomass prediction in visually occluded 
environments. While direct performance comparisons with prior 
studies are difficult due to a general lack of benchmark datasets 
for plant biomass estimation, we believe that our method represents 
state-of-the-art for the proximal non-destructive individual biomass 
estimation task. Moreover, we  show that deep learning models 
can learn individual plant traits under heavy occlusion without 
explicit localizing annotations. The ability for deep learning models 
to implicitly learn occlusion lowers data labelling costs and allows 
for the potential to solve complicated tasks in agriculture that 
are challenging to solve via hand engineered computer vision 
algorithms. As data quantity can be  large in agricultural systems, 
our method’s reliance on relatively inexpensive supervision in 
the form of biomass measurements allows for scalability that 
likely will only improve prediction accuracy. Finally, we  have 
shown that it is possible to achieve high predictive performance 
on plant biomass estimation solely from color data acquired via 
readily available and low cost RGB sensors.

Comparison With Prior Non-destructive 
Lettuce Biomass Estimation Efforts
The results presented here demonstrate a substantial advancement 
in our capacity to non-destructively estimate individual plant 

biomass under occluded growth conditions. In comparison with 
the results obtained by Mortensen et  al. (2018), our model 
demonstrates substantially lower relative error at 7.3% compared 
to 40%. While the cropping system is not identical between 
this study and that of Mortensen et  al. (2018), our work 
maintains lower relative error even under much greater occlusion 
and planting density. It should be noted that while the author’s 
field-based data acquisition system allowed for good control 
of lighting conditions, the scene background conditions are 
busier than our indoor acquisition system due to irregular 
soil and weed presence. Similarly, to our work, the authors’ 
method relies on images taken above the plant to be estimated. 
However, their method additionally requires the xy-coordinates 
of the stem emergence point to be known, as well as segmentation 
masks for validation of the underlying segmentation algorithm 
used to generate the fresh weight predictors. While our method 
relies on a far larger dataset, each data annotation is less 
expensive as we  require only a single measured fresh weight 
value per plant.

In another study, Zhang et  al. (2020) used a convolutional 
neural network approach to single plant biomass estimation 
but did so only on isolated plants lacking occlusion. While 
an RGBD camera was also used in their work, depth data 
was used only for an initial preprocessing segmentation step 
and not as model input. Despite a lack of occlusion from 
neighboring plants, their segmented RGB-only model appears 
to underperform both our RGB and RGBD models through 

FIGURE 9 | Mean per treatment predicted biomass with 95% confidence interval. Dark vertical lines and roman numerals indicate when treatments were applied. 
(I) Treatment A begins to receive pure water, (II) Treatment A begins to receive Hoagland solution and Treatments B and C begin to receive water, (III) Treatment C 
begins to receive Hoagland solution, and (IV) Treatment B begins to receive Hoagland solution and Treatment C begins to receive water. An asterisk marks where 
wilting in Treatment A was visually noticed in the image data (day 24.3).
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visual comparison of the predicted versus observed scatter 
plots. However, a quantitative comparison between our studies 
is difficult to make due to missing information on the normalizing 
unit in the normalized RMSE performance metric used by 
the authors. If we  do indeed achieve higher performance, 
we  speculate that this is due to the use of a larger training 
dataset along with a DCNN regression architecture that leverages 
a pre-trained ResNet backbone.

Learned Model Features and 
Generalizability
Perhaps one of the more powerful aspects of our modeling approach 
is the ability to implicitly learn to localize the center plant during 
training without explicit annotation. This localization is evident 
in the visualizations of feature map activations provided by GradCAM 
in both best and worst case prediction examples (Figure 8). Similar 
visualizations provided by GradCAM of the depth modality also 
show similar trends between the best and worst case predictions, 
including strong localization. However, it is evident that model 
starts to fail when the center plant is of lesser size than its 
neighbors. This is likely a result of two conditions: increased 
occlusion under these conditions and overfitting to the training 
dataset. In particular, the latter condition is due to the uniform 
nature of the cultivation practices used to generate the dataset, 
which resulted in scenes containing neighboring plants that generally 
(but not always) are of similar size and mass. Therefore, our 

model has likely learned to estimate center plant mass while also 
overfitting to some degree to common scene features of the training 
data distribution. Our plant monitoring experiment further supports 
this, as those scenes contained neighboring plants with significant 
variation in size and mass. The model’s ability to capture, in 
aggregate, expected changes in growth under such conditions 
suggests that it has learned to predict center plant mass. The 
model could be  made more robust to variable sized plants by 
training with a more heterogeneous dataset; a hypothesis which 
warrants further investigation in future studies.

