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The article reviews and benchmarks machine learning methods for automatic

image-based plant species recognition and proposes a novel retrieval-

based method for recognition by nearest neighbor classification in a deep

embedding space. The image retrieval method relies on amodel trained via the

Recall@k surrogate loss. State-of-the-art approaches to image classification,

based on Convolutional Neural Networks (CNN) and Vision Transformers

(ViT), are benchmarked and compared with the proposed image retrieval-

based method. The impact of performance-enhancing techniques, e.g., class

prior adaptation, image augmentations, learning rate scheduling, and loss

functions, is studied. The evaluation is carried out on the PlantCLEF 2017,

the ExpertLifeCLEF 2018, and the iNaturalist 2018 Datasets—the largest

publicly available datasets for plant recognition. The evaluation of CNN and

ViT classifiers shows a gradual improvement in classification accuracy. The

current state-of-the-art Vision Transformer model, ViT-Large/16, achieves

91.15% and 83.54% accuracy on the PlantCLEF 2017 and ExpertLifeCLEF

2018 test sets, respectively; the best CNN model (ResNeSt-269e) error rate

dropped by 22.91% and 28.34%. Apart from that, additional tricks increased

the performance for the ViT-Base/32 by 3.72% on ExpertLifeCLEF 2018

and by 4.67% on PlantCLEF 2017. The retrieval approach achieved superior

performance in all measured scenarios with accuracy margins of 0.28%,

4.13%, and 10.25% on ExpertLifeCLEF 2018, PlantCLEF 2017, and iNat2018–

Plantae, respectively.
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1. Introduction

Accurate species identification is essential for most ecologically motivated studies,

in the pharmaceutical industry, agriculture, and conservation. In the case of

Flora—with more than 400,000 species and high inter-species similarities—correct

species determination requires a high level of expertise. An identification process using

dichotomous keys may take days, even for specialists, especially in locations with high

biodiversity, and it is exceedingly difficult for non-scientists (Belhumeur et al., 2008). To

overcome that issue, Gaston and O’Neill (2004) proposed to use a computer vision based

search engine to partially assist with plant identification and consequentially speed up
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the identification process. Since then, we have witnessed an

increased research interest in plant species identification using

computer vision and machine learning (Wu et al., 2006, 2007;

Prasad et al., 2011; Priya et al., 2012; Caglayan et al., 2013;

Munisami et al., 2015), especially following the advances in deep

learning (Ghazi et al., 2017; Bonnet et al., 2018; Lee et al., 2018;

Šulc et al., 2018; Wäldchen and Mäder, 2018; Picek et al., 2019).

The overall performance of automatic fine-grained image

classifiers has improved considerably over the last decade

with the development of deep neural networks, mostly

Convolutional Neural Networks (CNNs). We refer readers

unfamiliar with the principles of deep learning and CNNs

to the book by Goodfellow et al. (2016). The success of

deep learning models trained with full supervision is typically

conditioned by the existence of large databases of annotated

images. For plant recognition, such large-scale data are

available, thanks to citizen-science and open-data initiatives

such as Encyclopedia of Life (EoL), Pl@ntNet, and the Global

Biodiversity Information Facility (GBIF). This allowed building

challenging datasets for fine-grained classification training and

evaluation, e.g., in PlantCLEF (Goëau et al., 2016, 2017,

2018, 2020, 2021), LifeCLEF (Joly et al., 2018, 2019, 2020,

2021), iNaturalist (Van Horn et al., 2018), and Pl@ntNet

(Garcin et al., 2021).

This article deals with automatic image-based plant species

identification “in the wild”, thus dealing with: (i) Different

scales: Plant species can be observed from various angles

and distances. (ii) Intra-class differences: Plant organs—

leaf, fruit, bark, etc.—look very distinct. (iii) Inter-class

similarities: The same organ of different species might look

very similar. (iv) Background and Clutter: Other species

are present behind or around the observed sample, and

many more. Identification of plants from images is a fine-

grained classification problem, due to the high number

of classes1, high intra-class variance, and small inter-class

differences. Šulc and Matas (2017) showed that constrained

1 We use the term class following themachine learning wording, where

classes denote the categories to be recognized, not the taxonomic rank

(classis), i.e., we use the term class for species.

FIGURE 1

“In the wild” photograph samples—PlantCLEF datasets. Images by soyoban, Liliane Roubaudi, Hugo Santacreu, Sarah Dechamps, Richard
Gautier, Heinz Gass, Alain Bigou, Jean-Michel Launay, and Jose Luis Romero.

plant identification tasks, such as recognition of scanned leaves,

can be solved with a high level of classification accuracy

(± 99%). Yet the “in the wild” scenario, with an unspecified

view or organ type, natural background, possible clutter in

the scene, etc., remains challenging even for state-of-the-art

deep learning methods. For “In the wild” photograph samples,

refer to Figure 1.

