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Technology advancement has contributed significantly to productivity improvement in
the agricultural sector. However, field operation and farm resource utilization remain a
challenge. For major row crops, designing an optimal crop planting strategy is crucial
since the planting dates are contingent upon weather conditions and storage capacity.
This manuscript proposes a two-stage decision support system to optimize planting
decisions, considering weather uncertainties and resource constraints. The first stage
involves creating a weather prediction model for Growing Degree Units (GDUS). In the
second stage, the GDUs prediction from the first stage is incorporated to formulate
an optimization model for the planting schedule. The efficacy of the proposed model
is demonstrated through a case study based on Syngenta Crop Challenge (2021). It
has been shown that the 1D-CNN model outperforms other prediction models with
an RRMSE of 7 to 8% for two different locations. The decision-making model in
the second stage provides an optimal planting schedule such that weekly harvested
quantities will be evenly allocated utilizing a minimum number of harvesting weeks. We
analyzed the model performance for two scenarios: fixed and flexible storage capacity
at multiple geographic locations. Results suggest that the proposed model can provide
an optimized planting schedule considering planting window and storage capacity. The
model has also demonstrated its robustness under multiple scenarios.

Keywords: mixed-integer linear programming, time series data, 1D-convolutional neural networks, TBATS,
storage capacity, planting window

INTRODUCTION

With the current world population growth rate, it is anticipated that by the end of 2050, the
agriculture system needs to support 10 billion people, and 3 billion increase from the current
population (Ranganathan et al, 2018). To address this challenge, innovations in agricultural
production are necessary to feed the increasing population. It should be noted that significant
advancement has been made in crop breeding to improve the yields. However, the inefficiency
in crop logistic management during harvesting and storage can constitute 30-50% of produced
food wasted yearly, which is around 2 billion metric tons (Fox, 2013). Motivated by this challenge,
we designed a planning tool to improve the management during crop planting, harvesting, and
storage. The proposed tool provides a scheduling model for crop planting, providing consistent
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weekly harvest quantity. The algorithm designed for the crop
planting ensures that an optimum planting schedule is designed
that will have even weekly harvested quantities within storage
capacity and the planting dates are within preferred planting
timeframe. It should be noted that it is much more convenient
to map out the storage of evenly spread harvested quantities
compared to erratic quantities; therefore, this tool is expected
to contribute to the decision-making of breeding companies
and farmers. On a broader view, the planning tool will mitigate
the operational and productivity challenges, subsequently reduce
yield loss from the harvesting and storage phases.

Lauer et al. (1999) claimed that crop breeds or populations
tend to have higher yields when planted within a specific time
window, and ignoring the planting window will reduce yield
(Swanson and Wilhelm, 1996; Darby and Lauer, 2002; Anapalli
et al., 2005; Williams, 2006; van Roekel and Coulter, 2011).
In addition, interactions between the planting date and soil
temperature (Bollero et al., 1996) and interactions between the
planting date and fertilizer application (Hankinson et al., 2015;
Kaiser et al., 2016) have a significant impact on crop yield
irrespective of geographical location (Beiragi, 2011; Tsimba et al.,
2013). Therefore, it is of paramount importance to stay in the
preferred planting window. Our proposed scheduling model for
crop planting ensures that planting is performed within the
recommended planting window.

Crop production and operation can be divided into multiple
stages: field preparation, planting, fertilizer application, growing,
harvesting, and storage (Polgar et al,, 2020). To achieve an
optimal planting schedule that will bring about a consistent
weekly harvesting quantity, it is vital to determine these stages
correctly. Plant development is contingent upon specific heat
requirements, soil moisture content, and geographical location
(Sacks et al., 2010). For a particular geographic area, these
growth stages can be measured by accessing growing degree units
(GDUs) or days (GDDs), which is a numeric value calculated
based on daily heat value (Bonhomme, 2000; Miller et al., 2001).
Briefly, GDUs are measured in terms of Celsius or Fahrenheit for
each day, whereas GDD will be zero if the average temperature
of a day is less than a base temperature else it will be one. Even
though the calculations for GDUs and GDDs are different they
provide similar weather information. After planting, crops grow
and become ready for harvesting once the total heat absorption
reaches a specific value. As these heat requirements are measured
in terms of GDUs or GDDs, plants are considered ready for
harvesting after reaching required GDUs or GDDs. Two methods
have been designed and adapted to calculate GDUs or GDDs,
temperature averaging and the Baskerville-Emin method (Battel,
2021). Since GDUs give an estimation of the development stage,
an accurate prediction of the GDUs is essential to identifying
when plants will be ready for harvesting. When the accumulated
GDUs reach the required threshold, the plants are considered to
be ready for harvesting, and the week is defined as harvesting
week. Harvesting with significant deviation from crop maturity
would impact crop yield. Subaedah et al. (2021) suggested that
crops harvested before reaching required GDUs will reduce
crop yield. Similarly, Thomison et al. (2011) found in their
research that delaying harvesting beyond crop maturity will

reduce the yield. By accurately predicting GDUs, crop maturity
dates can be evaluated more accurately. Therefore, an accurate
GDUs prediction model becomes essential to predicting the
harvesting week.

