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Environmental characterization for defining the target population of environments (TPE)
is critical to improve the efficiency of breeding programs in crops, such as sorghum
(Sorghum bicolor L.). The aim of this study was to characterize the spatial and temporal
variation for a TPE for sorghum within the United States. APSIM-sorghum, included in
the Agricultural Production Systems sIMulator software platform, was used to quantify
water-deficit and heat patterns for 15 sites in the sorghum belt. Historical weather
data (∼35 years) was used to identify water (WSP) and heat (HSP) stress patterns to
develop water–heat clusters. Four WSPs were identified with large differences in the
timing of onset, intensity, and duration of the stress. In the western region of Kansas,
Oklahoma, and Texas, the most frequent WSP (∼35%) was stress during grain filling
with late recovery. For northeast Kansas, WSP frequencies were more evenly distributed,
suggesting large temporal variation. Three HSPs were defined, with the low HSP being
most frequent (∼68%). Field data from Kansas State University sorghum hybrid yield
performance trials (2006–2013 period, 6 hybrids, 10 sites, 46 site × year combinations)
were classified into the previously defined WSP and HSP clusters. As the intensity of
the environmental stress increased, there was a clear reduction on grain yield. Both
simulated and observed yield data showed similar yield trends when the level of heat or
water stressed increased. Field yield data clearly separated contrasting clusters for both
water and heat patterns (with vs. without stress). Thus, the patterns were regrouped into
four categories, which account for the observed genotype by environment interaction
(GxE) and can be applied in a breeding program. A better definition of TPE to improve
predictability of GxE could accelerate genetic gains and help bridge the gap between
breeders, agronomists, and farmers.

Keywords: adaptation, simulation, stress, climate, drought

Abbreviations: WSP, water stress patterns; HSP, heat stress patterns; RT, relative transpiration index; GT, grain temperature
index; ECG, environment category group.
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INTRODUCTION

Sorghum (Sorghum bicolor L.) crop improvement during the last
six decades has been associated with targeted changes in genotype
(G), management practices (M), and environment (E), with crop
productivity considered as the outcome of a complex G x E x M
interaction (Duvick and Cassman, 1999; Assefa and Staggenborg,
2010; Ciampitti et al., 2020). However, little is understood about
the relative contribution of each component (G x E x M),
and many uncertainties on the degree (i.e., magnitude in yield
changes) or the direction (positive or negative changes) of the
responses are still common for sorghum production. Therefore,
tailoring the right combination of G x M to the right E is critical
to increase productivity and reduce the impact of abiotic stressors
(Garnett et al., 2013; Hammer et al., 2014, 2020). In the presence
of G x E, the effectiveness of genotype evaluation is highly
influenced by (i) the ability to discriminate genotypes within
an environment, (ii) the representativeness of this environment
within the target population of environments (TPE), and (iii) its
repeatability (Yan et al., 2011).

The concept of TPE was first introduced by Comstock (1978)
and defined as the set of “types” of environments that exist
across seasons within the spatial region of spanning a breeding
program. Subsequent interpretations of the original TPE concept
considered it as a mixture of repeatable environment-types that
discriminate germplasm (e.g., Cooper et al., 2005). For many
TPEs, the typical sizes of multienvironment trials (METs) and the
traditional site-year sampling strategy can result in an inadequate
representation of some environments in TPE (Chapman et al.,
2000, 2003). Therefore, breeding strategies designed to exploit
components of genetic variation associated with GxE interactions
need to characterize the TPE. Environments that discriminate
would maximize genetic advance using limited resources of land,
labor, time, and equipment for plant breeding (Hamblin et al.,
1980). Thus, environmental characterization is a critical step in
defining the TPE suitable for genotype evaluation upon the trait
targets of the breeding program.

Since drought stress and heat are both ubiquitous in the
western United States (US) (Raz-Yaseef et al., 2015; Steiner et al.,
2018) and causal of GxE in multiple crops, including sorghum
(Chapman et al., 2000), a TPE characterization for sorghum in
the US will be most impactful in US sorghum breeding. The
Great Plains region of the US, herein termed as the “Sorghum
Belt,” accounts for three-fourth of the country-grain production
(estimated at 9.4× 106 Mg in 2020), with most of the crop region
distributed among the states of Kansas, Texas, Colorado, and
Oklahoma (Ciampitti et al., 2019). This region is highly variable
in both spatial–temporal scales due to contrasting soil types (soil
texture, pH, depth, organic matter content; Soil Survey Staff et al.,
2021), management systems, and interannual rainfall (west to
east from more than 1,000 mm to less than 500 mm in an annual
basis: Lin et al., 2017). Furthermore, in environments with high
seasonal variability, where climatic rather than edaphic factors
determine yield, the repeatability at the site is a major concern,
highlighting the need for breeding sites where between-season
variation is maximized and within-season variation is minimized
(Goodchild and Boyd, 1975; Boyd et al., 1976). Moreover, in these

environments, including a seasonal classification, for a better
interpretation of the G x E interaction would allow to improve
the genetic gain rate (Chenu et al., 2011; Demarco et al., 2021).
Lastly, enhancing genetic gain via yield increases of sorghum
in this region cannot only increase the stability of production
under limited water supply, but improve crop diversification
offering sorghum as an alternative in corn–soybean dominated
farming systems.