Another notable phenomenon is the relative lack of contribution 
of the depth data modality to model predictive performance. 
It is possible that our use of depth data is suboptimal for model 
learning. For instance, the pre-trained weights are tuned for 
feature extraction of color, and not depth, images. To allow for 
the use of pre-trained weights we  map the depth data to a 
3-channel color image, allowing the model to directly use its 
pre-trained feature extraction capabilities on the depth data. 
This mapping scheme imbues color data with a direct relationship 
to absolute distance from the sensor (e.g., red is farthest away 
while blue closest). While this does allow the model to learn 
biomass estimation to some extent, it is unknown whether it 
has maintained a strong understanding of absolute scene size 
and shape after this mapping due to the pre-training of the 
initial convolutional layer. Additionally, as our image capture 
height is fixed, the real world area represented by each pixel 
is essentially constant, allowing relative plant size to be estimated 

FIGURE 10 | Mean per treatment predicted growth rate with 95% confidence interval. Y axis units are g (8 h)−1. Dark vertical lines and roman numerals indicate 
when treatments were applied. (I) Treatment A begins to receive pure water, (II) Treatment A begins to receive Hoagland solution and Treatments B and C begin to 
receive water, (III) Treatment C begins to receive Hoagland solution, and (IV) Treatment B begins to receive Hoagland solution and Treatment C begins to receive 
water. An asterisk marks where wilting in Treatment A was visually noticed in the image data (day 24.3).
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in the scene via RGB only. It may be  the case that had image 
acquisition height been variable, depth data may have had an 
increased importance and outperformed color as the relative 
size of plants in each scene could no longer be  directly tied 
to their absolute size in world space. We suspect that a modified 
architecture that can more directly utilize depth data would 
outperform, such as models that utilize 3D representations of 
the scene such as meshes or point clouds (Qi et  al., 2017).

Model Predictions for Plant Growth 
Monitoring
We have shown that our model is able to predict individual 
plant biomass with enough accuracy to capture the effects of 

nutrient stress on biomass accumulation within 2 days, even 
when those effects are applied with spatial heterogeneity. This 
illustrates model robustness to heterogenous plant size in the 
scene despite having been trained on more homogenous 
conditions. We  further validate the response of the model by 
showing through hand collected measurement that our treatments 
had real effect on plant size, and by extension, in biomass 
accumulation (Supplementary Figure S2). However, it is difficult 
to quantify the true accuracy of the biomass, GR, and RGR 
calculations, as we  have no ground truth for each treatment. 
Further, there are sources of variation in the response of each 
plant to the treatments, such as genotypic and block effects, 
which are not easily separable from model prediction error 
when examining the data in aggregate. Potential sources of 
block effects in include variations in lighting intensity, as well 
cross treatment contamination from plant roots which extend 
into the common drainage channels of the hydroponic system. 
As such, we  do not have an exact understanding of the how 
our model’s predicted stress induction response time differs 
from the true stress induction response time.

While we  do not know the true model biomass prediction 
error for this experiment, we  do know that larger prediction 
errors would likely lead to a longer time before significant 
treatment effects can be  determined by the Tukey HSD test. 
In a soilless top-fed hydroponic system such as ours, we would 
expect a significant change in fertigation solution (such as our 
nutrient stress treatments) to result in a close to immediate 

FIGURE 11 | Mean per treatment predicted relative growth rate with 95% confidence interval. Y axis units are in (8 h)−1. Dark vertical lines and roman numerals 
indicate when treatments were applied. (I) Treatment A begins to receive pure water, (II) Treatment A begins to receive Hoagland solution and Treatments B and C 
begin to receive water, (III) Treatment C begins to receive Hoagland solution, and (IV) Treatment B begins to receive Hoagland solution and Treatment C begins to 
receive water. An asterisk marks where wilting in Treatment A was visually noticed in the image data (day 24.3).

TABLE 2 | A summary of time until statistically significant treatment mean metric 
differences are observed for each stress event.