Various techniques have been studied to predict GDUs, such
as the linear regression model (Neild and Seeley, 1977), the non-
linear model (Zhou and Wang, 2018). Wypych et al. (2017)
found that GDUs are sensitive to climate change. However, most
existing methods did not consider the impact of climate change
in GDUs prediction. To include the effect of climate change in
GDUs, we predicted GDUs through time series analysis of daily
historical data. For time series analysis and prediction, TBATS,
which stands for Trigonometric Exponential Smoothing with
Box-Cox transformation, ARMA errors, Trend, and Seasonal
decomposition, has been widely adopted in research (Shin and
Yoon, 2016; Cherrie et al., 2018; Naim et al., 2018; Gos et al., 2020;
Gongalves et al.,, 2021). In our study, TBATS has been chosen
as a benchmark prediction model. In addition, convolutional
neural networks (CNN) have been applied to predict time series
data (Oh et al., 2018). It should be noted that designing the 1D-
CNN architecture with appropriate kernel size, the number of
layers and filter size by parameter tuning plays a vital role in
prediction (Tang et al., 2020). Therefore, we proposed a 1D-CNN
with optimized parameters to improve the prediction accuracy.
Inspired by the performance of TBATS and 1D-CNN in time
series analysis, we applied them for the prediction of GDUs.

In the agricultural sector, various models are proposed to
determine optimal yield quantity (Nafziger, 1994; De Bruin
and Pedersen, 2008; Horbe et al., 2013; Waongo et al., 2015).
However, limited research focusing on planting schedules has
been identified in the existing body of literature. Swaminathan
and Zhang (2021) proposed an optimal planting schedule to
improve crop yield considering planting capacity, soil water
content, etc. A randomized blocked design experiment was
conducted to determine the impact of different planting and
harvesting periods on the growth of the Acorus calamus (Gyalpo
Bhutia and Bhutia, 2018). Linear optimization models have been
used to develop optimal planting schedules for different crops
(Indriyanti etal., 2019; Wang et al., 2020). The utilization of linear
optimization models to build planting models has motivated us to
further exploration of this field.

Customized crop models are required depending upon the
constraints as one model may not address all requirements
(Boote et al., 1996). To the best of our knowledge, little research
has considered both planting window and storage capacity
while proposing an optimal planting schedule. This research
focuses on this gap. A planting schedule that can lead to
consistent weekly harvesting quantities will aid in reducing
food wastage in the harvesting phase. Thus, we propose a
scheduling model for planting, considering both the planting
window and storage capacity while providing optimal planting
dates. The focal research question in this study is to design an
optimal planting schedule that will lead to consistent weekly
harvesting quantity within storage capacity in the harvesting
phase. This problem statement is based on the INFORMS
Syngenta Crop Challenge 2021 (Syngenta Crop Challenge
(2021) - the challenge). We developed a mixed-integer linear
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programming (MILP) crop planting model; the objective is to
ensure a consistent weekly harvest quantity with minimum
harvesting weeks while maintaining the planting window and
storage capacity. Furthermore, a user interface combined with
the proposed model will help users dynamically update planting
strategies (Johnson, 2013; Athirah et al., 2020).

The rest of the manuscript is organized as follows. In section
“Materials and Methods,” the proposed methods are discussed
in detail, along with the modeling framework and solution
algorithm. In section “Case Study,” a case study based on a real-
world application has been presented to explain and illustrate the
proposed prediction and decision-making framework. Finally,
the research findings and conclusions based on this study are
discussed in section “Conclusion.”

MATERIALS AND METHODS

The proposed plant scheduling model recommends an optimal
planting schedule considering the storage capacity after
harvesting. This model comprises two vital stages, the first
stage focuses on determining the plant maturity date for
harvesting, and the second stage delivers the planting schedule.
Since GDUs provide an estimate of plant growth, in the first
stage GDUs are predicted to specify harvesting date. These
obtained harvesting dates are one of the inputs to the subsequent
stage to attain the planting schedule. In the second stage,
storage capacity is considered while providing the planting
schedule. Particularly, the research problem statement along with
modeling assumptions are based on the INFORMS Syngenta
Crop Challenge 2021 specifications (Syngenta Crop Challenge,
2021 - the challenge).

The entire process of the proposed model is presented by
a schematic diagram in Figure 1, where the two model stages
are in green boxes, and the blue dotted lines show the input to
those stages from field data. The GDUs prediction model has
two inputs: location or site ID and historical GDUs. In addition
to the harvest quantity of crop breeds and storage capacity, the
predicted GDUS are input to the optimization model. The final
output of the process is the harvesting week for each population,
along with the weekly harvesting quantity. The planting date for
each population is calculated from the harvesting week through a
transformation function, which will provide the optimal planting
schedule for a combination of a specific location and a set of crop
breeds or populations.

Growing Degree Units Prediction

Accurate weather and climate prediction are essential in
farm management to reduce risk and make optimal decisions
(Templeton et al, 2014). In this analysis, we have performed
GDUs predictions, incorporating historical weather data, to make
decisions about harvesting week. Prediction of GDUs involves
a time series analysis of daily data to estimate GDUs for the
upcoming season. Depending on crop type, the season length
may vary, which requires the prediction model to be capable of
predicting GDUs for an extended period with better accuracy.
The time-series data may have multiple seasonality within a cycle,
which poses additional challenges for the prediction model. For

the time series analysis, one well-established method, TBATS,
is compared with a comparatively new method, 1D-CNN. For
demonstration purposes, both approaches are applied in two
locations, named site 0 and site 1. Comparing the results of both
models, we selected the 1D-CNN model with higher prediction
accuracy. The efficacy of 1D-CNN suggests that it can be applied
to other geographic locations for GDUs prediction. In the
following sections, a brief description of the TBATS model and
1D-CNN model is provided.

