
fpls-13-785196 February 1, 2022 Time: 15:30 # 1

ORIGINAL RESEARCH
published: 07 February 2022

doi: 10.3389/fpls.2022.785196

Edited by:
Diego Rubiales,

Institute for Sustainable Agriculture,
Spanish National Research Council

(CSIC), Spain

Reviewed by:
Luis Augusto Becerra

Lopez-Lavalle,
International Center for Tropical

Agriculture (CIAT), Colombia
Nelson Nazzicari,

Council for Agricultural
and Economics Research (CREA),

Italy

*Correspondence:
Jaime Cuevas

jaicueva@uqroo.edu.mx

†ORCID:
José Crossa

orcid.org/0000-0001-9429-5855

Specialty section:
This article was submitted to

Plant Breeding,
a section of the journal

Frontiers in Plant Science

Received: 28 September 2021
Accepted: 05 January 2022

Published: 07 February 2022

Citation:
Ortiz R, Crossa J, Reslow F,

Perez-Rodriguez P and Cuevas J
(2022) Genome-Based

Genotype × Environment Prediction
Enhances Potato (Solanum

tuberosum L.) Improvement Using
Pseudo-Diploid and Polysomic

Tetraploid Modeling.
Front. Plant Sci. 13:785196.

doi: 10.3389/fpls.2022.785196

Genome-Based Genotype ×
Environment Prediction Enhances
Potato (Solanum tuberosum L.)
Improvement Using Pseudo-Diploid
and Polysomic Tetraploid Modeling
Rodomiro Ortiz1, José Crossa2†, Fredrik Reslow1, Paulino Perez-Rodriguez3 and
Jaime Cuevas4*

1 Department of Plant Breeding, Swedish University of Agricultural Sciences (SLU), Lomma, Sweden, 2 International Maize
and Wheat Improvement Center (CIMMYT), Texcoco, Mexico, 3 Colegio de Postgraduados, Montecillos, Mexico, 4 División
de Ciencias, Ingeniería y Tecnologías, Universidad de Quintana Roo, Chetumal, Mexico

Potato breeding must improve its efficiency by increasing the reliability of selection
as well as identifying a promising germplasm for crossing. This study shows the
prediction accuracy of genomic-estimated breeding values for several potato (Solanum
tuberosum L.) breeding clones and the released cultivars that were evaluated at three
locations in northern and southern Sweden for various traits. Three dosages of marker
alleles [pseudo-diploid (A), additive tetrasomic polyploidy (B), and additive-non-additive
tetrasomic polyploidy (C)] were considered in the genome-based prediction models,
for single environments and multiple environments (accounting for the genotype-by-
environment interaction or G × E), and for comparing two kernels, the conventional
linear, Genomic Best Linear Unbiased Prediction (GBLUP) (GB), and the non-linear
Gaussian kernel (GK), when used with the single-kernel genetic matrices of A, B, C, or
when employing two-kernel genetic matrices in the model using the kernels from B and
C for a single environment (models 1 and 2, respectively), and for multi-environments
(models 3 and 4, respectively). Concerning the single site analyses, the trait with the
highest prediction accuracy for all sites under A, B, C for model 1, model 2, and for
GB and GK methods was tuber starch percentage. Another trait with relatively high
prediction accuracy was the total tuber weight. Results show an increase in prediction
accuracy of model 2 over model 1. Non-linear Gaussian kernel (GK) did not show any
clear advantage over the linear kernel GBLUP (GB). Results from the multi-environments
had prediction accuracy estimates (models 3 and 4) higher than those obtained from
the single-environment analyses. Model 4 with GB was the best method in combination
with the marker structure B for predicting most of the tuber traits. Most of the traits
gave relatively high prediction accuracy under this combination of marker structure (A,
B, C, and B-C), and methods GB and GK combined with the multi-environment with
G × E model.

Keywords: genomic-enabled predictions, multi-environment trials, potato breeding, Solanum tuberosum, genetic
gains in plant breeding

Frontiers in Plant Science | www.frontiersin.org 1 February 2022 | Volume 13 | Article 785196

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.785196
http://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-9429-5855
https://doi.org/10.3389/fpls.2022.785196
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.785196&domain=pdf&date_stamp=2022-02-07
https://www.frontiersin.org/articles/10.3389/fpls.2022.785196/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-785196 February 1, 2022 Time: 15:30 # 2

Ortiz et al. Genomic Prediction in Potato Breeding

INTRODUCTION

Potato (Solanum tuberosum L.) ranks among the most important
crops in human diets worldwide after rice and wheat. The most
widely grown potatoes are self-compatible polysomic tetraploid
species (2n = 4x = 48), which show tetrasomic inheritance and
inbreeding depression after continuous self-fertilizing. Potato is
a vegetatively propagating crop in which each tuber is identical
to its mother plant, thus, allowing favorable traits to be fixed
in the F1 hybrid generation. Potato cultivars or breeding clones
are often highly heterozygous, and tuber yield benefits from
heterosis, which is a very important target in potato breeding.
One of the major concerns is, however, stagnated tuber yield
gains in potato cultivation (Douches et al., 1996; Guo, 2021).
Tuber yield is a complex quantitative trait due to its multi-genic
nature (Bradshaw, 2021), thus, making it difficult to evaluate in
the early stages of the potato breeding cycle (Brown et al., 1987).
Genome-based prediction (GP) based on genotyping, along with
genome-wide single nucleotide polymorphisms, pedigree, and
phenotypic data, is a very powerful tool to capture small genetic
effects dispersed over the genome, which allows predicting an
individual’s breeding value (Desta and Ortiz, 2014).

New methods and tools are continuously being developed to
integrate GP in genetics research and to use them for breeding
crops, livestock, and trees. Several genome-based models are
being developed, including the family of additive Bayesian linear
regression models, initially proposed by Meuwissen et al. (2001),
and named the Bayesian alphabet. Mixed linear models with fixed
effects described by the general mean (or intercept) or any other
fixed effect and random genetic effects assuming a multivariate
normal distribution with mean zero and covariance matrix σ2

uK,
where σ2

u is a scaled parameter reflecting the variance of random
effects to be estimated, and K is a known matrix that expresses the
genetic similarity of the individuals.

The most common genetic similarity covariance matrix
between individuals used in genome-based prediction is the
linear similarity kernel relationship matrix called genomic best
linear unbiased prediction (GBLUP) (VanRaden, 2007, 2008).
However, departures from linearity are usually the rule because
complex cryptic interactions among genes (i.e., epistasis) and
their interaction with the environment are part of the genetic
composition of complex traits. These deviations from linearity
are addressed by semi-parametric approaches, such as the non-
linear Gaussian kernel (GK) of the reproducing kernel Hilbert
space (RKHS) regression (Gianola et al., 2006, 2014; Cuevas et al.,
2016, 2017). The RKHS regression reduces the dimension of the
parametric space and captures small complex interaction among
markers. Another non-linear kernel is the arc-cosine kernel
(Cuevas et al., 2019) that attempts to emulate neural networks
with multiple layers. Morota and Gianola (2014) mentioned that
genome prediction coupled with combinations of kernels may
capture a non-additive variation (Gianola et al., 2014).

In plant breeding, genotype × environment interaction
(G × E) plays an important confounding role when selecting
candidates to recombine. A common way to assess the extent
of G × E in plant breeding and agricultural experiments
is to estimate genetic correlations of performance across

environments because these correlations summarize the joint
action of genes and environmental conditions. The model
proposed by Burgueño et al. (2012) represents the random
genetic × environment effects modeled with a multivariate
normal distribution with zero mean and the variance-
covariance described as the Kronecker product between the
genetic correlation between the K cultivars and the matrix
of the relationship between Eenvironments, constructed with
environmental covariables or with an incident matrix of zeros.
The model of Burgueño et al. (2012) has the advantage that it
estimates the genetic covariance between environments.

Jarquín et al. (2014) proposed a class of random effects
model where the main effects of genomic and environmental
covariates (Ecs), as well as the interactions between them, are
introduced using covariance structures that are the functions of
marker genotypes and Ecs. The proposed approach represents
an extension of the GBLUP and can be interpreted as a random
effects model on all the markers, all the Ecs, and all the
interactions between markers and Ecs using a multiplicative
operator. Jarquín et al. (2014) proposes modeling the variance-
covariance G× E by the Hadamard product between the random
genetic effects and the random environmental effects. The main
advantage of this model is that it allows using environmental
climatic covariables that are measured in each environment
during the cropping season. In general, a multi-environment
model –including modeling the G × E as described above–
improved the genome-based prediction accuracy (Burgueño
et al., 2012; Jarquín et al., 2014; Cuevas et al., 2016, 2017,
2018; Sousa et al., 2017; Granato et al., 2018). Recently, Martini
et al. (2020) explained the relationship between Kronecker and
Hadamard products for modeling G× E.