Studies have been conducted to characterize production
environments (Lobell et al., 2013, 2014; Seifert et al., 2018).
Although understanding environment challenges is useful to
design selection strategies, it should not be confounded with
the characterization of the TPE. In the past, simulation models
have proved to be effective in assisting the breeding progress
(Cooper and Hammer, 1996; Chapman et al., 2000; Hammer
et al., 2005; Messina et al., 2009). Cooper and Hammer (1996)
compared methods for the analyses of multienvironment trials
and the characterization of environments, including the use
of crop models. Chapman et al. (2000) used a model for
sorghum in Australia as a first step in the TPE identification and
characterization of stress patterns due to water-limitation. This
approach prevents biased selection due to inadequate sampling
of the TPE (Hammer and Jordan, 2009; Messina et al., 2011)
and enables weighted selection (Cooper and Podlich, 1999). Since
crop growth models are building on a legacy of physiological
understanding of plant adaptation, the use of such model enables
the breeder to access a physiological interpretation of the G x
E basis (Chenu et al., 2009, 2011; Hammer et al., 2010; Cooper
et al., 2021). Despite the importance of the crop to the diversity
and production agriculture in drought-prone environments, an
environmental classification for sorghum in the main Sorghum
Belt region of the US is lacking.

This study utilized a dataset from 15 different sites within the
US “Sorghum Belt” region spanning from 2015 to 2020 period
to calibrate and validate the model, a historical weather record
spanning 1984–2020 period to characterize the main water and
heat environments, and finally 10 sites-years from 2007 to 2013
to test the model conclusions. The main objectives of this study
were to: (i) calibrate and validate APSIM-sorghum crop model
to describe the most representative heat and water patterns for
the study region sorghum-belt, (ii) identify and test the defined
environment clusters with a dataset retrieved from university-
driven sorghum hybrid performance trials, and (iii) evaluate the
model sensitivity to discriminate environments within a relevant
yield-driven classification to assist breeders, agronomists, and
farmers for sorghum.

MATERIALS AND METHODS

Model Development: Calibration,
Validation, and Definition of Water and
Heat Stress Patterns
APSIM-Sorghum model (Hammer et al., 2010), included in the
Agricultural Production Systems Simulator software platform
(APSIM: Holzworth et al., 2014), was calibrated using data
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collected from field trials conducted at Riley, Kansas in
United States, during the 2018 and 2019 growing seasons. We
understand as calibration to the iterative adjustment of model
parameters (and in this case, cultivar crop coefficients) until
the comparison of the simulated outputs with the experiments
observed values presented acceptable model performance. Two
commercial hybrids with relative maturities of 70 and 71 (Table 1;
Corteva Agriscience, Johnston, IA, United States) were selected
as representative materials of the region for this study. Phenology
parameterization was conducted using the observed number of
expanded leaves throughout the crop growth life cycle, thermal
time to anthesis, and thermal time to physiological maturity.
Leaf area measurements were used to fit sigmoid curves for
total leaf area per plant as a function of thermal time from
emergence (Hammer et al., 1993; Hammer and Muchow, 1994)
for each genotype. Dry mass accumulation, grain number, grain
size, and grain yield data from the field studies were used to
derive estimates for each genotype of the coefficient, relating
grain number to biomass (Rosenthal et al., 1989; Heiniger et al.,
1997). See Supplementary Material for further details related to
experimental design and field determinations.

Model validation was executed using field trials conducted
from 2015 to 2020 growing seasons for a total of 15 site-
years in the US Sorghum Belt region (Table 2). Validation
is defined as the process where the model outcomes (using
the coefficients from the calibration) are compared against an
independent observed dataset. Data for the validation of days
to anthesis was available only in six site-year combinations
from 2015 to 2019. The model validation trials included
experiments under different management conditions. Details on
site characteristics and management practices of each trial are
included in Table 2. Soil data was obtained from USDA-SURGO
(www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey-, visited
January 2021), and soil parameters were calculated following
Archontoulis et al. (2014). Precipitation and temperature
observed data were collected from NOAA weather stations
(www.noaa.gov, visited January 2021), considering the nearest
weather stations to the experimental site (less than 20 km).
Solar radiation was gathered from NASA-POWER project
(https://power.larc.nasa.gov/, visited January 2021). Days to
anthesis and grain yield was measured and compared with
simulations. Observed and simulated value agreement was tested
using root mean square error (RMSE: the lower the value the
better), normalized root mean square error (NRMSE), and the

TABLE 1 | Hybrid description.