TBATS

The governing equations for the TBATS model are given by Eqs
a—i, which was proposed by de Livera et al. (2011). A detailed
explanation for the model parameters can be found in the
manuscript. This model requires initial parameters or seeds to
start the prediction, where the number of these parameters
depends on the number of seasonality denoted by k. The
modeling parameters are Iy, by, {s(l), sé, .. sg“ 1 {s(l), sg, .. 56”2},
{s(l), sﬁ, .. .sgn"}. The smoothing parameters include o, B, y1, V2
.+ Yk and o is the parameter for Box-Cox transformation.
The trigonometric components, given by Eqs h, i, address the
stochastic level of seasonal components. The parameter, ¢, is a
Gaussian error factor.

©_]
«o)_[”w,w#o (@)
Yoo = 1 _
ogyy, w = 0
T -
A = hoy + By + D sP + dy (b)
i=1
Iy = Ly + 0bi—y + ad; (©
by = 1—=0)b + Pbe—y + Pd; (d)
sgi) = sgmi + vid; (e)
p q
di= D> widii + D 0ieri + & ()
i=1 i=1
s = > s (®
j=1
s}’? = s}’iz_lcos )\]@ + sj,(tillsin )\]@ + ygi)dt (h)
sj,(ti) = —s](’ifflsin)\}i) + sj,(tillcos )\;i) + ygi)dt @)

g, ~ NID(0, 6°)

Implementing the TBATS model for the prediction of GDUs
for two different locations, the results are shown in Figures 2, 3,
where the blue lines are the observed GDUs, and the red lines
are the predicted values. All the parameters used for TBATS
model are the default parameters specified by TBATS package
in Python except the cycle length. While predicting GDUs, the
length of a single season, k is considered one year or 365.25
days to address the leap year. It is observed that for site 0, in
Figure 2, GDUs vary in the range of 4-16°C with comparatively
less variance than site 1.
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FIGURE 1 | Schematic diagram of the planning process.
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In Figure 3, for site 1, GDUs have a similar range to site 0 but
with a higher variance. Another observation for site 1 is, GDUs
are mainly above 10°C, whereas, for site 0, mostly GDUs are
below 10°C. Because, variance in site 1, it has a higher RRMSE
than for site 0. Therefore, one observation is TBATS model has
better accuracy for data with limited variance.

One-Dimensional Convolutional Neural Networks
The second method to predict GDUs is based on neural
networks. For time-series data, among several neural models,

two types of neural network models have been widely adopted
in the literature. One is recurrent neural networks (RNN), and
the other is one-dimensional convolutional neural networks
(ID-CNN). 1D-CNN has an advantage over RNN since it
requires fewer parameters to tune (Zhao et al., 2020). Therefore,
we adopted 1D-CNN for prediction in this study. The first
step is to preprocess the time-series data to a data frame
with features and response variables. Appropriate network
architecture is then selected after preprocessing the data to
a required form.
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One of the challenges in utilizing CNN to predict time series data
is to create features and response variables. The first step is to
specify the number of days to be considered for prediction, which
will be the number of features. The second step is to define the
length of the prediction period, and this will give the number
of response variables the model needs to predict. The 1D-CNN
model developed for this analysis considers GDUs of the past 2
years to predict GDUs of the next 1.5 years. Meaning that on the
nth day, using GDUs of n-2*365 days, GDUs for the next 547
days or 1.5 years from day n will be predicted. This process is
illustrated in Figure 4, the first observation is the first 2*365 days
as features and the next 547 days are the response variables. The
second observation is created by shifting the 2*365 days window
by one day and selecting the next 547 days as response variables.
This process is repeated until all data have been preprocessed. The
training set includes 2011 to the first half of 2019, and the test set

is from the second half of 2019 to 2020. The model is trained on
the dataset of the first 8.5 years. Once the model is trained, it can
predict GDUs for the next 1.5 years or 547 days, given the GDUs
of the past 2 years. This process can be utilized for any season
length by modifying the length of the prediction period, meaning
increasing or decreasing the number of response variables.

Model Architecture

The 1D-CNN architecture used for the prediction model is
presented in Figure 5. After analysis of several architectures, a
four-layer 1D-CNN is developed for the prediction model. The
first layer is the input layer, which is followed by a convolution
layer. After the convolutional layer, a max-pooling layer is added
to reduce the size, and then a fully connected layer is added
with 100 nodes. The last layer is the output layer, which gives
predicted GDUs for the next 547 days. The number of nodes
in the output layer can be modified based on the season length
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FIGURE 5 | Proposed 1D CNN architecture.

TABLE 1 | 1D-CNN hyper-parameters.

Input layer Shape : (1, 365*2, 1)
Convolution layer Filters: 128
Kernel size: 2

Activation function: Relu
Pool size = 2

No. of nodes = 100
Activation function: Relu

No. of nodes = 547

Max-pooling
Fully connected layer

QOutput layer

of the crop. A detailed description of the parameters used for
the model is shown in Table 1. These parameters were selected
based on trial and error and the best performing model was
selected for prediction.

The predicted results using 1D-CNN are included in
Figures 6, 7 for site 0 and site 1, respectively. The 1D-CNN model
is capable of making a good balance between bias and variance.
Comparing to the TBATS model, the 1D-CNN model can better
address the variance in data. In contrast, TBATS tends to smooth
the prediction because of the Box-cox transformation and the
trigonometric components.

A comparative analysis between TBATS and 1D- CNN is given
in Table 2. It is evident that the 1D-CNN model outperforms
benchmark TBATS for both locations in terms of RRMSE. Both in
site 0 and site 1, 1D-CNN has RRMSEs of 7 and 8%, respectively,
which are less than the RRMSEs of TBATS models. TBATS model
has some limitations for long-term prediction, which may cause
TBATS to have comparatively poor performance for predicting
GDUs for the next 547 days. As a result, the 1D-CNN model has
been selected to predict GDUs, and the outputs are utilized in the
following steps.