Lopez-Cruz et al. (2015) proposed a marker × environment
interaction model, where the marker effect and genomic
values are partitioned into components that are stable
across environments (main effects), and others that are
environment-specific (interactions). This interaction model is
useful when selecting for stability and for adaptation to targeted
environments. This marker × environment interaction model
is easy to implement in standard software for genomic selection
(GS), and it can also be implemented with any priors commonly
used in GS, including not only the shrinkage methods (e.g.,
GBLUP), but also the variable selection methods that could not
be directly implemented under the reaction norm model, as
indicated by Crossa et al. (2016). The marker × environment
interaction model of Lopez-Cruz et al. (2015) is appropriate for
sets of environments that are positively correlated. However, in
practice, this G × E pattern may be too restrictive in cases where
several environments have zero or negative correlation with each
other or with others.

Cuevas et al. (2016) applied the marker × environment
interaction GS model of Lopez-Cruz et al. (2015) after modeling
through the standard linear kernel (GBLUP), as well as by a
non-linear Gaussian kernel similar to that used in the RKHS
with kernel averaging (RKHS KA) (de los Campos et al., 2010),
and the Gaussian kernel with the bandwidth estimated through
an empirical Bayesian method (Pérez-Elizalde et al., 2015). The
methods proposed by Cuevas et al. (2016) were used to perform
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single-environment analyses and extended to account for G × E
interaction in wheat and maize datasets. For single-environment
and multi-environment analyses, the Gaussian kernel showed
accuracies up to 17% higher than that of the multi environment
G × E interaction model with GBLUP. Cuevas et al. (2016)
concluded that the higher prediction accuracy of the Gaussian
kernel models, coupled with the G × E model, is due to more
flexible kernels that allow the accounting for small, more complex
marker main effects, and marker-specific interaction effects.

Genomic prediction models were initially sought for
predicting tuber yield in potato with a prediction accuracy
between 0.2 and 0.4, but a model including additive and
dominance effects may increase it (Ortiz, 2020, and references
therein). Although genomic prediction of breeding values
seems to be feasible in potato, these predictions across breeding
populations remain in their infancy owing to the high allelic
diversity in this crop, which calls for carefully defining the
training sets. Furthermore, the genome-based prediction of
the tetrasomic potato includes the complexity of having to
determine the dosage of the different marker alleles for the
possible genotypes AAAA, AAAB, AABB, ABBB, and BBBB.
Slater et al. (2016) considered the marker dosage and computed
the expected accuracy of genomic selection for traits with
different heritability, and compared the genetic gains from
genomic selection with those from phenotypic selection. The
authors found that genomic selection can increase genetic gains
in tetrasomic cultivated potato.

Based on the above considerations, the main objectives of this
research were to investigate (1) if prediction accuracy for GS
varies according to various dosages of marker alleles [i.e., pseudo-
diploid (A); additive tetrasomic polyploidy (B), additive-non-
additive tetrasomic polyploidy (C), or both B and C together]
considered in the genome-based prediction models, for (2)
single environments and multiple environments (i.e., including
G × E), and for (3) comparing two methods, the conventional
linear GBLUP (GB) with the non-linear Gaussian kernel (GK)
when used with the single-kernel genetic matrices of pseudo-
diploid, additive tetrasomic polyploid, and additive-non-additive
tetrasomic polyploidy, or when employing two-kernel genetic
matrices in the model using the kernel from additive tetrasomic
polyploidy markers, together with the kernel with additive-non-
additive tetrasomic polyploidy for a single environment and
multi-environments (i.e., including G× E).

MATERIALS AND METHODS

Phenotypic Data
The multi-site experiments included 169 potato breeding clones
and cultivars in Helgegården, and 256 breeding clones and
cultivars in Mosslunda and nearby Umeå (Supplementary
Table 1, see link https://hdl.handle.net/11529/10548617). The
breeding clones are in at least the fourth generation (T4) of
selection by Svensk potatisförädling of the Swedish University
of Agricultural Sciences (Ortiz et al., 2020), while the cultivars
are a sample of those released and grown in Europe during the
last 200 years. Helgegården and Mosslunda are rural sites near

the city of Kristianstad (56◦01′46′′N 14◦09′24′′E, Skåne, southern
Sweden), while Umeå (63◦49′30′′N 20◦15′50′′E) is a city in the
north of Sweden. The potato cropping season lasts about 3.5–
4 months in Skåne (end of May–early September), while only
90 days in Umeå (early June–end of August). The average daily
temperatures during the potato growing season vary between 12
and 18◦C in the southern sites, and by 12.5–16◦C in Umeå, while
the average monthly precipitation amounts to 42 to 64 mm in
sites near Kristianstad, and 48 to 75 mm in Umeå. The daylengths
range between 11.5 h (toward harvest) and 17.5 h (about mid-
growing season) in Skåne, and between 14.5 (around harvest) and
ca. 21 h (at the beginning of the cropping season) in Umeå.

An incomplete block design, with two replications of 10 plants
each, was the field layout for the field trials in Helgegården
(13 × 13 simple lattice), Mosslunda (16 × 16 simple lattice),
and Umeå (16 × 16 simple lattice). Fungicides were only used
in Helgegården to avoid pests such as late blight (caused by
the oomycete Phytophthora infestans) throughout the growing
season, thus, allowing to estimate tuber yield potential at this site.
Crop husbandry was used for potato farming at each site.

Total tuber yield per plot (kg), tuber weight by size (<40 mm,
40–50 mm, 50–60 mm, >60 mm; kg), and tuber flesh starch
(measured as percentage based on specific gravity after harvest)
were evaluated across all sites. Host plant resistance to late blight
was evaluated using the area under the disease progress curve
(AUDPC, Fry, 1978) in Mosslunda, while reducing sugars in the
tuber flesh after harvest was determined using potato glucose
strip tests (Mann et al., 1991) in Umeå.

Genotypic Data
Leaf samples –using 4 punches for each of the 256 breeding clones
and cultivars included in the experiments– were sent to Diversity
Array Technology Pty Ltd (ACT, Australia) through AgriTech—
Intertek ScanBi Diagnostics (Alnarp, Sweden) for further
targeted genotyping following the genotype-by-sequencing
approach.1 The 2,000 single nucleotide polymorphisms (SNPs)
used for genotyping were mostly derived from SolCAP SNPs
based on chromosome positions and MAF >1 in germplasm
from the Centro Internacional de la Papa (CIP, Lima, Perú)
and the United States. According to Selga et al. (2021a), such
a number of SNP already suffices for GEBVs without losing
information. Although there were very few missing genotyping
data (0.1%), one breeding clone (97) and two cultivars (‘Leyla’
and ‘Red Lady’) were not included further in the analysis because
they were lacking enough SNP data.

Computing the Genomic Relationship
Matrix
We first briefly described the three different cases for codifying
the molecular X matrix proposed by Slater et al. (2016) to be used
in the genomic-enabled prediction models. Then, we defined
the Bayesian linear single environment model and the multi-
environment model, including the G × E using the GB and
GK kernel methods.

1https://www.diversityarrays.com/technology-and-resources/targeted-
genotyping/
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Based on Slater et al. (2016), there are three cases for codifying
the X matrix and thus, the type of genomic relationship matrices
(Table 1). According to the authors, “there are at least two
possible assumptions regarding the effect of marker allele dosage
on phenotype for genomic selection. One assumption would be
a pseudodiploid model, where all heterozygous genotypes have
an equal effect on the genotype, and that the effects of the
heterozygotes is at the midpoint of the two homozygotes.”

Pseudo-Diploid (A)
In this case, the marker matrix X is constructed as indicated in
Table 1 (Slater et al., 2016) for the pseudo-diploid model with a
column for each of the M markers with 0 for AAAA, 2 for BBBB,
and 1 for any other form. Hence, the linear relationship between
lines j andk for the GBLUP method (GB), can be constructed as:

GBjk =
1
M
∑M

i = 1 (xji − 2pi)(xki − 2pi)
2pi(1− pi)

The diagonal of matrix GB can be constructed as in Slater et al.
(2016):

GBjj = 1+
1
M

∑M
i = 1 (x2

ji − (1+ 2pi)xji + 2p2
i )

2pi(1− pi)

where M is the number of markers and pi for the ith marker is
computed as:

4nbbbb + 3nabbb + 2naabb + naaab
4N

where N is the total number of individuals and
nbbbb, nabbb, naabb, naaab is the number of individuals of
genotypes BBBB, ABBB, AABB, and AAAB, respectively.

To model a more complex relationship between the lines, the
Gaussian kernel, defined as GK = exp

(
−hd2

ii′/q
)
, could be used

where h is the bandwidth parameter that controls the rate of
decay of the covariance between genotypes, and q is the median
of the square of the Euclidean distance dii′ =

∑
k (xik − xi′k)2,

which is a measure of the genetic distance between individuals
based on molecular markers. The bandwidth parameter h was
estimated based on the empirical Bayes proposed by Pérez-
Elizalde et al. (2015).