Hybrid Maturity Relative maturity

Calibrated hybrids

Hybrid 1 Mid-Late 70

Hybrid 2 Mid-Late 71

Testing hybrids

84G62 Mid-Late 72

85G01 Mid 69

85G03 Mid 69

85G46 Mid 68

Nash- Sutcliffe efficiency (NSE, the closer to 0 the value the better,
Jin et al., 2010).

The characterization of water (WSP) and heat (HSP) stress
patterns was achieved by utilizing the same sites from the model
validation and retrieving historical weather records from the
nearest NOAA weather stations (less than 15 km from the
experimental site, Table 2).

Based on the NASS progress report, 50% of the sorghum was
planted June 8, an average of the last 10 years (USDA National
Agricultural Statistics Service, 2021), and thus to represent
the regional management practices, four sowing dates were
simulated: May 15, June 1, June 15, and July 1. Moreover,
we define two fertilization-plant density combinations: (a) high
N-plant density, 138 kg N ha−1 and 28 plants m−2 and (b) low
N-plant density, 69 kg N ha−1 and 14 plants m−2, reflecting the
main sorghum production practices in the area (McHenry, 2016).
The initial conditions were set as 50 mg kg−1 of NO3 and half of
the soil water holding capacity. Both calibrated genotypes were
used in the simulations for the water and heat characterization.
This setup was representative of the yield trends in Kansas,
compared with NASS survey data (Supplementary Figure 1A).

Two outputs were required from the APSIM-Sorghum model:
(i) the water supply to demand ratio or relative transpiration
(RT) index, which limits dry mass accumulation and generates
the drought stress impact index (Hammer et al., 2010), and
(ii) the heat-stress effect on seed set through the grain
temperature factor (GT), which is calculated as the fraction
of the sensible window (50◦Cd before anthesis and 100◦Cd
after anthesis), with daily maximum temperatures over 32◦C
(Singh et al., 2015, 2016). The RT and GT were recorded daily
to simulate the time series of water and heat stress for each
site× year×management combination, and then averaged every
100◦C days from emergence to maturity.

Water and heat outputs were treated independently. The
definition of the patterns through clustering was done following
Chapman et al. (2000). Within each data base (water and heat),
the stress indexes (RT and GT) seasonal trajectories of all the
simulations were grouped according to their similarities to define
patterns that characterized the whole region. With that purpose,
the k-means clustering algorithm was applied to all simulated
time series (R Core Team, 2020) to identify the WSP and HSP. To
define the number of clusters, NbClust R package (Charrad et al.,
2014) was used. Lastly, frequency distributions for both patterns
(WSP and HSP) were described for each site.

Model Testing: Observed vs. Simulated
Water and Heat Stress Patterns
Comparison
We refer as model testing the assessment of the sensitivity of
the environmental classification, WSP and HSP clusters, and
their association with observed G x E interaction. For this
purpose, an independent dataset retrieved from the Kansas
State University Grain Sorghum Yield Performance Tests
(agronomy.k-state.edu/services/crop-performance-tests/grain-
sorghum, accessed 2021/06) was utilized. This dataset is an
extensive collection of yield data spanning from 21 years
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TABLE 2 | Detailed field experiments on sorghum conducted for model parameterization and testing.

Site Year Rain Mean
temperature

(◦C)

Minimum
temperature

(◦C)

Maximum
temperature

(◦C)

SAWC Thickness
(mm)

Irrigation
amount

(mm)

Planting
date

Previous
crop

Plant density
(plants/ha)

N fertilizer
(kg/ha)