Optimization Model for Planting

The second stage is to formulate an optimization model for
the planting decisions under varying weather conditions and
locations for multiple population types. In this stage, the
predicted GDUs from stage one is given as the input to the

planting model for respective locations. The performance of the
planting model is susceptible to the predicted GDUs. Therefore,
it is essential to ensure the accuracy of the predicted GDUs.
The planting model is developed based upon the following
assumptions:

1. The harvested quantities for each crop breeds or
population for respective scenarios are considered known.

2. Different scenarios and locations are considered mutually
exclusive, which means storage capacity cannot be fixed
and flexible simultaneously.

3. One population can only be harvested in 1 week.

4. A maximum value for the days required for harvesting is
set, depending on the crop types.

The model formulation is for two different cases; in case-
1, fixed-storage capacity is considered, only optimal planting
date is to be identified. Whereas, in the second case, no fixed
storage capacity is considered. For case-2, both optimal storage
capacity and planting date are determined. Case-2 is applicable
when storage capacity is flexible and has to be determined before
the planting phase.

The model parameters used to build optimization model are
listed as follows with a brief description of each model parameter.

Parameters:

Pip = Earliest planting date of population type i
Pip = Latest planting date of population type i
d, if populationi can be planted on day d, Vd € [ Pig, Pi |
Py =
0, else
C; = Given site capacity for site s, s € {0, 1}
Q;° = Harvest quantity of population type i for scenario ¢, ¢ € {1,2}, in ears corn count

Week number (P;;Days requied to achieve required GDUs)

H, =
id { 0, else

1, if population i is harvested in week j, Hiz = j,
aj = Vie{l, 2,3, ... 70}

0, else

Pir and Pj; are the earliest and the latest planting date of
the planting window for plant i. P;;, transforms the planting
window into a matrix form, where Pj; is equal to day of
year(d) when the day is within planting window of plant i. C,
is the storage capacity if site s and Q;° is the harvest quantity
of population i for scenario c¢. The formulated model ensures
that the proposed planting dates are within the recommended
planting window for different crop breeds or populations.
However, to do so, planting window is not included as a direct
input; instead, it considers the harvesting window as a constraint.
This harvesting window is calculated from the planting window
and predicted GDUs. For any crop breed, harvesting week
corresponding to planting date within the planting window is
calculated by, Hjy. A binary matrix a;, is evaluated, which
can have a value of 1, if particular crop breed i, can be
harvested in week j. The pseudocode to generate ajj, is given in
Table 3.

The pseudocode is divided into three steps. In the first step, for
each crop breed, the harvesting date is calculated corresponding
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to each day in its recommended planting window. The days are
calculated based on required GDUs for the respective crop breed,
and also an upper limit is set for the required days of harvesting.
In the second step, harvesting weeks corresponding to those
harvesting days are calculated. In the last step, a;, is created by
putting 1 to harvesting week j, for which particular crop breed i,
can be harvested. This a;;, is used in the model to put an upper
bound on the binary decision variable X;j;, which will ensure that
any crop breed can only be harvested on weeks that respect their
planting window.

Case-1: Fixed Storage Capacity

An algorithm has been developed to generate an optimal planting
schedule for a fixed-storage capacity, as presented in Figure 8. In
the proposed algorithm, at first, the feasibility of the given storage

capacity is evaluated. If the given storage capacity is feasible,
a location-specific MILP model is formulated considering the
harvest quantity of the respective crop breeds or population to
be harvested. The objective is to finish the harvesting within
the minimum harvesting week considering the storage capacity.
In a situation where all crop breeds can be harvested with the
given storage capacity, the model is considered feasible, and the
output is regarded as an optimal harvesting schedule leading to
an optimal planting schedule.

As indicated in Figure 8, when the feasibility check is
not passed, the algorithm will then implement a three-step
optimization model. In the first step, the capacity model, the
objective is to identify the minimum storage capacity for which
all crop breeds can be harvested, respecting their planting
window. The output of the capacity model is an input for
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TABLE 2 | Comparative analysis of TBATS and 1D CNN results.

Site Site 0 Site 1

Model MSE RRMSE (%) MSE RRMSE (%)
TBATS 0.49 9 0.97 10
1D-CNN 0.30 7 0.65 8

TABLE 3 | Pseudocode to generate the binary matrix aj.

Pseudocode to generate the binary matrix a;;
N = Number of populations

W = Week Number

D = Number of days for a season

Harvest Week = A zero matrix of size N x D
A_mat = A zero matrix of size N x W
EP = Early planting date

P_eval = A zero matrix of size N x D LP = Late planting date

Step 1
FOR = 1.N
FORj = EP(): LP(i)
a=0;
IF GDU of day ()< Required GDUs of population(/)
FOR k =j:D
a =a+ GDU of day (k);
IF a> = Required GDU of population(i) OR k-j> = upper bound
P_eval(ij) = k;
BREAK;
END IF
END FOR
END IF
END FOR
END FOR
Step 2
FOR /= 1.N
FORj=1:D
IF P_eval(ij) O
Harvest Week (i,j) = round up((P_eval(ij)+3)/7);
END IF
END FOR
END FOR
Step 3
FOR /= 1.N
FORj=1:.D
FOR k = 1:.W
IF Harvest Week (ij) = k
A_mat(ik) =T,
END
END
END
END

the second step, the peak-week identifier model. In the peak-
week identifier model, the upper bound for additional capacity
is fixed by the result of the capacity model, and the peak
weeks requiring additional capacity are identified. In the final
step, the allocation model, capacity constraints are modified
for peak weeks. This algorithm aims to minimize the total
additional capacity required for harvesting considering planting
windows. Finally, the allocation model is solved to have an
optimal harvesting schedule wherefrom the optimal planting
schedule can be computed. This three-step model focuses on
minimizing the harvesting quantities beyond storage capacity
when total harvesting quantities may exceed storage capacity.
In a setting where fixed-storage capacity is not sufficient
for a given harvest quantity and predicted GDUs, respecting

the planting window, this model can provide an optimal
planting schedule.