Additive Tetrasomic (B)
Following Slater et al. (2016), Additive tetrasomic is adapted
for estimating the additive marker effect by accounting for the
tetraploid allele dosage. In this case, X has the dimensions N ×M,
but the new coding is now 0, 1, 2, 3, and 4, for AAAA, AAAB,
AABB, ABBB, and BBBB, respectively.

In this study, matrix X is standardized by column (mean
equals to zero and variance equals to 1) as such and according
to Lopez-Cruz et al. (2015):

GB = XX
′

/M

As in the previous case, the Gaussian kernel can be constructed
as GK = exp(−hd2

ii′/q).

Full Tetrasomic Including Non-additive
Effects (C)
An alternative option for coding matrix X according to Slater
et al. (2016) is considering additive and non-additive effects in
a full tetrasomic, assuming each genotype has its own effect.
In this case, there are five possible effects per SNP marker
(Table 1). Then the genomic relationship between individuals j, k
is computed as:

GBjk =
1
M
∑M

i = 1 (xji − pi)(xki − pi)
pi(1− pi)

where M is the number of markers × 5. To compute the
diagonal of this matrix, we can use:

GBjj = 1+
1
M

∑M
i=1 (x2

ji − 2pixji + p2
i )

pi(1− pi)

where pi is the frequency of each genotype, i.e., the frequency
in each column. The Gaussian kernel can be calculated as in
the previous cases.

Genome-Based Bayesian Regression
Models
Here we consider the single-environment and multi-
environment models, each combined with two methods,
linear kernel GBLUP (GB), and non-linear Gaussian (GK). In
addition, each of these combinations of model/method were
tested with the three single-kernel methods derived from the X
with marker dosage A, B, and C and the two-kernel methods
combining X with marker dosage B and C.

The two-kernel method attempts to exploit the additive
effects of the genomic matrix (B) and the non-additive
case (C), as explained below for a single environment and
multi-environments under the two kernel methods (GB and
G). Thus, each of the single-environment and multiple-
environment models under GB and GK had three different
single-kernel methods (for A, B, and C), and one two-kernel
methods (B and C).

Single-Environment Single-Kernel Model (Model 1)
The basic single environment model is:

y = µ1+ Zgg + ε (1)

where y is the vector of response variables phenotypic trait, µ is
an interceptor general mean, 1 is a vector of ones, the matrix Zg
maps the phenotypic observations of the clones to the random
genetic effects g with a normal distribution with mean zero and
a variance-covariance structure σ2

gK,N(0, σ2
gK), where σ2

g is the
variances, and K is a relationship matrix between lines based on
the marker matrix X. This matrix K can be constructed with
the GBLUP (GB) methods or with the Gaussian kernel (GK),
considering the 3 cases for codifying as previously described (A,
B, C). The random vectors of errors ε has a normal distribution
with mean zero and variance σ2

ε , N
(
0, σ2

ε I
)
, where I is the

identity matrix.
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TABLE 1 | Coding of the design matrix for bi-allelic single nucleotide polymorphisms (A or B alleles) in a polysomic tetraploid potato considering pseudo-diploid (A),
additive tetrasomic polyploid genotypes (B), and full tetraploids including non-additive effects (after Slater et al., 2016).

Genotype Pseudo-diploid (A) Additive tetrasomic
polyploid (B)

Full tetraploid including non-additive effects (C)

Marker effects # 1 1 1 2 3 4 5

AAAA 0 0 1 0 0 0 0

AAAB 1 1 0 1 0 0 0

AABB 1 2 0 0 1 0 0

ABBB 1 3 0 0 0 1 0

BBBB 2 4 0 0 0 0 1

Single-Environment Two-Kernel Model (Model 2)
This model is similar to model 1, except that it adds the effect of
B plus the effect of C

y = µ1+ Zgg1 + Zgg2 + ε (2)

where g1 and g2 follow a normal distribution with mean zero and
variance-covariance matrices σ2

g1
K1, σ2

g2
K2, respectively, where

K1 is constructed by coding the X matrix as in B (additive
tetrasomic), and K2 is made by coding matrix X as in case C (full
tetrasomic including non-additive effects).

Multi-Environment Single-Kernel Model Including
G × E (Model 3)
The environments (e) could be considered as fixed effects as in
Jarquín et al. (2014), Lopez-Cruz et al. (2015), and Cuevas et al.
(2016) or as random effects as in Martini et al. (2020). In this
study, the environmental effects are taken as random effects such
that the model is denoted as

y = µ1+ Z1e+ Z2g + ge+ ε (3)

where vector y = [y1, , ys]
′

is the observations in each of the
s locations or environments of size n, µ is a fixed effect that
represents the intercept or a general mean, 1 is the vector of
ones of size n, Z1 is a matrix that relates the observations
with the environments (or sites), and e is the vector of random
environments of size s that follows a normal distribution
N(0, σ2

eE) with zero mean, variance σ2
e , and variance-covariance

matrix E. Note that matrix E could be an identity, such that vector
e represents the intercepts or means of each environment as is
the case in this study. However, the model could be improved
by means of developing a matrix based on environmental
similarities (environmental covariables) and is used similar to
E (Jarquín et al., 2014; Perez-Rodriguez et al., 2015). Matrix Z2
maps the phenotypic observations of the clones or genotypes and
g represents the random genetic effects assumed to have a normal
distribution with mean zero and a variance-covariance structure
σ2
gK,N(0, σ2

gK), with σ2
g being the genetic variance scaled factor.

The G × E interaction random component ge is assumed
to have a normal distribution with a mean vector of zero,
and a structured variance-covariance σ2

geGE,N(0, σ2
geGE), σ2

ge is
the scaled G × E variance, and the GE could be estimated
using the Kronecker product of their covariance GE = K

⊗
E

(Martini et al., 2020); this implies that the data were balanced
between environments, which would also be an alternative to

consider the interaction between the components Z1e, andZ2g
by means of the Haddamar #, GE = Z1EZ

′

1#Z2KZ
′

2 (Jarquín
et al., 2014; Martini et al., 2020). The vector of random errors
ε is assumed to have a normal distribution with mean zero
homogeneous and identical variance σ2

ε , N
(
0, σ2

ε I
)
, where I is

the identity matrix.
As previously mentioned, matrix K can be constructed using

the GBLUP (GB) or the Gaussian kernel (GK), considering each
of the codification cases of matrix X, as previously explained.

Multi-Environment Two-Kernel Model Including G × E
(Model 4)
This model adds two kernels to model 3, in order to include
marker dosages B and C

y = µ1+ Z1e+ Z2g1 + g1e+ Z2g2 + g2e+ ε (4)

where random genetic effects g1 and g2 follow a multivariate
normal distribution, with vector of means zero and variance-
covariance σ2

g1
K1, σ2

g2
K2, respectively, where K1 is constructed

using the marker dosage codes for case B (additive tetrasomic),
and K2 is constructed using the marker dosage code for case
C (full tetrasomic including non-additive); the interaction terms
g1eandg2e are modeled with a distribution with mean equal to
zero and variance covariance matrices σ2

ge1
Z

1
EZ
′

1#Z2K1Z
′

2 and

σ2
ge2

Z
1
EZ
′

1#Z2K2Z
′

2.

Assessment of Genome-Based
Prediction Accuracy
For the single site (models 1 and 2, Eqs. 1 and 2), we
extracted 30 random samples to form groups; 70% for the
training set (TRN) and 30% to be predicted (testing, TST
set). For the multi-environment (models 3 and 4, Eqs. 3 and
4), we extracted four random folds each with 10 samples
using a random cross-validation called CV2 that consists of
predicting one line in one site, knowing the value of that
line in at least one of the rest of the sites. We used Monte
Carlo Markov Chain (MCMC), using the BGGE software
(Granato et al., 2018), to fit the four models and to predict
the individuals in the TST sets. For each of the samples,
we computed the genome-based predictions and correlated
them with the observed values. We reported the mean of the
correlation between the predicted and the observed values and
its standard deviations.
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Markov Chain Monte Carlo (MCMC) diagnostics are tools
that are used to investigate whether the quality of a sample
generated with an MCMC algorithm is sufficient for providing
an accurate approximation of the target distribution. The MCMC
has diagnostic tools for testing (1) whether a large portion of
the MCMC sample has been drawn from distributions that
are significantly different from the target distribution or for
observing (2) whether the size of the generated sample is too
small. In this study in order to minimize the random error
from the MCMC, we performed 30,000 iterations, with a burn-
in of the first 5,000 and a thinning of 2. Supplementary
Figure 1 displayed the MCMC results from the model 1 analyses
of one trait; the genetic variance components are correctly
mixed, achieving a correct convergence and thus, generating the
posterior probability distribution.

Data Availability
The marker data as well the phenotype data for each of the three
environments are stored at the link https://hdl.handle.net/11529/
10548617.