Beaver, OK 2016 476 14.7 8.0 21.5 0.338 2030 0 4-June Corn 42000 27

Beaver, OK 2017 462 13.9 5.8 22.0 0.375 2030 150 14-June Corn 70000 55

Cloud, KS 2015 763 12.9 7.0 18.8 0.539 2000 0 24-June Soy 70000 55

Cloud, KS 2017 714 13.1 6.7 19.4 0.550 2000 0 13-June Sorghum 70000 55

Cloud, KS 2018 664 12.0 5.7 18.2 0.550 2000 0 6-June Soy 70000 55

Cloud, KS 2019 885 12.4 6.7 18.1 0.739 2000 0 1-July Soy 70000 55

Cloud, KS 2020 600 13.8 7.5 20.1 0.739 2000 0 4-June Soy 90000 55

Dallam, TX 2019 205 14.8 7.4 22.3 0.554 1350 150 14-June Corn 36000 27

Dickinson, KS 2020 756 12.5 5.6 20.2 0.540 990 0 1-June Soy 90000 55

Finney, KS 2018 545 12.3 4.2 20.3 0.457 2000 150 10-June Corn 60000 55

Hale, TX 2016 464 16.4 8.7 24.0 0.558 2030 150 26-May Soy 70000 55

Hockley, TX 2015 690 15.3 7.7 22.8 0.304 2030 0 18-May Corn 60000 55

Lipscomb, TX 2020 325 17.7 10.4 25.0 0.363 2030 150 26-May Corn 48000 27

Lubbock, TX 2020 293 15.9 8.3 23.5 0.360 2030 150 28-May Corn 60000 55

Moore, TX 2018 250 13.9 5.8 21.9 0.492 2030 150 29-June Corn 38000 27

Riley, KS 2016 859 13.9 8.2 19.5 0.578 1350 0 8-June Soy 70000 55

Riley, KS 2018 541 13.2 6.2 20.1 0.554 1350 150 7-June Corn 70000 55

Riley, KS 2019 881 12.7 6.4 19.1 0.554 1350 0 8-June Wheat 70000 55

Thayer, NE 2016 673 12.2 5.4 18.9 0.820 2000 0 6-June Wheat 70000 55

Thayer, NE 2017 572 12.0 5.0 19.0 0.820 2000 0 6-June Wheat 70000 55

Wamego, KS 2020 681 12.5 6.1 18.9 0.485 1930 0 16-June Soy 10000 55

Wamego, KS 2020 681 12.5 6.1 18.9 0.485 1930 0 16-June Soy 70000 55

Wamego, KS 2020 681 12.5 6.1 18.9 0.485 1930 0 16-June Soy 105000 55

Wamego, KS 2020 681 12.5 6.1 18.9 0.485 1930 0 16-June Soy 10000 82

Wamego, KS 2020 681 12.5 6.1 18.9 0.485 1930 0 16-June Soy 70000 82

Wamego, KS 2020 681 12.5 6.1 18.9 0.485 1930 0 16-June Soy 105000 82

Wichita, KS 2016 267 13.9 7.5 20.3 0.586 2000 0 7-June Wheat 70000 55

Wichita, KS 2017 515 12.6 4.3 20.9 0.586 2000 0 19-June Wheat 70000 55

Wichita, KS 2019 313 15.3 7.9 22.7 0.575 2030 150 31-May Sorghum 60000 55

Experiments involved two sorghum hybrids under a range of N and water regimes over a period of 5 years throughout Kansas (KS) and Texas (TX), conducted at Corteva
Agriscience research stations. SAWC stands for soil available water content.

of data, from 1992 to 2013, with a total of 270 site-year
combinations, and with roughly 65 hybrids tested in each
site-year. Kansas sorghum tests are located on university-owned
research facilities or on privately owned farms, representing
the primary growing regions in the state of Kansas. The
entry selection and site are voluntary, and not all hybrids
are grown at all test sites. Therefore, the dataset is highly
unbalanced for genotypes and sites within each year and
from year to year. Each plot consisted of two-row plots with
length ranging from 20 to 30 feet at the different sites. The
experimental design was a randomized incomplete block design
with no replications. Grain yields are adjusted to a moisture
content of 12.5%. The general management practices included
N fertilizer rates of 119 ± 27 kg N ha−1, plant density of
17 ± 4 plants/m−2, and planting dates ranging from Apr 14
to July 7.

From the dataset described above, subset of hybrids was
selected considering only Pioneer hybrids to align with model
calibration/validation, using only the site-year combinations

where calibrated sorghum hybrids data were available to be
included in the field model evaluation. Additionally, a specific
sorghum hybrid (or genotype) was included in the dataset only
if this material was tested at least in five site-year combinations to
build a more representative and robust database. The outcome
of this subset was a database with 6 hybrids ranging from
68 to 72 relative maturity (84G62, Hybrid 2, 85G01, 85G03,
85G46, Hybrid 1; Table 1) tested in 10 sites-years from 2007
to 2013 (Supplementary Figure 2A). Using the simulation of
Hybrid 1 in each site-year with the respective management
of each trial, the time series trajectories for water deficit and
heat were accounted for using the procedure described in
Section “Model Testing: Observed vs. Simulated Water and
Heat Stress Patterns Comparison.” Then each one of these
trajectories was classified into one of the previously described
WSP and HSP based on the minimum sum of squared differences
(Chenu et al., 2011). Variance components were estimated
using mixed models implemented in the lme4 R package
(Bates et al., 2015).
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FIGURE 1 | Simulated vs. observed days to anthesis (A) and grain yield (B) for the hybrids Hybrid 1 (triangles) and Hybrid 2 (circles) for the evaluation testing trials.
The slashed line represents the 1:1 line.