In the event that storage capacity is sufficient for total
harvesting quantities, the model formulation for optimal planting
schedule is described in the next portion. The designed model
has two binary decision variables, one objective function and
three constraints. The objective function is minimizing the total
number of weeks respecting storage capacity, harvest quantity,
and planting window.

Model Formulation (Storage Capacity Feasible With
Respective to Harvest Quantity)
Decision Variables:

X — 1, if population i is harvested in week j
Y7 1o, else

v — 1, if any harvesting done on week j
77 o, else '

Objective Function:
70
min : Z Y; (1)
j=1
Subjected to:

N
> QX < GMYGL Vi el 2, 3,....70) 2)
i=1

70

D Xy =1,Vi€ll, 2 3. .N) 3)
ji=1

Xi = 4 (4)
Xij, Y; = 0

The capacity constraint indicated by Eq. 2 ensures that the
total harvesting quantity is less than or equal to storage capacity
for any particular week. The decision variable, Y; presented
in the right-hand side of the equation can have value 0 or
1. When the model assigns “0” to Yj, it means harvesting
will not be done in that jth week. This confirms that the
model will assign harvesting quantities only to jth weeks for
which Y; has a value of one. Since, the model objective is
minimizing total harvesting weeks, the harvesting weeks will
be selected accordingly. Allocation constraint, given by Eq. 3,
ensures that each crop breed is harvested only once in a season.
The planting window constraint, given by Eq. 4, ensures that
the harvesting week respects the planting window. The decision
variable Xj; will be zero for harvesting weeks that corresponds
to planting dates beyond the planting window. If no feasible
solution is identified, the three-step model formulation with
modified capacity constraints will be used to have an optimal
planting schedule. The detailed model formulation of each step
is described in the following segment.
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Model Formulation (Storage Capacity Infeasible With
Respective to Harvest Quantity)
Step-1: Capacity Model

Decision Variables:
% [ 1, if population i is harvested in week j
i =

0, else

Z = Additional required capacity of the site.

Objective Function:
min: Z (5)

Subjected to:

N
D QX < G+ Z, Y €{1,2,3,....70)  (6)

i=1

70

ZXU = 19 VZ € {19 2, 3, ...... N} (7)
j=1

Xij < ajj )
ij,Z >0

The objective of the capacity model is to identify minimum
additional storage capacity to complete total harvesting. For this,
the objective function given by Eq. 1 is updated as Eq. 5, where
the objective is to minimize required additional storage capacity.
The capacity constraint is modified to Eq. 6 from Eq. 2 by adding
Z to C; to allow additional capacity. The Eqs 7, 8 are same as
Eqs 3, 4 respectively. The optimal solution found in this model is
used as an upper bound for the decision variable of the peak-week
identifier model.

Step-2: Peak-Week Identifier Model
Decision Variables:

x [ 1, if populationi is harvested in week j
ij =

0, else

m; — Additional required capacity of week j

Objective Function:

70
min Z mj )

j=1

Subjected to:

N

Z QXjj = G+ mj, Vj €{1,2,3,..... 70} (10)
i=1

70

inj =1,Vie(l, 2, 3,...... N} (11)
j=1

Xij < aij (12)
mj < Z (13)

The new decision variable for the peak-week identifier model
is mj, which corresponds to the required additional capacity for
week j. The objective function of the second step given by Eq. 9
is to minimize the sum of ;. The output of this model is used
as an input for the allocation model. In the allocation model,
new capacity Cs + m; is used for the weeks requiring additional
capacity. This adjustment allows the model to allocate extra
harvest quantity to weeks for which m; is greater than zero and
only up to C; + m;. This modification determines the required
minimum additional storage capacity for peak weeks; moreover,
it ensures entire harvesting is completed utilizing a minimum
number of weeks. The allocation constraint and planting window
constraint given by Eqs 11, 12 are same as Eqs 3, 4, respectively,
and Eq. 13 ensures that additional weekly capacity does not
exceed the minimum additional capacity determined in step-1.

Step-3: Allocation Model
Decision Variables:

X — 1, if population i is harvested in week j
Y7 o, else

Y — 1, if harvesting done on week j
77 o, else

Objective Function:

70
min Z Y; (14)

j=1

Subjected to:

i=1
70

> Xy =1,V¥iell, 23 ...N) (16)
ji=1

Xij =< ay (17)
Xij,Y; = 0

In the third step, the allocation model, the objective function
is similar to Eq. 1, minimizing the total number of harvesting
weeks. The capacity constraint in Eq. 15 is almost identical to
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Model with YES
fixed capacity | Model
constraint Feasible?

lNO

Solve model with
objective of minim
total allocation week

Stepl: Identify minimum capacity for

feasible solution

Step2: Identify weeks where harvest
quantity exceeds storage capacity

b

Step3: Update storage capacity for weeks
that exceed capacity and solve model with
the objective of minimum total allocation

week.