RESULTS

Single-Environment Single Kernel and
Two-Kernel Analyses (Models 1 and 2
With GB and GS)
Tables 2–4 and Figures 1–3 give the 2020 results of Helgegården,
Mosslunda, and Umeå, respectively, for several traits, of the
average correlation (between observed and predictive values)
and their standard deviation for the single trial analysis for
each of methods GBLUP (GB) and GK, considering (model 1)
constructing matrix X as pseudo-diploid (A), additive tetrasomic
polyploid (B), full tetraploid (C), and the combination of
B-C (model 2).

Single-Environment Analyses (Helgegården) (Models
1 and 2 With GB and GK)
Results from Helgegården (Table 2) for single-kernel model 1
for the six traits show that the pseudo-diploid structure (A), the
additive polyploid structure (B), the full tetraploid including non-
additive effects (C), and the two-kernels B-C model 2, gave the
best prediction accuracy to starch (%) and tuber weight below
40 mm in size for both GB and GK methods (Figure 1). Starch
(%) values ranged from 0.604 to 0.671 for the GB method and
from 0.592 to 0.669 for the GK method, whereas the tuber weight
below 40 mm in size ranged from 0.539 to 0.584 for the GB
method, and from 0.574 to 0.582 for the GK method.

The additive tetrasomic additive polyploid structure (B) gave
a relatively high prediction accuracy for tuber starch percentage
under both methods: GB (0.671) and GK (0.669). The full
tetraploid including non-additive effects (C) gave two traits the
highest genome-based prediction accuracy under the GB method,
i.e., total tuber weight (0.418) and tuber weight with size above
60 mm (0.518) (Table 2 and Figure 1).

The two-kernel combination of the additive and non-additive
tetrasomic B and C (model 2) gave the best prediction accuracy

for tuber weight with size below 40 mm (0.584) and tuber weights
with 50–60 mm size (0.326). Interestingly, the combination of B
and C two-kernel structure (model 2) under the Gaussian kernel
(GK) gave a better prediction accuracy than the GBLUP (GS) for 4
traits, except for total tuber weight and tuber weight below 40 mm
size (Table 2 and Figure 1).

Single-Environment Analyses (Mosslunda) (Models 1
and 2 With GB and GK)
Results from Mosslunda (Table 3) showed the traits AUDPC
(which measures host plant resistance to late blight) and starch
(%) as the best genome-based predicted traits for both single
kernel (model 1) and two-kernel (model 2) and marker structure
(A, B, C) combinations with relatively high accuracy (ranging
from 0.613 to 0.734). For these two traits, methods GS and GK
gave very similar prediction accuracy.

Results from Mosslunda further shows that the pseudo-
diploid structure (A) gave the best prediction accuracy for the
four traits under GB, AUDPC (0.636), total tuber weight (0.59),
tuber weight with below 40 mm size (0.409), and tuber weight
with 50–60 mm size (0.490) (also high under GK: 0.490). The
additive tetrasomic additive polyploid structure (B) gave the best
predictions under the GK for tuber weight traits, i.e., total tuber
weight (0.589), tuber weight with size below 40 mm (0.444), tuber
weight with 40–50 mm size (0.297), and tuber weight with size
above 60 mm (0.569) (Figure 2).

The combination of the additive and non-additive tetrasomic
B and C (model 2) gave the best prediction accuracy for the
four traits under the GB method, and for the three traits under
the GK method (Table 3). The best traits for the GB method
were tuber weight below 40 mm size (0.409), tuber weight with
40–50 mm size (0.31), tuber weight above 60 mm size (0.562),
and starch % (0.734), whereas the best traits under the GK
method showed a relatively low improvement for genome-based
prediction accuracy (AUDPC, 0.629; total tuber weight, 0.589;
and tuber starch percentage, 0.734) (Table 3 and Figure 2).

Single-Environment Analyses (Umeå) (Models 1 and 2
With GB and GK)
Results from Umeå (Table 4) (that include the reducing sugar
trait) showed that tuber starch (%) was the best genome-based
predicted trait for both single kernel (model 1) and two-kernel
(model 2) and marker structure (A, B, C) combinations with
relative high accuracy (ranging from 0.636 to 0.716). For these
two traits, GK methods gave slightly higher prediction accuracy
than the GS method.

Results also showed that the pseudo-diploid structure (A) gave
the best prediction accuracy for only the two traits under the
GK methods: total tuber weight (0.471) and tuber weight above
60 mm size (0.486). The additive tetrasomic structure (B) gave the
best predictions under GB for only the two traits: tuber weight
below 40 mm size (0.515) and reducing sugars (0.39), whereas
the GK had three traits with the highest prediction accuracy: i.e.,
tuber weight below 40 mm size (0.513), tuber starch percentage
(0.716), and reducing sugars (0.387) (Table 4). The full tetraploid
model including non-additive effects (C) did find two traits under
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TABLE 2 | Single-environment genomic best linear unbiased predictor (GBLUP, GB) and Gaussian kernel (GK) prediction accuracy (±standard deviation) for potato tuber
characteristics considering pseudo-diploid (A) (model 1), additive tetrasomic polyploid (B) (model 1), full tetraploid (C) (model 1), and B-C (model 2) with 30 random
partitions (70% training and 30% testing) in Helgegården 2020 (N = 169).

Characteristic A
Pseudo-diploid (Model 1)

B
Additive tetrasomic polyploidy (Model 1)

C
Full tetraploid (Model 1)

B-C
(Model 2)

GB

Total tuber weight 0.310 ± 0.127 0.359 ± 0.131 0.418 ± 0.110 0.389 ± 0.136

Tuber weight < 40 0.576 ± 0.094 0.568 ± 0.110 0.539 ± 0.131 0.584 ± 0.113

Tuber weight 40–50 0.455 ± 0.084 0.424 ± 0.091 0.424 ± 0.094 0.434 ± 0.086

Tuber weight 50–60 0.270 ± 0.126 0.273 ± 0.129 0.324 ± 0.099 0.326 ± 0.122

Tuber weight > 60 0.464 ± 0.103 0.483 ± 0.109 0.518 ± 0.096 0.508 ± 0.107

Starch (%) 0.629 ± 0.077 0.671 ± 0.075 0.604 ± 0.094 0.658 ± 0.075

GK

Total tuber weight 0.374 ± 0.121 0.389 ± 0.135 0.372 ± 0.142 0.399 ± 0.132

Tuber weight < 40 0.580 ± 0.111 0.576 ± 0.108 0.574 ± 0.119 0.582 ± 0.110

Tuber weight 40–50 0.424 ± 0.066 0.437 ± 0.082 0.395 ± 0.093 0.442 ± 0.081

Tuber weight 50–60 0.346 ± 0.111 0.318 ± 0.100 0.358 ± 0.108 0.367 ± 0.110

Tuber weight > 60 0.511 ± 0.107 0.502 ± 0.113 0.514 ± 0.111 0.516 ± 0.112

Starch (%) 0.633 ± 0.074 0.669 ± 0.076 0.592 ± 0.076 0.667 ± 0.074

TABLE 3 | Single-environment genomic best linear unbiased predictor (GBLUP) (GB) and Gaussian kernel (GK) prediction accuracy (±standard deviation) for potato
tuber characteristics and host plant resistance to late blight (measured by area under disease progress curve or AUDPC) considering pseudo-diploid (A) (model 1),
additive tetrasomic polyploid (B) (model 1), and full tetraploid (C) (model 1) and B-C (model 2) with 30 random partitions (70% training and 30% testing) in Mosslunda
2020 (N = 253).

Characteristic A
Pseudo-diploid (Model 1)

B
Additive tetrasomic polyploidy (Model 1)

C
Full tetraploid (Model 1)

B-C
(Model 2)

GB

AUDPC 0.636 ± 0.065 0.613 ± 0.062 0.624 ± 0.067 0.630 ± 0.063

Total tuber weight 0.590 ± 0.059 0.587 ± 0.058 0.564 ± 0.057 0.587 ± 0.059

Tuber weight < 40 0.409 ± 0.088 0.380 ± 0.088 0.409 ± 0.076 0.409 ± 0.086

Tuber weight 40–50 0.300 ± 0.085 0.300 ± 0.086 0.298 ± 0.100 0.311 ± 0.087

Tuber weight 50–60 0.490 ± 0.079 0.472 ± 0.066 0.474 ± 0.065 0.483 ± 0.066

Tuber weight > 60 0.555 ± 0.066 0.559 ± 0.071 0.549 ± 0.063 0.562 ± 0.069

Starch (%) 0.729 ± 0.045 0.729 ± 0.049 0.672 ± 0.059 0.734 ± 0.050

GK

AUDPC 0.621 ± 0.065 0.622 ± 0.062 0.624 ± 0.064 0.629 ± 0.062

Total tuber weight 0.580 ± 0.062 0.589 ± 0.057 0.557 ± 0.060 0.589 ± 0.058

Tuber weight < 40 0.440 ± 0.083 0.444 ± 0.085 0.417 ± 0.078 0.434 ± 0.080

Tuber weight 40–50 0.270 ± 0.092 0.297 ± 0.089 0.284 ± 0.083 0.292 ± 0.092

Tuber weight 50–60 0.490 ± 0.074 0.476 ± 0.066 0.468 ± 0.063 0.479 ± 0.064

Tuber weight > 60 0.553 ± 0.066 0.569 ± 0.071 0.547 ± 0.067 0.568 ± 0.071

Starch (%) 0.731 ± 0.042 0.730 ± 0.049 0.683 ± 0.052 0.734 ± 0.050

the GB that were the best predictive traits; i.e., tuber weight 50–
60 mm size (0.531) and tuber weight above 60 mm size (0.482),
but only tuber trait with 40–50 mm size was predicted under the
GK method (0.342) (Figure 3).