Model Sensitivity: Assessment of
“Yield-Relevant” Environmental
Classification
To enhance the interpretation, each year × site was regrouped
according to their differences in yield. This environmental
classification comprised four groups: no stress, heat stress, water
stress, and both heat and water stress. A mixed model was fitted
using the site, and the new environmental classification nested
in site as random effects to account for the variance components
(Bates et al., 2015). Lastly, a principal component analysis (PCA)
was conducted with these four categories, and the hybrid by site
matrix gaps were filled with predicted values as detailed by Yan
(2013, 2016).

RESULTS

Model Development: Calibration,
Validation, and Definition of Water and
Heat Stress Patterns
The APSIM-Sorghum model was calibrated and validated for
two representative genotypes in the Sorghum belt region. Days
to anthesis and grain yield were in agreement between observed
and predicted values for the calibrated genotypes across sites and
years (Figure 1). Differences between simulated and observed
days to anthesis were minor (RMSE = 3.6 days; Table 3)
and simulated yields were within the experimental standard
deviation of observed means (RMSE = 1279 kg/ha). The Nash
model efficiency index ranged between 0 and 1, indicating
good model performance (Table 3). Larger deviations between
simulated and observed data were not strictly linked to poor
model performance under low or high yielding values (Figure 1).
Pearson correlation values showed a good correlation between
observed and predicted values (r = 0.80–0.86, Figure 1 and

Table 3). A second step was running long-term simulations (from
1984 to 2020) using the model validation sites as representative
sites of the sorghum-cropping area of the US Great Plains. The
simulated yield matched the variability across years and sites as
shown in Supplementary Figures 1A,B.

Four WSP were defined, which accounted for 45% of the total
phenotypic variance (Figure 2A). The first stress pattern (WSP1)
was characterized by water deficit stress around flowering and
later recovery, the second (WSP2) was defined as a low water
deficit conditions, the third (WSP3) with water stress patterns
gradually increasing from the first third of grain filling and
continuing until maturity, and the fourth (WSP4), similar to
WSP3, recovering by precipitation events during the end of grain
filling. The frequency of occurrence of the WSP1 to WSP4 was
19, 16, 26, and 40%, respectively. However, the region can be
subdivided into two distinctive areas: (i) the northeast and (ii)
the southwest region (Figure 2B). The northeast area displayed
even distribution of WSP (WSP1:17%, WSP2:29%, WSP3:29%,
and WSP4:25%), whereas the southwest region was mainly
characterized by the WSP4 (WSP1:21%, WSP2:3%, WSP3:23%,
and WSP4: 54%). Thus, water stress during the grain filling period
was predominant (WS3+WS4 ca. 75%) in the southwest region.

On the other hand, three HSP accounted for 83% of the
variation (Figure 2D). The main difference on these patterns

TABLE 3 | Measures of agreement between model and measured data.

Performance index Grain yield Days to anthesis

Pearson correlation 0.80 0.86

RMSE 1279 kg/ha 3.6 days

NRMSE 62.2 92.2

NSE 0.60 0.092

RMSE, root mean square error; NRMSE, normalized root mean square error; NSE,
Nash model efficiency.
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FIGURE 2 | (A,D) Relative transpiration (RT) index (A) and grain temperature (GT) index (D) throughout the crop life cycle expressed in thermal time units for the
identified patterns. Water stress patterns (WSP): WSP1, in green is a low water deficit condition; WSP2, in red is a preflowering water deficit condition; WSP3 in blue
is a grain filling water deficit condition with no recovery at the ends of the crop life cycle; WSP4 in purple is a grain filling water deficit condition with recovery at the
ends of the crop life cycle. Heat stress patterns (HSP): HSP1, in yellow is a low heat stress condition; HSP2, in orange is a moderate heat stress condition; HSP3 in
dark red is a severe heat stress condition. Each line represents the index average for the seasons clustered under the same group. The RT and GT values go from 1
to 0, with 1 representing a no stress condition and 0 a complete stress condition. (B,E) United States Great plains map with the WSP (B) and HSP (E) frequencies
are represented as pie charts. The pie charts are placed in the trial sites for the model evaluation. (C,F) Frequency of the occurrence of the different WSP (C) and
HSP (F) over 36 years of climatic data for the whole studied region.

was the intensity of the stress, differentiating a low (HSP1),
moderate (HSP2), and a severe (HSP3) level. The low stress
condition (HSP1) was the most common pattern for the entire
region (67%). In contrast, severe cases of heat stress (HSP3) were
scarce (6%). No spatial pattern was apparent from the analysis
(Figure 2E). Furthermore, neither WSP nor HSP presented a
clear temporal trend (Figures 2C,F).