FIGURE 8 | Proposed algorithm for optimal planting schedule with the fixed-storage capacity.

capacity constraint in Eq. 2 with only difference of m; added
to Cs. This modification allows the model to allocate some
additional harvesting quantities in peak week. The purpose
of this three-step method is to identify the peak weeks
when harvested quantities are exceeding the storage capacity.
Identification of those weeks will help the decision-maker for
timely management actions. The decision-maker may decide to
rent extra capacities for those weeks or utilize a third-party
storage facility.

Case-2: Flexible Storage Capacity

In case-1, we assume the storage capacity of a site is
known or already built. However, to decide on the storage
capacity of a new location the preceding model is not
applicable. Because, case-1 do not provide information about
required storage capacity. Thus, we considered case-2, when
the required minimum storage capacity has to be identified.
Case-2 can be considered as an extension to case-1, the
proposed algorithm for case-2 is illustrated in Figure 9,
consisting of two steps. The first step, capacity model focuses
on identifying the minimum storage capacity for harvesting,
respecting the planting window. The output of the capacity
model, the optimal storage capacity is the input for the
second step, the allocation model, where the harvesting
week for each crop breed is proposed. The second step of

case-2 is similar to case-1 in terms for objective function
and constraints.

Another approach to solving the model without this two-step
method is quadratic programming, simultaneously optimizing
storage capacity and total harvesting week. However, the
proposed algorithm considers that storage capacity will be
determined way before harvesting or planting and will not be
updated simultaneously with planting. Both storage capacity
and harvesting week do not vary side by side; thus, site
optimal storage capacity is identified before finding the optimal
planting schedule.

Model Formulation (Flexible Storage Capacity)
Step -1: Capacity Model
Decision Variables:

X — 1, if population i is harvested in week j
Y7 1o, else

C, = Site capacity.

Objective Function:

min : C, (18)

Frontiers in Plant Science | www.frontiersin.org

March 2022 | Volume 13 | Article 762446


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Sajid and Hu

Optimizing Crop Planting Schedule

Optimal storage
capacity

Predicted GDUs | |
> .
> Step1: Capacity Model
Harvesting |
quantities

Step2: Allocation Model <

Harvesting weeks

Optimal planting schedule

FIGURE 9 | Proposed algorithm for optimal planting schedule for flexible storage capacity.

Subjected to:

N
D QX < C. V) €1, 2, 3,.....70}

(19)
i=1
70
inj =1,Vie{l, 2, 3,...... N} (20)
j=1
Xj < a (1)
Xij’ CZ > 0

The model formulation for the capacity model is given
by Eqs 18-21, where the objective is to determine minimum
storage capacity. The objective function given by Eq. 18 focus
on identifying minimum storage capacity that will be sufficient
for harvesting. The requirement of a minimum number of
harvesting weeks is not considered in this step. Thus, Y; is not
a decision variable in this step and not included in capacity
constraint in Eq. 19. The allocation constraints and planting
window constraints given by Eqs 20, 21 are similar to Eqs 3,
4, respectively.

Step -2: Allocation Model
Decision Variables:

X — 1, if population i is harvested in week j
Y7 o, else

Y; =

. [ 1, if harvesting done on week j
J

0, else

Objective Function:

70
min : Z Y;

(22)
j=1
Subjected to:
N
D QX < CxYj, Vj €11, 2, 3,70} (23)
i=1
70
Zxﬁ =1,Vie(l, 2, 3,..... N} (24)
ji=1
Xij = aj (25)
Xij, Y; > 0

Using the optimal storage capacity from the capacity
model, in second step, the allocation model, a harvesting
schedule is developed by implementing Eqs 22-25 to have
a minimum harvesting week respecting storage capacity,
which are similar to Eqs 1-4. The difference between these
equations are C,. In Eq. 2 C, is an input to the model,
whereas, in Eq. 23 C, is calculated from earlier step,
the capacity model. From this optimal harvesting schedule,
we can calculate the optimal planting date for different
crop breeds.

For both fixed and flexible storage capacity, one decision
variable is Xj;, giving the information of which crop breed to be
harvested on which week. Once the optimal harvesting week is
identified, corresponding planting date can be determined using
the matrix Hjg, calculated earlier to create, a;;. The parameter
Hi4, is the harvesting week for plant i, if planting is done on
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day d. From this, the planting date corresponding to the optimal
harvesting week is calculated. This proposed method can provide
optimal planting schedules for both fixed-site capacities and
propose the optimal storage capacity for a new location.

CASE STUDY

As stated, this study is motivated by the logistic challenges faced
in the commercial corn production process with a focus on
the planting and harvesting stages. Once the corn reaches the
required GDUgs, harvesting has to be done within a week. There
are two scenarios, one with fixed storage capacity and the other
with flexible storage capacity. For fixed storage capacity, the

objective is to perform planting so that the weekly harvesting
quantity is within storage capacity and the heat requirements
in the planting stage are also satisfied. It can be attained by
an optimal planting schedule that respects both planting and
harvesting constraints. For flexible storage capacity, minimum
optimal storage capacity has to be determined prior to proposing
an optimal planting schedule.

To demonstrate and validate the proposed model, a case study
based on Syngenta Crop Challenge (2021) has been conducted,
which includes two different geographical locations with two
yield scenarios (Syngenta Crop Challenge, 2021 - the challenge).
Apart from the historical GDUs, no additional geographical
information is available for those locations. For this reason, we
used the GDUs prediction model discussed in section “Growing

700

=

600

Harvest Quantity
8 8
S 8 5

8
8

200

=)

1000

o

1 4 710131619 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70
Week Number

Allocation for Site 0: Fixed Capacity

FIGURE 10 | Weekly allocation site O (fixed capacity). (A) Initial weekly allocation. (B) Final weekly allocation.
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FIGURE 11 | Weekly allocation site O (fixed capacity and max 120 days for harvesting).