The combination of the two-kernel additive and non-additive
tetrasomic B and C (model 2) gave the best prediction accuracy
for the three traits under the GB method and for the two
traits under the GK method (Table 4). The best traits for the
GB method were total tuber weight (0.455), tuber weight with
40–50 mm size (0.354), and tuber starch percentage (0.716);
whereas the best predicted traits under the GK method were tuber
weight with 40–50 mm size and tuber weight with 50–60 mm

size, whose prediction accuracy estimates were 0.342 and 0.534,
respectively (Table 4).

Summary of Single-Site Analyses
The results (Tables 2–4) show unclear trends in the genome-
based prediction accuracy comparing the different structures of
the marker matrices and the methods (GBLUP vs. Gaussian
kernel) for the different traits. At Helgegården, the two-kernel
combinations (model 2) show an increase in prediction accuracy
for most of the traits under the GK method as compared
with those obtained under A, B, and C marker structures
(Figure 1). However, at Mosslunda, model 2 increased the
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TABLE 4 | Single-environment genomic best linear unbiased predictor (GBLUP) (GB) and Gaussian kernel (GK) prediction accuracy (±standard deviation) for potato
tuber characteristics considering pseudo-diploid (A) (model 1), additive tetrasomic polyploid (B) (model 1), full tetraploid (C) (model 1), and B-C (model 2) with 30 random
partitions (70% training and 30% testing) in Umeå 2020 (N = 252).

Characteristic A
Pseudo-diploid (model 1)

B
Additive tetrasomic polyploidy (model 1)

C
Full tetraploid (model 1)

B-C
(model 2)

GB

Total tuber weight 0.448 ± 0.078 0.431 ± 0.092 0.455 ± 0.077 0.455 ± 0.084

Tuber weight < 40 0.450 ± 0.093 0.515 ± 0.075 0.490 ± 0.075 0.514 ± 0.075

Tuber weight 40–50 0.280 ± 0.091 0.336 ± 0.097 0.348 ± 0.083 0.354 ± 0.091

Tuber weight 50–60 0.495 ± 0.085 0.500 ± 0.083 0.531 ± 0.061 0.528 ± 0.076

Tuber weight > 60 0.458 ± 0.074 0.456 ± 0.080 0.482 ± 0.058 0.474 ± 0.073

Starch (%) 0.636 ± 0.058 0.714 ± 0.038 0.642 ± 0.061 0.716 ± 0.041

Reducing sugars 0.351 ± 0.136 0.390 ± 0.133 0.351 ± 0.153 0.375 ± 0.138

GK

Total tuber weight 0.471 ± 0.074 0.454 ± 0.086 0.456 ± 0.077 0.464 ± 0.086

Tuber weight < 40 0.465 ± 0.085 0.513 ± 0.075 0.480 ± 0.076 0.511 ± 0.077

Tuber weight 40–50 0.310 ± 0.080 0.335 ± 0.083 0.342 ± 0.082 0.342 ± 0.086

Tuber weight 50–60 0.519 ± 0.084 0.529 ± 0.076 0.531 ± 0.065 0.534 ± 0.074

Tuber weight > 60 0.486 ± 0.068 0.473 ± 0.079 0.485 ± 0.064 0.483 ± 0.076

Starch (%) 0.660 ± 0.048 0.716 ± 0.038 0.651 ± 0.057 0.715 ± 0.039

Reducing sugars 0.346 ± 0.131 0.387 ± 0.133 0.317 ± 0.138 0.367 ± 0.127

FIGURE 1 | Genome-based predictions (average correlation between observed and predicted values) of potato breeding clones and cultivars in Helgegärden site for
total tuber weight (TTW), tuber weight with size below 40 mm (TW < 40), tuber weight with 40–50 mm size (TW 40–50), tuber weight with 50–60 mm size (TW
50–60), tuber weight above 60 mm size (TW > 60), and tuber starch percentage (Starch) considering single environment pseudo-diploid (A) (model 1) (1A), additive
tetrasomic polyploid (B) (model 1) (1B), full tetraploid (C) (model 1) (1C), and B-C (model 2) (2) and multi-environment pseudo-diploid (A) (model 3) (3A), additive
tetrasomic polyploid (B) (model 3) (3B), full tetraploid (C) (model 3) (3C), and B-C (model 4). These models (1–4) combined marker matrices A, B, and C (1A, 1B, 1C,
2, 3A, 3B, 3C, and 4) were combined with linear kernel GB (GBLUP) and non-linear kernel GK (Gaussian kernel).

prediction accuracy of traits under GB, as well as GK (Figure 2).
For Umeå, an unclear trend of marker forms and methods were
found (Figure 3); however, model 2 and model 1 under B are
always the best for starch % under GB and GK.

The trait with the highest prediction accuracy for all sites
under A, B, C (model 1), model 2, and for the GB and
GK methods was the highly heritable tuber starch percentage.
Another trait with relatively high prediction accuracy was the
total tuber weight. Concerning the single-kernel (model 1) vs.
the two-kernel method (model 2), evidences show an increase in

prediction accuracy of the combination of two kernels (model 2)
over model 1. Non-linear Gaussian kernel (GK) does not show
any clear advantage over the linear kernel GBLUP (GB).

Multi-Environment Single-Kernel and
Two-Kernel Analyses (Models 3 and 4
With GB and GK)
Tables 5–7 and Figures 1–3 give the prediction results of
Helgegården, Mosslunda, and Umeå, respectively, for several
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FIGURE 2 | Genome-based predictions (average correlation between observed and predicted values) of potato cultivars in Mosslunda site for total tuber weight
(TTW), tuber weight with size below 40 mm (TW < 40), tuber weight with 40–50 mm (TW 40–50), tuber weight with 50–60 mm size (TW 50–60), tuber weight above
60 mm size (TW > 60), and tuber starch percentage (Starch) considering single environment pseudo-diploid (A) (model 1) (1A), additive tetrasomic polyploid (B)
(model 1) (1B), full tetraploid (C) (model 1) (1C), and B-C (model 2) (2) and multi-environment pseudo-diploid (A) (model 3) (3A), additive tetrasomic polyploid (B)
(model 3) (3B), full tetraploid (C) (model 3) (3C), and B-C (model 4). These models (1–4) with marker matrices A, B, and C (1A, 1B, 1C, 2, 3A, 3B, 3C, and 4) were
combined with linear kernel GB (GBLUP) and non-linear kernel GK (Gaussian kernel).

FIGURE 3 | Genome-based predictions (average correlation between observed and predicted values) of potato cultivars in Umeå site for total tuber weight (TTW),
tuber weight with size below 40 mm (TW < 40), tuber weight with 40–50 mm size (TW 40–50), tuber weight with 50–60 mm size (TW 50–60), tuber weight above
60 mm size (TW > 60), and tuber starch percentage (Starch) considering single environment pseudo-diploid (A) (model 1) (1A), additive tetrasomic polyploid (B)
(model 1) (1B), full tetraploid (C) (model 1) (1C), and B-C (model 2) (2) and multi-environment pseudo-diploid (A) (model 3) (3A), additive tetrasomic polyploid (B)
(model 3) (3B), full tetraploid (C) (model 3) (3C), and B-C (model 4). These models (1–4) with marker matrices A, B, and C (1A, 1B, 1C, 2, 3A, 3B, 3C, and 4) were
combined with linear kernel GB (GBLUP) and non-linear kernel GK (Gaussian kernel).

traits and their standard deviation for the multi-environment
analyses for each of the methods (GB and GK), considering
the single-kernel (model 3) for pseudo-diploid (A), additive
tetrasomic polyploid (B), full tetraploid (C), and the two-kernel
combination of B-C (model 4).

Multiple-Environment Analyses (Helgegården)
(Models 3 and 4 With GB and GK)
Results from multi-environments for the prediction accuracy
of the potato genotypes in Helgegården (Table 5) for the six
traits show, in general, an important increase in prediction
accuracy for all traits for A, B, C (model 3), and model 3 as

compared with the results of the single-environment analyses.
The single-kernel model 1 for the six traits showed that the
pseudo-diploid structure (A), the additive polyploid structure
(B), the full tetraploid including non-additive effects (C), and the
two-kernels B-C model 2 gave the best prediction accuracy to
starch (%), and tuber weight below 40 mm size for both GB and
GK methods (Figure 1). Tuber starch (%) prediction accuracy
ranged between 0.820 and 0.880, whereas tuber weight below
40 mm size predictive values ranged from 0.734 to 0.772 for both
GB and GK methods.