Simulated yield was significantly affected by both WSP and
HSP, yet the interaction between HSP and WSP was not
significant (Supplementary Table 1 and Figures 3A,B). As
expected, the stress patterns with the lower intensity (WSP2
and HSP1) presented the highest yields (Supplementary Table 1
and Figures 3A,B). Moreover, the effect of the HSP was related
with the degree of stress (HSP1 > HSP2 > HSP3), where
the environments classified as HSP3 yielded the lowest of the
group. Among WSP, the differential was mostly due to the
onset of the water deficit, and therefore the impact on yield is
highly dependent on the physiological event that occurs in the
crop during the environmental deficit event. WSP3 and WSP1
presented the lowest yields, related to the effect of the stress

around the flowering period (WSP2 > WSP4 > WSP1 > WSP3).
WSP and HSP description for each site is available in
Supplementary Table 2.

Model Testing: Observed vs. Simulated
Water and Heat Stress Patterns
Comparison
The dataset from calibrated hybrids 1 and 2 was in agreement
(Supplementary Figure 2B, RMSE = 1,353 kg/ha) with
the independent dataset provided by KSU grain sorghum
yield performance tests. The calibrated genotype Hybrid 1
yields did not differ from the rest of the Corteva hybrids
(Supplementary Figure 2C) across, and was therefore considered
as a representative hybrid for the following simulations.
Furthermore, the independent dataset explored a wide range of
weather conditions (Supplementary Figure 2D).

The comparison between the simulated vs. field datasets
corroborated the defined patterns for grain yield. Observed
and simulated grain yield portrayed a similar trend for both
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FIGURE 3 | Simulated (A,C) and observed (B,D) yield distribution of the hybrids Hybrid 1 and Hybrid 2, within each (A,B) WSP and (C,D) HSP. Different letters
inside each graph stand for significant differences in Student’s t-test.

WSP and HSP (Figures 3A,C vs. Figures 3B,D). The WSP2
presented higher yields relative to other patterns, acting as the
non-stress scenario. Regarding HSP, the observed classification
showed significant differences according to the intensity of the
stress, with greater heat stress (HSP2, HSP3) associated with
lower grain yields.

Model Sensitivity: Assessment of
“Yield-Relevant” Environmental
Classification
The abiotic environmental stressors were further reclassified into
a new environment category group (ECG) according to the
clusters’ significant impact on yield (Figures 3B,D): No stress
(HSP1; WSP2), heat stress (HSP2 and HSP3; WSP2), water stress
(HSP1; WSP1, WSP3, and WSP4), and combined heat and water

stress (HSP2 and HSP3; WSP1, WSP3, and WSP4). This approach
provides a simplified characterization of the interactions that
would be easier to adopt by breeders, agronomists, and farmers.
This classification discriminated stress trajectories for all site-
years more clearly (Figure 4A), with “No stress” clustered
environments presenting the highest yields and the “Heat and
Water” stress cluster resulting in the lowest yields. The mixed
model result showed that the ECG can account for more than 60%
of the variation of the observed yield variance (Figure 4A, inset).

Furthermore, a PCA analysis explored the interactions among
the ECG and accounted for 86% of the observed grain yield
with the first two PCs (Figure 4B). From the PCA, the “No
stress” ECG and “Heat and Water” stress ECG displayed a
negative correlation (angle close to 180◦). The water stress ECG
was correlated with heat and water stress ECG, as reflected in
the biplot with a reduced angle. In contrast, heat stress ECG
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FIGURE 4 | (A) Observed yield distribution for the four environmental classification groups. (A, inset) Variance components for observed grain yield in field
experiments are expressed as percentage of the total variance explained by each effect. (B) Principal component analysis for observed yield. The points represent
the six evaluated hybrids and the vector the four environmental categories. (C) United States Great plains map with the environment category group (ECG)
frequencies represented as pie charts. The pie charts are placed in the trial sites for the model evaluation.

presented an angle close to 90◦, with both heat and water and
no stress ECGs, which clearly points out to the lack of correlation
between these environments. The size of all vectors was similar,
indicating that the ECG presented similar weights to explain the
observed yield. The PC 1 assisted in discriminating environments
based on yield, with the highest yield environments resulting in
lower values of PC 1.

This new set of ECGs was applied to the long-term weather
simulations and a new environmental characterization was
developed for relevant sites within the US Sorghum Belt region
(Figure 4C). In summary, high proportion of environments with
“No Stress” were concentrated toward the east of the region,
heat stress was jointly present with water stress, and heat only
was less frequent but more evident, again toward the east of
the region. Water stress was the most relevant indicator for the
entire sorghum region.