Frontiers in Plant Science | www.frontiersin.org

12

March 2022 | Volume 13 | Article 762446


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Sajid and Hu

Optimizing Crop Planting Schedule

Degree Units Prediction” to predict the GDUs for the upcoming
season. This research incorporates the concept of utilizing
GDUs to identify harvesting dates proposed by Zyskowski and
Jamieson (2014). Apart from calculating accumulated GDUs,
experimental works showed that, on average, corn becomes ready
for harvesting within 95-110 days (Schmidt and Hallauer, 1966;
Cox et al., 1994). Another interesting finding is that when corns
are planted at a lower temperature, they tend to reach maturity
with a low heat requirement (Baum et al., 2019; Nielsen, 2021).
Considering this information, we set an upper bound of 120
days to the number of days needed to achieve the required
accumulated GDUs. Then we used the predictions as an input
for the planting model introduced in section “Optimization
Model for Planting” to design the optimal plating schedule for
different locations and harvest quantities. The prediction model
is developed in Python 3.6.10, and the plant scheduling model
is solved using Gurobi 9.1.0 optimizer (Gurobi, 2018) in the
Matlab platform.

Case-1: Fixed Storage Capacity

The proposed algorithm in section “Case-1: Fixed Storage
Capacity” is implemented for two locations named site 0 and
site 1, with a fixed capacity of 7,000 ears and 6,000 ears count
of corn, respectively. After the implementation, it is observed
that given predicted GDUs for site 0 and planting windows for
different crop breeds or populations, there is no feasible solution
for site 0 respecting the given capacity. For this reason, the three-
step model with a modified capacity constraint is utilized to
determine the optimal weekly harvesting and planting schedule.
As presented in Figure 10, weekly harvesting quantities exceed
the capacity limit of 7,000 ears of corn illustrated with the blue
dashed line. In the first step, for site 0, it is found that a minimum
storage capacity of 7,500 ears is required to harvest all crop breeds

respecting their planting window. This capacity is used in steps 2
and 3 to obtain the optimal harvesting schedule.

Figure 10A provides the weekly harvest quantity obtained
from step 2, where it can be seen that week 37 to 49 requires
some additional capacity for harvesting. This information is used
to find the final optimal planting schedule from step 3, where for
weeks 37 to 49, storage capacity is relaxed to 7,500 ear counts of
corn to have an optimal solution. The final weekly allocation for
site 0 is given in Figure 10B, where total harvesting quantities are
evenly distributed throughout the season.

With further analysis of GDUs of site 0, it was found that
the required days for harvesting exceed 120 days for some
populations, which is the average maximum required days for
harvesting for corn (Schmidt and Hallauer, 1966; Cox et al.,
1994). The governing reason for this is, site 0 has a relatively
lower temperature for a season. One study conducted in the
United States corn belt found that required GDUs reduce on
an average of 110 GDUs when planted in early June compared
to early May. As in June, there is a drop in temperature that
resulted in reduced accumulated GDUs for the maturity of corn
(Williams, 2006). Referring to this finding and the temperature
trend of site 0, we assumed that for the late planting date, which
is mostly in the cooler season, the required GDUs might drop,
keeping the days required for harvesting to a limit of 120 days.
With this modification, the algorithm is applied to site 0, and
a feasible allocation is found within a given storage capacity of
7,000 ears. The total weekly harvest quantity for site 0 is shown in
Figure 11, and weekly allocations are within the storage capacity
of 7,000 ears, indicated by the blue dashed line.

Utilizing the same algorithm for site 1, we obtained an
optimal strategy for the given storage capacity of 6,000 ears,
corresponding to predicted GDUs for site 1, population-wise
harvesting quantity, and planting window. For site 1, no
additional modification is needed for the required harvesting
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days as they are with the 120 days limit. The optimal weekly
allocation for site 1 is presented in Figure 12, where for all weeks,
the total harvested quantity is below 6,000 ears count of corn
which is the blue dashed line.

Case-2: Flexible Storage Capacity

For case-2, flexible storage capacity, for both sites no fixed storage
capacity is given. So, the algorithm developed in section “Case-
2: Flexible Storage Capacity” is applied at first to determine the
minimum optimal capacity for both sites. Implementing the first
step of the proposed algorithm, we found a minimum storage
capacity of 9,800 ears and 7,900 ears of corn for site 0 and site 1. In
the second step of the algorithm, these optimal capacities are used
to determine the optimal planting schedule to have a minimum
number of total harvesting weeks.

Figure 13A represents the weekly allocation for site 0, without
the limit on required harvesting days to be 120 days. In this case,
the required storage capacity is 10,500 ears of corn, given by the
dashed line in the figure. Whereas, Figure 13B represents the
weekly allocation with maximum harvesting days of 120 days,
and with this modification, the capacity of site needed reduces
to 9,800 ears, presented by the blue dashed line in Figure 13B.
The literature advocate for limiting required harvesting days
considering site 0 climates. Therefore, the final results were found
by restricting the harvesting days necessary to be 120 days.

Figure 14 illustrates the weekly total harvest quantity for site
1 in case-2 with the minimal optimal capacity of 7,900 ears given
by the dashed line. The weeks required for harvesting ranges from
week 16 to week 70. From Figure 14, it is evident that the harvest
quantities are uniform within this range.
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TABLE 4 | Evaluation matrix.