The pseudo-diploid structure (A) gave the best prediction
accuracy for only one trait (tuber weight with 40–50 mm size)
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TABLE 5 | Multi-environment, genomic best linear unbiased predictor (GBLUP) (GB) and Gaussian-kernel (GK) prediction accuracy (±standard deviation) for potato tuber
characteristics considering pseudo-diploid (A) (model 3), additive tetrasomic polyploid (B) (model 3), full tetraploid (C) (model 3), and B-C (model 4) with fourfold partitions
of 10 random samples each in Helgegården 2020 (N = 169).

Characteristic A
Pseudo-diploid model 3

B
Additive tetrasomic polyploidy model 3

C
Full tetraploid model 3

B-C
Model 4

GB

Total tuber weight 0.615 ± 0.090 0.688 ± 0.084 0.722 ± 0.081 0.720 ± 0.080

Tuber weight < 40 0.734 ± 0.064 0.768 ± 0.060 0.765 ± 0.058 0.772 ± 0.057

Tuber weight 40–50 0.559 ± 0.126 0.540 ± 0.125 0.516 ± 0.144 0.574 ± 0.124

Tuber weight 50–60 0.480 ± 0.108 0.523 ± 0.102 0.553 ± 0.104 0.540 ± 0.108

Tuber weight > 60 0.622 ± 0.088 0.690 ± 0.087 0.741 ± 0.072 0.738 ± 0.078

Starch (%) 0.824 ± 0.053 0.879 ± 0.038 0.867 ± 0.042 0.880 ± 0.036

GK

Total tuber weight 0.711 ± 0.078 0.713 ± 0.079 0.707 ± 0.082 0.714 ± 0.081

Tuber weight < 40 0.752 ± 0.061 0.752 ± 0.061 0.741 ± 0.061 0.750 ± 0.060

Tuber weight 40–50 0.386 ± 0.168 0.410 ± 0.159 0.346 ± 0.155 0.387 ± 0.154

Tuber weight 50–60 0.529 ± 0.107 0.536 ± 0.105 0.526 ± 0.105 0.534 ± 0.106

Tuber weight > 60 0.726 ± 0.080 0.722 ± 0.078 0.725 ± 0.073 0.727 ± 0.074

Starch (%) 0.843 ± 0.058 0.844 ± 0.058 0.843 ± 0.058 0.844 ± 0.058

TABLE 6 | Multi-environment, genomic best linear unbiased predictor (GBLUP), and Gaussian-kernel prediction accuracy (± standard deviation) for potato tuber
characteristics considering pseudo-diploid (A) (model 3), additive tetrasomic polyploid (B) (model 3), full tetraploid (C) (model 3), and B-C (model 4) with fourfold partitions
of 10 random samples each in Mosslunda 2020 (N = 253).

Characteristic A
Pseudo-diploid model 3

B
Additive tetrasomic polyploidy model 3

C
Full tetraploid model 3

B-C
model 4

GB

Total tuber weight 0.688 ± 0.051 0.721 ± 0.045 0.708 ± 0.056 0.730 ± 0.049

Tuber weight < 40 0.518 ± 0.104 0.581 ± 0.094 0.577 ± 0.092 0.590 ± 0.091

Tuber weight 40–50 0.435 ± 0.105 0.485 ± 0.097 0.523 ± 0.085 0.534 ± 0.086

Tuber weight 50–60 0.609 ± 0.055 0.656 ± 0.054 0.651 ± 0.058 0.662 ± 0.056

Tuber weight > 60 0.631 ± 0.062 0.679 ± 0.050 0.689 ± 0.054 0.697 ± 0.051

Starch (%) 0.820 ± 0.048 0.838 ± 0.044 0.804 ± 0.056 0.835 ± 0.047

GK

Total tuber weight 0.652 ± 0.084 0.656 ± 0.082 0.623 ± 0.079 0.650 ± 0.081

Tuber weight < 40 0.587 ± 0.084 0.588 ± 0.083 0.560 ± 0.090 0.577 ± 0.085

Tuber weight 40–50 0.489 ± 0.092 0.497 ± 0.090 0.474 ± 0.086 0.489 ± 0.087

Tuber weight 50–60 0.597 ± 0.072 0.609 ± 0.069 0.592 ± 0.072 0.605 ± 0.071

Tuber weight > 60 0.664 ± 0.072 0.644 ± 0.072 0.650 ± 0.074 0.655 ± 0.070

Starch (%) 0.750 ± 0.074 0.754 ± 0.074 0.752 ± 0.076 0.752 ± 0.074

under GK (0.752). The additive tetrasomic additive polyploid
structure (B) showed a relatively high prediction accuracy for
four traits under the GK method, tuber weight below 40 mm
size (0.752), tuber weight with 40–50 mm size (0.410), tuber
weight with 50–60 mm size (0.536), and tuber starch percentage
(0.844) (Figure 1).

Model 3 (C) gave only three traits with the highest genome-
based prediction accuracy under the GB method: total tuber
weight (0.722), tuber weight with 50–60 mm size (0.553) and
tuber weight with above 60 mm size (0.741) (Table 5). The
two-kernel (model 4) gave the best prediction accuracy for
several traits under the GB and GK methods with relatively high
prediction for the four traits under the GB method (tuber weight
below 40 mm size, 0.772; tuber weight with 40–50 mm size, 0.574;
and tuber starch percentage, 0.880), and for the three traits under

the GK method (total tuber weight, 0.714; tuber weight above
60 mm size, 0.727, and tuber starch percentage, 0.844).

Multiple-Environment Analyses (Mosslunda) (Models
3 and 4 and GB and GK)
Results from Mosslunda (Table 6 and Figure 2) show that
for single-kernel model 1 for the six traits, the pseudo-diploid
structure (A), the additive polyploid structure (B), the full
tetraploid including non-additive effects (C), and the two-kernels
B-C model 2 gave the best prediction accuracy to starch (%) and
total tuber weight for both the GB and GK methods. However,
while starch (%) prediction accuracy was around 0.750 for the
GK method and 0.800 for the GB method, total tuber weight
predictive values ranged from 0.688 to 0.772 for GB, and from
0.623 to 0.656 for the GK method.
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TABLE 7 | Multi-environment, genomic best linear unbiased predictor BLUP (GBLUP), and Gaussian-kernel prediction accuracy (±standard deviation) for potato tuber
characteristics considering pseudo-diploid (A) (model 3), additive tetrasomic polyploid (B) (model 3), full tetraploid (C) (model 3), and B-C (model 4) with fourfold partitions
of 10 random samples each in Umeå 2020 (N = 252).

Characteristic A
Pseudo-diploid model 3

B
Additive tetrasomic polyploidy model 3

C
Full tetraploid model 3

B-C
model 4

GB

Total tuber weight 0.605 ± 0.074 0.642 ± 0.062 0.645 ± 0.060 0.652 ± 0.060

Tuber weight < 40 0.512 ± 0.092 0.622 ± 0.077 0.633 ± 0.071 0.639 ± 0.075

Tuber weight 40–50 0.322 ± 0.088 0.399 ± 0.098 0.411 ± 0.099 0.430 ± 0.097

Tuber weight 50–60 0.604 ± 0.074 0.650 ± 0.056 0.637 ± 0.061 0.650 ± 0.059

Tuber weight > 60 0.618 ± 0.068 0.668 ± 0.075 0.654 ± 0.085 0.654 ± 0.084

Starch (%) 0.749 ± 0.052 0.841 ± 0.035 0.802 ± 0.049 0.838 ± 0.036

GK

Total tuber weight 0.625 ± 0.064 0.628 ± 0.062 0.616 ± 0.064 0.624 ± 0.063

Tuber weight < 40 0.592 ± 0.086 0.594 ± 0.088 0.569 ± 0.089 0.584 ± 0.089

Tuber weight 40–50 0.325 ± 0.108 0.340 ± 0.100 0.303 ± 0.111 0.327 ± 0.106

Tuber weight 50–60 0.585 ± 0.075 0.598 ± 0.072 0.582 ± 0.071 0.590 ± 0.071

Tuber weight > 60 0.651 ± 0.088 0.648 ± 0.088 0.649 ± 0.091 0.646 ± 0.090

Starch (%) 0.745 ± 0.067 0.746 ± 0.070 0.745 ± 0.070 0.746 ± 0.070

Other results from Mosslunda show that model 1 with
pseudo-diploid structure (A) gave the best prediction accuracy
for only tuber weight above 60 mm for GK (0.664). The
additive tetrasomic polyploid structure (B) model 3 gave the best
prediction accuracy under the GK for all the traits except tuber
weight above 60 mm size with the average correlation ranging
from 0.497 (for tuber weight with 40–50 mm size) to 0.754
(for tuber starch percentage). Model 4 gave the best prediction
accuracy for five traits under the GB method and a relative high
prediction accuracy under the GB method (Table 6): i.e., total
tuber weight (0.730), and tuber weights below 40 (0.590), 40–50
(0.540), 50–60 (0.662), and above 60 (0.697) mm sizes.