DISCUSSION

The environmental characterization presented in this study
is a first step on the path to: (i) improve crop adaptation
to the environment. It nurtures the breeder knowledge
regarding the main sources of yield variability in the region,
exploring G x E interactions while also covering the entire

geographical space. (ii) Enhance genetic gains in sorghum
breeding, and this is accomplished through improving the criteria
for selecting breeding locations with objective measurements
of environmental representativeness. Hence allowing a more
efficient use of the breeding program resources and opening
the possibility of defining subprograms focused on specific
environments. Lastly, (iii) increase the attainable yield at the
farmer’s production field. Although this approach is showing
promising results, it is worth highlighting that additional detailed
field data (e.g., crop phenology, yield, and weather environments)
will be needed to accurately test the crop performance impacts of
all-stress pattern combinations.

High temperatures can severely impact sorghum productivity
(Prasad et al., 2006). The APSIM-sorghum model was able to
capture significant high temperature effects on yield, mostly
under contrasting heat levels, yet it has limitations to accurately
represent the overall impact of the heat stress (Jin et al., 2016).
The temperature impact in the model is mainly reflected as the
grain set’s response to heat extremes (Singh et al., 2015, 2016),
although the parameterization of this mechanistic process has
not been extensively tested. In addition, the current temperature
approach in the model neither takes into consideration the
effect of night temperatures on grain set and grain formation
(Prasad et al., 2006), nor the effect of the high temperatures on
grain size during grain filling (Prasad et al., 2015, 2017). More
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recently, Sunoj et al. (2020) reported that an effect of diurnal
temperature and night respiration variation for sorghum should
be considered as critical factors to screen for hybrids with greater
heat tolerance. Despite the low frequency of high temperature
in the region (severe stress was less than 5%), high day and
night-time temperatures are expected to change over the next
decades due to global warming, and heat could become a major
limiting factor to restrict growth, development, and productivity
in sorghum (Prasad et al., 2006, 2015; Lobell et al., 2013; Singh
et al., 2014).

Sorghum is characterized for improved drought tolerance,
which is reflected in the main changes in root architecture and
water capture (Singh et al., 2010). In addition, under drought,
positive relationship was reported for yield and grain number
(Mutava et al., 2011). Although sorghum tolerance to drought
is broadly recognized as a relevant trait (Blum, 1974; Blum and
Arkin, 1984; Blum, 2009), water availability was encountered as
the main yield-limiting factor for this region. The model-based
approach to defined water patterns can be mainly criticized in
the relatively constant ability of the plant to resume its growth
after a stress is relieved. This scenario seems more reasonable
when the crop is exposed to low intensity of drought for long
periods (Ben Haj Salah and Tardieu, 1997), but not to a severe
stress when this condition can cause damage at the cellular
level losing the ability of the plant to fully recover from this
stressor (Prasad et al., 2019). Nevertheless, this approach has
been widely tested and its conclusions validated in sorghum,
maize, mungbean, wheat, chickpea, rice, and pea (Chenu et al.,
2011, 2013; Sadras et al., 2012; Chauhan et al., 2013; Kholová
et al., 2013; Chauhan and Rachaputi, 2014; Cooper et al., 2014;
Hammer et al., 2014; Harrison et al., 2014; Heinemann et al.,
2015, 2019; Lobell et al., 2015; Seyoum et al., 2017, 2018; Crespo-
Herrera et al., 2021). Using the same method in maize (Zea mays
L.) in the US Corn Belt, Cooper et al. (2014) identified relevant
water patterns and characterized their spatial distribution for
the region. For both crops (sorghum and maize) any of the
identified temporal patterns of water balance can occur in
any location–year combination, albeit with different expected
frequencies of occurrence and defined similar low water stress
spatial distribution (increasing from west to east).

In environments that are prone to low predictability of the
prevailing water pattern (as shown in eastern KS), defining
a priori the traits and magnitude of genetic variation for grain
yield that will be revealed at each site–year combination is a
very difficult task (Messina et al., 2011; Cooper et al., 2014).
This highlights the relevance of identifying these patterns and
the associated genetic variation at the level of the TPE (Chapman
et al., 2000; Chenu et al., 2011). Thus, describing the TPE through
characterizing the most relevant patterns could assist breeders
to (i) interpret and account for the effects of G x E, (ii) weight
genotype performance by the representativeness within a TPE,
(iii) choose trial sites and design experiments to select new
genotypes with superior performance for this environments, (iv)
test specific physiological and breeding hypotheses, such as those
associated with identifying of key adaptive traits. Furthermore,
environments, such as the ones from western KS, with low
prevalence of optimal conditions involving low use of inputs,

suggests that breeding program would benefit through direct
selection in non-optimal conditions, even if genetic gains are
lower under such conditions (Heinemann et al., 2015).