Evaluation matrix Site 0

Site 1

Fixed site capacity

Flexible site capacity

Fixed site capacity Flexible site capacity

(Case-1) (Case-2) (Case-1) (Case-2)
Maximum absolute 2,883 2,057 394 3,148
deviation
Median absolute deviation 16.5 49.5 29.5 48.5
Total allocation (week 51 52 52 55
number)
Proposed capacity (ears of N/A 9,800 N/A 7,900

corn)

The outcomes of the proposed algorithms for both cases
have been listed in Table 4. The first evaluation matrix is
“Maximum Absolute Deviation,” which provides information on
the maximum difference between storage capacity and weekly
allocated quantity. It should be noted that a lower value is
preferable, indicating proper utilization of storage capacity since
weekly allocated quantities are closer to storage capacity. The
second evaluation matrix is “Median Absolute Deviation”, which
gives an idea about the overall deviation from harvest quantity
and available capacity. These matrixes evaluate the performance
of the scheduling model for planting. A lower value indicates
that the model is capable of proving an optimal planting
schedule respecting storage capacity. The third evaluation matrix
is “Total allocation,” the total number of weeks of a season
used for harvesting. For this case study, the entire season is
of 70 weeks; thus, it is expected to complete the harvesting
within fewer weeks.

For site 0 in case-1, in week 67, the weekly allocation is
significantly smaller than the storage capacity since by that time,
most of the corn breeds or populations have been harvested, and
there is not much left for harvesting. For this reason, week 67 has
the maximum absolute deviation for site 0 in case-1. In case-2, the
maximum absolute deviation from site 0 capacity is about 2,000
ears count of corn resulting from week 62 when harvesting for
most of the plant is completed. Though the maximum absolute
deviation from storage capacity for site 0 in both cases has a
higher value, the smaller value of median of absolute deviation
indicates consistent harvested quantities. The total harvesting
required 50 weeks and 48 weeks in case 1 and 2, respectively,
implying that harvesting will be done engaging fewer weeks. For
site 1 in case-1, the maximum absolute deviation is moderate. In
contrast, in case-2, there is a higher maximum absolute deviation
of around 3,000 ears count of corn occurring in week 69 when
not many plants are left to harvest. In both cases for site 1,
the median of absolute deviation from storage capacity implies
uniform harvested quantities through the season. Similar to site 0,
in site 1, total harvesting is performed for cases 1 and 2, requiring
fewer weeks, 52 and 55 weeks, respectively.

The four evaluation matrices summarized in Table 4 show that
only maximum absolute deviations have a relatively higher value.
The weeks corresponding to those maximum absolute deviations
are at the beginning of the season or the end. When either the
crops are not ready for harvesting, or harvesting is done for most
of them, which decode the higher maximum absolute deviations
in those timeframes. To summarize, the results show that the

proposed model performs well for different yield quantities and
locations, providing an optimal planting schedule.

CONCLUSION

The research objective of this study is to achieve evenly
distributed weekly harvested quantities considering the planting
windows and storage capacity. The goal is to reduce food wastage
and address the logistical challenges in the harvesting and storage
phases. In this study, we propose a two-stage crop planting model
that recommends the planting dates considering plant growth as
well as logistical and capacity limitations. To accurately predict
the maturity and thus harvesting dates, heat requirements and
required GDUs need to be followed. An optimization model is
then implemented to determine optimal planting dates so that
weekly harvesting quantities will not exceed the storage capacity.

Our proposed methodology is divided into two stages:
predicting GDUs based on historical data and developing an
optimal planting schedule. In the GDUs prediction stage, the
selection of the prediction model is essential. The prediction
model selected is 1D-CNN as it has a low RRMSE of 7 and
9% for site 0 and site 1, respectively. These predicted GDUs
are one of the inputs for the optimization model to determine
harvesting dates. The optimization model is designed to complete
harvesting with a minimum number of weeks and a consistent
weekly harvesting quantity within the bounds of storage capacity.
The two-stage decision making model is illustrated for two
scenarios: (1) fixed storage capacity and (2) flexible storage
capacity. The first stage, the GDUs prediction model, remain
the same for both scenarios. However, there are differences
in the decision framework design in the second stage, the
optimization model stage. Under the scenario of the fixed storage
capacity, the second stage is designed to check the adequacy
of storage capacity for total harvested quantities. If there is
insuflicient storage capacity, the optimization model in this stage
can identify peak weeks where harvested quantities may exceed
the storage capacity, allowing decision-makers to act accordingly.
Whereas, for the scenario of the flexible storage capacity, the
second stage is constructed to determine both optimal storage
capacity and provide consistent weekly harvesting quantities
simultaneously. The results from both scenarios demonstrate
that weekly harvesting quantities obtained by implementing the
planting schedule from the proposed decision making framework
are evenly distributed throughout the harvesting phase using
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fewer harvesting weeks. This validates that the proposed method
is robust for varying assumptions and conditions.

This study is subject to a few limitations which suggest
future research directions. Firstly, for the GDUs prediction,
incorporating soil information may provide better accuracy.
Considering additional soil information will help understand
the crop growth stages accurately and thus better predict the
required days for harvesting. Secondly, the proposed planting
decision-making model can be improved to be adaptive to
the real-life situation by including additional factors such as
fertilization and irrigation. Lastly, designing a user interface
for broader dissemination will make it accessible to farmer
and agriculture practitioners. These can be reserved for future
research directions.
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