Multi-Environment Analyses (Umeå) (Models 3 and 4)
Results from Umeå (Table 7 and Figure 3) show that the
best predicted traits were starch (%) and tuber weight above
60 mm size for both GB and GK methods with, in general,
higher prediction accuracy of GB over the GK method. Evidence
indicates that a single-kernel model 3 with the pseudo-diploid
structure (A) gave the best prediction accuracy for only tuber
weight above 60 mm size when using GK (0.651). Similar
to Mosslunda, the predictions from Umeå under the multi-
environment single-kernel model 3 analyses show that the
additive tetrasomic additive polyploid structure (B) gave the
best prediction accuracy under the GB and GK methods
for several traits.

For GB, the best predictive traits were tuber weight with 50–
60 mm size (0.65), tuber weight above 60 mm size (0.668), and
tuber starch percentage (0.841), whereas under model 3, the five
traits of GK had the highest correlation with average correlations
ranging from 0.34 (for tuber weight with 40–50 mm size) to 0.746
(for tuber starch percentage). Model 4 gave the best prediction
accuracy for four traits under the GB method with a relatively
high prediction accuracy (Table 7) for total tuber weight (0.652),
and for tuber weights below 40 (0.639), 40–50 (0.430), and 50–60
(0.650) mm sizes.

Summary of Multi-Environment Analyses
In general, results including G × E interaction in the multi-
environment analyses exploit the information on the relationship
between the location-year combinations and had prediction
accuracy estimates higher than those obtained from the single-
environment analyses (results from models 1 and 2 vs. models
3 and 4) (Figures 1–3). For the three sites, two-kernel model 4
with GB seems to be the best method in combination with the
additive tetrasomic polyploidy structure B for predicting most of
the tuber traits. Most of the traits gave relatively high prediction
accuracy under this combination of marker structure (A, B, C,
and B-C) and the combined methods of GB and GK, including
the multi-environment with the G× E model.

Top Performing Breeding Clones and Cultivars as per
Their Genomic Best Linear Unbiased Predictions
A 3% threshold (or a selection intensity i of 2.268; Falconer
and Mackay, 1996) was used for defining the top performing
potato germplasm according to their GBLUPs at each site for
both total tuber weight and tuber starch percentage, as well as
AUDPC for late blight in Mosslunda, and reducing sugars in
Umeå. None of the breeding clones nor the cultivars were at the
top for tuber weight across sites, while starch cultivars’ ‘Serum
Star’ and ‘Saprodi’ were in the top 3% for tuber starch percentage
across sites. Only one breeding clone for crisps (107) had a high
GBLUP for tuber starch percentage under the long day length
of Umeå. Another known starch cultivar (‘Nofy’) also had a
high GBLUP for this trait but below the selection intensity of
2.268 in the high tuber yielding site (Helgegården) and in Umeå.
This starch cultivar, which shows a host plant resistance to late
blight, and seven breeding clones (1402009, 1342004, 1410005,
1402001, 1314013, 1314015, and 1419006) had the best GBLUPs
for AUDPC in Mosslunda, while the only other breeding clone
for crisps (121) was within the 3% of top GBLUPs for reducing
sugars in Umeå. The other seven were the released cultivars and
mostly from Scandinavia.
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The top 3% for tuber weight in Helgegården were five breeding
clones (0101011, 0003022, 1201001, 1209001, and 2-IV-4) and
the cultivar ‘Kingsman.’ Four of these breeding clones (except
2-IV-4), along with two other breeding clones (1429006 and
1415001), plus two cultivars (‘Galactica’ and ‘7FOUR7’), were at
the top as per their GBLUP for tuber weight in Umeå, while 2-
IV-4 along with another five breeding clones (1415001, 1402009,
1429006, 1314015, and 2-IV-6), and two cultivars (‘Papageno’ and
‘Connect’) were within the 3% threshold in Mosslunda. One of
these breeding clones (1402009) was also among the top GBLUPs
for tuber weight in Umeå.

There was not a single breeding clone or cultivar that had
the best 3% GBLUPs for all four traits, though most of the
top performing were breeding clones. Such results highlight the
importance of adaptability for performing under stress; they also
show that breeding for the target population of environments
yields more outstanding germplasm, as shown by the high
number of breeding clones for both productivity (or total tuber
weight) and host plant resistance to late blight (as measured by
the AUDPC), despite being from a small population size (49:
41 for table and 8 for crisps), vis-á-vis the number of released
cultivars (207) included in the trials.

The old breeding clone SW 93-1015 (showing host plant
resistance to late blight) was the female parent of 0101011,
0003022, and 1209001, while 2-IV-4 and 2-IV-6 are full sibs
derived from breeding populations involving wild Solanum
species. Breeding clones 1201001, 1314015, 1415001, and
1429006 with high GBLUPs for tuber weight were significantly
above the GBLUPs of their cultivar parents’ ‘Fontane,’ ‘Carolus,’
‘Solist,’ and ‘Arielle,’ respectively. Likewise, breeding clones
1314013 and 1314015 are full sibs and both are half sibs of
1342004 and 1419006 because they share the cultivar ‘Carolus’ as
a parent. All of them had a high GBLUP for host plant resistance
to late blight (and above that of their cultivar parent), as well as
the full sibs 1402001 and 1402009 (derived from crossing an old
breeding clone with the cultivar ‘Satina’).

DISCUSSION

The greatest prediction accuracy was for the starch content and
host plant resistance to late blight, which were the characteristics
with highest broad-sense heritability in the training population
(Ortiz et al., 2021). Total tuber weight and according to sizes,
as well as reducing sugars in tuber flesh, had a lower prediction
accuracy and a broad-sense heritability than starch content and
host plant resistance to late blight. Our research confirms the
preliminary results regarding a specific gravity or an increasing
trait heritability in an environment that facilitates trait scoring
in the field for the host plant resistance to scab caused by a few
Streptomyces species (Ortiz et al., 2020).

The prediction of breeding values uses an hypothesis-
independent approach to account for all the quantitative genetic
variation (thereby “capturing” small effects of loci) and estimates
marker-allelic effects in a population. For further advancing
the genomic prediction in a polysomic polyploid crop such as
potato, we sought answers related to how prediction accuracy

may be affected by using various dosages of marker alleles, or
a single and multi-environment G × E in linear (GBLUP or
GB) or non-linear (GK) models, which are further described
below. We are also investigating the effect of heterozygosity in
genomic prediction in potato, which suffers significantly from
inbreeding depression (Golmirzaie et al., 1998a,b). Genotyping
and field trials are underway for comparing hybrid (S0) and first
generation selfing (S1) offspring derived from crossing cultivars
with different GEBV for various characteristics.

The ensuing knowledge from ours, along with other previous
research on what training set to use (Selga et al., 2021b) or
number of markers to include in modeling (Selga et al., 2021a),
allows improving the approach for predicting breeding values
for selection, thus, making accurate and cheap modern potato
crossbreeding, e.g., by selecting the most promising parents
for further pairing and reducing cost for field progeny testing.
Genomic prediction of breeding values may also improve the
accuracy of field trials and prompt the reorganization of genetic
improvement programs (Desta and Ortiz, 2014). Likewise, GEBV
may facilitate an early recurrent selection in potato breeding by
selecting the most promising offspring for further intermating,
and particularly, for characteristics that are difficult to measure.

Single-Environment vs.
Multi-Environment G × E Genome-Based
Prediction Models
In general, genome-based prediction accuracy obtained in
this potato study, using different marker similarity matrices
accounting for additive and non-additive marker relationship
under single-environment and multi-environment models, show
prediction accuracy patterns similar to those found in other
studies using other species with different levels of ploidy. The
process of borrowing information from multi-environment trial
analyses modeling G × E provides a very useful increase of
genomic-enabled prediction accuracy over the evidence obtained
from the single-environment analyses. This increase in prediction
accuracy of G × E models has been clearly and extensively
documented, among others, in Burgueño et al. (2012), Jarquín
et al. (2014), Crossa et al. (2017, 2019), and Cuevas et al. (2017,
2018, 2019) where the genomic similarity between cultivars is
increased when modeling the phenomenon of G × E. That is,
the appropriate statistical modeling of G × E allows borrowing
information from correlated environments to the predictions of
unobserved phenotypes in environments. For all the agronomy
traits included in this study, the important increase in prediction
accuracy when genomic prediction models include G× E models
is clear. Supplementary Table 2 shows the relatively high and
positive phenotypic correlations between the three sites and the
six traits included in this study that explain part of the increase in
genomic based prediction achieved by models including G× E as
compared with the single trait models.

Differences Between Random
Cross-Validation 1 and Single-Site
Two type of random cross-validation are usually employed
for comparing different models and methods. Burgueño et al.
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TABLE 8 | Prediction accuracy (ρ) ranges of breeding values for selection of host plant resistance to late blight, tuber yield, starch percentage, and crisp quality in potato using different training population sizes and
varying number of testing environments.