Metric
Stress event response time

Day 6 Day 11.7 Day 15.7

Biomass 3.3 d 3 d 5 d
GR 2.7 d 2 d 2.3 d
RGR 2.7 d 1.7 d 1.7 d

The stress events occurred on days 6, 11.7, and 15.7, and the times indicated for each 
metric are the number of days from each event until the time of data capture indicating 
treatment separation as provided by Tukey HSD test.
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change to RGR. This is due to both the lack of cation exchange 
capacity of the stone wool medium and the ratio of medium 
volume to irrigation volume, likely resulting in a rapid change 
in concentration of nutrient ions in the root zone (Silber, 
2008). Without access to nutrient ions, the plant’s biomass 
accumulation rate slows over time as it must rely only upon 
existing nutrient stores in its tissues to support cell growth 
and function. Our model required between 1.7 and 2.7 days 
to determine a significant treatment effect via RGR, which 
we  believe is consistent with expected RGR of typical lettuce 
cultivars, the expected effect of complete nutrient deprivation 
on RGR, and our originally published model test error of 
7.3% (Holsteijn, 1980).

The predicted RGR curves generally follow the expected 
shape as previously seen in the literature (Holsteijn, 1980). 
RGR decreases with time for all treatments as well as the 
control. During stress induction the RGR decreases, and then 
increases during stress reduction (Figure  11). An interesting 
phenomenon can be  seen after stress reduction: a treatment’s 
RGR may rejoin that of the control provided no additional 
stress is introduced or sustained (Figure  11). The variance of 
the predictions within each treatment increases with time, as 
evidenced by larger mean confidence intervals. This is consistent 
with the expected model error as determined during our model 
validation. It should be noted that the ability to detect significant 
treatment effects was maintained beyond day 17, at which 
point plants of up to 15 g existed and contained significant 
occlusion. In addition to predicting RGR response between 
the comparable treatments via analysis of variance, by examining 
the graphs of RGR, GR, and biomass over time we  can see 
that the effects of stress reduction (Treatment A on day 12) 
and stress induction (Treatment C on day 21) that occurred 
without a directly comparable treatment (Figures  9–11). The 
effect of Treatment C’s day 21 stress induction can be  seen 
through day 32, revealing that our model maintains general 
accuracy even when neighboring plants (in particular, Treatment 
D) are large (Figure  9).

An unintended irrigation malfunction caused some 
individuals (approximately 15) within treatment A to 
experience water stress starting at approximately day 24. 
While we  do not know exactly when water stress began for 
those individuals, it becomes visually noticeable in the image 
data at day 24.7 (Supplementary Figure S1). A reduction 
in predicted biomass is observed during this water stress 
period (Figure 9). That our model indicates a sudden change 
in biomass may practically be  quite valuable and supports 
its sensitivity to changes in growth rate. While reduced 
predicted biomass is consistent with reduced plant water 
content under drought conditions, we  exercise caution in 
concluding that our model can accurately extrapolate to 
individuals that are experiencing less than well-watered 
conditions, as such conditions are not represented in either 
the training or test datasets used to create and evaluate the 
model. This does leave open the possibility, however, that 
our model can serve as an indicator of crop response to 
environmental parameters that result in morphological change 
beyond biomass accumulation. Such sensitivity also allows 

for the future possibility of fine-tuning the model with data 
that includes plants experiencing wilting or other stress 
conditions, furthering the use of the model as a non-destructive 
plant stress detector.

CONCLUSION

Our work introduces a novel technique that applies proximal 
vision based plant trait estimation models to the problem of 
stress detection and growth monitoring with high spatial and 
temporal resolution over the entire lettuce cropping cycle. By 
utilizing highly accurate biomass estimation models, short-term 
plant-environment interactions within cropping systems can 
be  better monitored and quantified. Our brief exploration of 
the response in biomass accumulation to nutrient stress is far 
from exhaustive. Improvements could result from 
implementations featuring models with lower prediction error 
and more frequent data acquisition. To further determine the 
utility and ability of such sensing methods at scale, an 
implementation into a commercial facility should be conducted. 
This would help answer questions such as which stresses are 
best predicted by short term changes in biomass accumulation, 
on what basis do we  make comparison of individuals for the 
purpose of stress or abnormality detection, and where do these 
methods fail in real world settings.
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