Heat and drought are highly related environmental stressors:
higher temperatures increase the vapor pressure deficit, which
could drive drought stress (Prasad et al., 2019). However, it is
not uncommon to have one without the other (Sadras et al.,
2012). Thus, it is important to target them separately as the
traits that lead to tolerance in one may differ from the other.
For instance, traits related with the root architecture (Singh
et al., 2010) or the stay green (Borrell et al., 2014), will impact
mainly the drought tolerance, whereas pollen viability and seed-
set percentage under heat stress (Nguyen et al., 2013) or higher
cardinal temperatures (Djanaguiraman and Prasad, 2014) will
have a bigger impact on heat-stress tolerance. Therefore, the
candidate germplasm tested and the selection criteria will also
differ upon different evaluating conditions (i.e., eastern KS
environments will benefit more broadly from adapted genotypes
while western KS environments will favor germplasm adapted to
grain filling water-stress tolerance).

From the farmer’s perspective, uncertainty is a central aspect of
new technology adoption, especially in the context of agriculture
where the relevance and suitability of a new technology for a
specific farm depend on both the farmer’s background knowledge
(Mase et al., 2017; Huffman, 2020) and on environmental
conditions. Furthermore, there is an uncertainty on how best
to use a technology, in particular if it is used in combination
with other management practices (i.e., fertilizers × plant
densities× planting dates). This is a clear research knowledge gap
that is not addressed in this article. We should consider how to
design crop improvement strategies that can explore the diverse
opportunities within the potential space of G x E x M possibilities
to achieve sustainable improvements in crop productivity (Braun
et al., 2010; Chapman et al., 2012; Snowdon et al., 2021). Targeting
G x M technology combinations creates opportunities to exploit
G x M interactions within the classified environments. For
example, the characterization of the TPE could be applied to
improve the use of the available water. Selecting early flowering
hybrids and low tillering genotypes could help escaping late-
season stress and using water resources in a more efficient way
(Hammer et al., 2014). For the western Sorghum Belt, more
relevant grain filling water stress conditions and limited irrigation
should be focused on timing water needs with the plant demand,
which ultimately will increase the profitability of the farming
operation (Araya et al., 2021). In contrast, the eastern region
presented a high frequency of low stress WSP, representing a
challenge on how to pursuit higher yielding when the current
available hybrids might be limited by potential (Cooper et al.,
2014; Broeckelman et al., 2015; Broeckelman, 2016).

Even though there are limitations to this environmental
classification approach, future research could help improving
these models by: (i) exploration in the use of Bayesian models
to account for uncertainties on the estimation of environments
(spatial–temporal scale) (Liverani et al., 2015); (ii) expanding
the geographical footprint and using crop growth modeling
tools to address the effect of future climate on the current
classification and changes in frequency of environment types
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(Harrison et al., 2014; Lobell et al., 2015; Hammer et al., 2020);
(iii) expanding the efforts on collecting detailed physiological
evaluations of more and diverse sorghum germplasm to better
assess genetic variation in the models and lastly, (iv) the method
has limitations of the space of G x E x M combinations and
inference related to technology adoption, including the influence
of management on the environment types and their frequency
of occurrence (Chapman et al., 2012; Hammer et al., 2014,
2020; Lobell et al., 2015) is a clear step forward. Genotype
by environment by management interactions underpin many
aspects of crop improvement and thus, the design of new
strategies is still relevant to explore the potential space of
G× E×M possibilities for each TPE.

CONCLUSION

Relevant grain sorghum environments were classified for the
US Great Plains region using a classical approach integrating
relevant soil, weather, and field data. Four outcomes are
worth highlighting from this study: (i) the defined patterns
assisted in explaining the basis for the observed G x E
interaction for yield, (ii) knowledge of the spatial and
temporal distribution of the most frequent patterns can
help defining sites for evaluation trials, design of breeding
programs, future target traits, and exploring innovations linked
to crop management, (iii) the validation of the patterns via
a sensitivity analysis with an independent dataset is a novel
approach that should be included in future environtyping
framework, and (iv) clustering low frequency patterns to explore
the most relevant environments demonstrated to be a valid
strategy to create a classification easier to be applied by
breeders, agronomists, and farmers, without introducing any
noticeable trade-off.

There is still considerable scope to improve the environmental
assessment involving the definition of uncertainties, accounting
for the management component, and the influence of future
climate change. Improving environmental classifications, which
hinges effective evaluation of genotype and management
practices, is a prerequisite to deal with the future projections of
food demand, and to constraint the threatens on food security.
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