Characteristic Training population size (N) and testing environments Prediction method ρ References

Host plant resistance to
late blight

N = 273; early and advanced breeding clones with records from
7 years at single site using non-replicated plots or three 4-hill plots
in randomized complete block design (RCBD)

Bayesian ridge regression (BRR),
Bayes B

0.24–0.31 Enciso-Rodriguez et al.,
2018

N = 184; breeding clones and parents with data scoring over
3 years at single site

GBLUP, Bayes A, Bayes Cπ,
Bayesian LASSO (BL)

0.32–0.86 Stich and Van Inghelandt,
2018

N = 241–336 at two sites using RCBD GBLUP 0.52–0.68 Gemenet et al., 2020

N = 92; first generation (T1) plus 4 ancestors with data scoring from
1 year at single site

BRR, Bayes A, Bayes B, Bayes C,
BL

0.13–0.24 Selga et al., 2021a

N = 301; two first generation (T1) half-sib offspring (n1 = 151,
n2 = 149) with data from 1 year at single site

BRR 0.16–0.31 Selga et al., 2021b

Total tuber weight N = 190; EU released cultivars evaluated in single site over 2 years
using RCBD with three replications

BL, RKHS, Bayes A, Bayes B,
Bayes C

ca. 0.25–ca. 0.34 Habyarimana et al., 2017

N = 184; breeding clones and parents with data recording over
3 years at single site

GBLUP, Bayes A, Bayes Cπ, BL 0.43–0.55 Stich and Van Inghelandt,
2018

N = 571; data from breeding clones over 6 years GBLUP 0.06–0.31 Endelman et al., 2018

N = 413; T3 offspring in replicated trials along with standard
cultivars

HBLUP (pedigree, phenotypic, and
genomic information)

0.32–0.34 Sood et al., 2020

N = 241–336 at two sites using augmented designs GBLUP 0.16–0.38 Gemenet et al., 2020

N = 665, non-replicated trials of T1 (n1 = 465 in 4-plant plots) and
T2 (n2 = 138 in 10-plant plots) at one site plus T3+ (n1 = 62 in
20-plant plots) offspring in replicated trials across three sites

BRR 0.05–0.75 Selga et al., 2021b

N = 147; cultivars and very advanced breeding clones with testing
across three sites over 2 years

GBLUP, BL, Bayes A, Bayes Cπ 0.55–0.59 Wilson et al., 2021

Tuber starch or specific
gravity

N = 762; hybrid offspring derived from biparental crossing of 18
plus unrelated 74 breeding clones for model validation

GBLUP, Bayes A, Bayes C 0.09–0.81 Sverrisdóttir et al., 2017

N = 190; EU released cultivars evaluated in single site over 2 years
using RCBD with three replications

BL, RKHS, Bayes A, Bayes B,
Bayes C

ca. 0.13–ca. 0.69 Habyarimana et al., 2017

N = 1,146; mapping population (n1 = 762) over 2 years at one site
(non-replicated in year 1 and RCBD with two reps in year 2) plus
two testing panels (n2 = 92 incl. 18 parents of mapping population;
n3 = 292 breeding clones) with trial data over years

GBLUP 0.37–0.71 (across pops)
0.75–0.83 (cross validating)

Sverrisdóttir et al., 2018

N = 571; data from breeding clones over 6 years GBLUP 0.13–0.63 Endelman et al., 2018

N = 184; breeding clones and parents with data recording over
3 years at single site

GBLUP, Bayes A, Bayes Cπ,
Bayesian Lasso

0.51–0.83 Stich and Van Inghelandt,
2018

N = 200; non-replicated T2 (n2 = 138 in 10-plant plots) at one site
plus T3+ (n1 = 62 in 20-plant plots) offspring in replicated trials
across three sites

BRR 0.43–0.62 Selga et al., 2021b
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(2012) and Lopez-Cruz et al. (2015) distinguished a random
cross-validation 1 (CV1) when predicting lines that were never
evaluated in any environment, and random cross-validation
2 (CV2) that consists of some lines tested in only some
environments but not in others. Extensive results from Burgueño
et al. (2012), Jarquín et al. (2014), and Lopez-Cruz et al. (2015)
demonstrated that a genome-based prediction accuracy obtained
from CV1 are similar to those obtained when using a single
environment (site) genome-based prediction model. Lopez-Cruz
et al. (2015) mentioned that “This feature of the M × E model
can be exploited in prediction problems such as CV2; however,
such borrowing of information within line is not possible in CV1
and, consequently, the M × E model performs similarly to the
stratified analysis for prediction of performance of lines that have
no phenotypic records.”

To investigate the results of CV1 in the this study we have
assessed the genomic-enabled prediction accuracy of the trait
tuber weight, using the full tetrapoid (C) GBLUP kernel with
model 1 (single-site), and compared it with the G × E model
3 (multi-site). The results were similar for the three sites. For
site Helgegarden, model 1 gave an average genomic prediction
accuracy of 0.418, whereas model 3 gave an average prediction
correlation of 0.433. Similar for site Mosslunda, model 1 gave an
average prediction accuracy of 0.563 vs. 0.568 as mean prediction
accuracy for model 3, whereas for site Umea, the mean genomic-
enabled prediction for model 1 was 0.455 and for G × E model 3
model 3 was 0.450.

This is explained by the exchange of information (borrowing
of information) that is achieved in the main effects component,
that is, Z2g, where g had the effect of each line that are predicted
throughout the environments. For G × E model 3 (multi-site),
borrowing (exchanging) information between lines occurs only if
the lines have genetic and environmental similarity. These results
showing a similar genome-based prediction accuracy between
model 1 and CV1 vs. G× E model 3 (multi-site) are similar (with
small differences between models) to those shown by Lopez-Cruz
et al. (2015; Tables 5–7).

Kernel Methods Under Different Potato
Autopolyploid Genomic Similarity
Matrices With Multi-Environment G × E
Models
The use of Gaussian kernels has been extensively documented
in genome-based studies as a non-linear kernel that increases
prediction accuracy over the linear kernel given by the linear
additive GBLUP. The non-linear kernels included in multi-
environment G × E models have been shown to increase the
genome-based prediction accuracy by around 5–10% in several
studies (Cuevas et al., 2016, 2017, 2018, 2019; Crossa et al., 2019).

As noted in our study, including the GK in the multi-
environment G × E model did not overcome the genome-based
prediction accuracy over the GB method. One of the reasons
could be that the some of the marker structures employed,
like the full tetraploid, already account for the additive and
non-additive structure of the markers; thus, no extra benefit is
obtained by including models that will exploit these cryptic and
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small epistatic inter-locus interactions between markers. Another
possibility is that the GK is not able to capture the residual
epistatic interactions that may exist in the tetrasomic polyploid
potato even after the use of a similarity marker structure that
considers the linear additive kernel and the non-linear kernel
of the full tetraploid. The two kernels (B and C), with the
multi-environment G × E model using the linear GBLUP (GB)
kernel, seem to capture most of the potential marker epistatic
interactions without the need to add the non-linear GK kernel.
More research is required in this area.

Prediction Accuracy of Other
Genomic-Enabled Predictions of Potato
Table 8 provides an up-to-date summary information on all
available journal articles regarding prediction accuracy estimates
of GEBV for selection in potato. This table only includes traits
that were evaluated in our research: i.e., tuber weight (total
and by size), host plant resistance to late blight, tuber starch
percentage, and crisp quality. The prediction accuracy estimates
for tuber weight and tuber starch percentage are equal or above
those available in the literature, or within the known ranges
for both the host plant resistance to late blight (with a bias
toward high correlations) and the crisp quality as measured by
reducing sugars. These are encouraging results because they show
that the multi-trait, multi-environment modeling of the GEBV
increased the prediction accuracy estimates, which may also vary
according to training population size and type, trial data quality,
and method or model use.

CONCLUSION

The results for single-site analyses of genome-based prediction
accuracy comparing the different structures of the marker
matrices and the methods (GBLUP vs. Gaussian kernel) for the
different traits show that the trait with the highest prediction
accuracy for one kernel on marker structures A, B, C (model
1), and for two-kernel (model 2) and for linear GB kernel and
non-linear GK kernel was tuber starch percentage, followed
by total tuber weight. Regarding single kernel (model 1) vs.
the two-kernel method (model 2), results show an increase
in prediction accuracy of the combinations of two kernels
(model 2) over model 1. Furthermore, GK does not show any
clear advantage over the linear kernel GB. In general, results
including G × E interaction in the multi-environment analyses
had prediction accuracy estimates higher than those obtained
from the single-environment analyses. Two-kernel model 4 for
multi-environment models with linear kernel GB is the best
combination. Most of the traits gave relatively high prediction

accuracy under this combination of marker structure (A, B, C,
and B-C), methods GB and GK, including the multi-environment
with G× E model.
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