First, is the standard approach, where fine-grained

recognition is posed as closed-set classification; the learning

involves minimization of cross-entropy loss. Second, a retrieval-

based approach, which is very competitive, achieves superior

in comparable conditions. Here, the training involves learning

an embedding where the metric space leads to high recall

in the retrieval task. Formulating fine-grained recognition

as retrieval has clear advantages—besides providing ranked

class predictions, it recovers relevant nearest-neighbor labeled

samples. The retrieved nearest neighbors provide explainability

to the deep network and can be visually checked by an expert.

Moreover, the user may inspect specific information, e.g., about

location and date of collection, to further reduce decision

uncertainty. Besides, the retrieval approach naturally supports

open-set recognition problems, i.e., the ability to extend or

modify the set of recognized classes after the training stage.

The set of classes may change, e.g., as a result of modifications

to biological taxonomy. New classes are introduced simply

by adding training images with the new label, whereas in the

standard approach, the classification head needs re-training.

On the negative side, the retrieval approach requires, on top

of running the deep net to extract the embedding, to execute

the nearest neighbor search efficiently, increasing the overall

complexity of the fine-grained recognition system.

Section 4 discusses techniques that can noticeably improve

the performance of any vision-based species recognition system.

The techniques are diverse and attend to different problems.

The prior shift in the datasets, i.e., the difference between

the training and test data class distribution, is a significant

and omnipresent phenomenon. We test existing prior shift

adaptation methods and their impact on classification accuracy.

Class prior adaptation equips the system with the ability to

reflect the change of prior probability of observing a specimen
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of a given species over time and location. Image augmentations

make the system robust to acquisition conditions that, in some

applications, e.g., plant recognition, are far from the lab setting.

Finally, technical aspects related to training of the deep nets,

such as learning rate schedule, loss functions and the impact of

the noisy data, on classification performance, are discussed.

The performance evaluation part of the article builds on

our winning submissions to PlantCLEF (Picek et al., 2019; Sulc

and Matas, 2019) and extends a workshop article (Šulc et al.,

2018) and a PhD thesis (Šulc, 2020). It substantially extends

the experiments by including recent state-of-the-art methods for

image classification: Convolutional Neural Networks (CNNs)

(Xie et al., 2017; Hu et al., 2018; Zhang et al., 2020; Tan and Le,

2021), Vision Transformers (ViTs) (Dosovitskiy et al., 2021), and

an interpretable image retrieval approach (Patel et al., 2021).

2. Related work

This chapter reviews existing methods, systems, and

applications for plant species recognition: leaf or bark

recognition and “in the wild” plant species recognition.

2.1. Leaf and bark recognition

Leaf and bark recognition was the only application before

deep learning where automatic plant species identification

allowed to reliably tackle complex species recognition tasks.

Most techniques were based on two steps: (i) descriptor

extraction, often based on combining different hand-

crafted features such as shape, color, or local descriptors

(SIFT, SURF, ORB, etc.), and (ii) classical. classifiers such

as k-Nearest Neighbor (Munisami et al., 2015), Random

Forest (Caglayan et al., 2013), SVM (Prasad et al., 2011;

Priya et al., 2012), and early adoptions of neural networks

(Wu et al., 2006, 2007). The generalization capability of

these methods was limited, and so was the applicability—

e.g., most leaf recognition methods relied on the shape

of scanned leaves; thus, the usability in the “in the

wild” scenario was limited since the uniform background

was required.

2.2. Flora recognition in the wild

The continuous progress in automatic plant species

recognition “in the wild” has been strongly driven by the efforts

of the LifeCLEF research platform. Established in 2014, the

LifeCLEF helps track progress and allows reliable evaluation

of novel methods. In particular, the annual PlantCLEF

challenges are an immense source of plant species datasets

tailored to develop and evaluate automatic plant species

recognition methods.

Following the findings of the LifeCLEF challenges (Joly et al.,

2018, 2019, 2020, 2021), AI-based identification of the world

flora has improved significantly over the last 5 years, and it

reached similar performance as human experts for common

(Šulc et al., 2018) as well as for rare species (Picek et al., 2019).

Ensembles of CNN models were able to recognize 10,000 plant

species from Europe and North America and 10,000 from the

Guiana shield and the Amazonia with approximately 90 and 40%

accuracy, respectively.

Overall, there are few methods for plant recognition “in

the wild”; thus, we overview relevant methods for general fine-

grained recognition. Wu et al. (2019) developed a Taxonomic

Loss that sums up loss functions calculated from different

taxonomy ranks, e.g., species, genus, and family. Cui et al.

(2018) studied domain-specific transfer learning from large-

scale datasets to domain-specific fine-grained datasets. Zheng

et al. (2019) propose the Trilinear Attention Sampling Network

that generates attention maps by modeling the inter-channel

relationships, highlights attended parts with high resolution and

distills part features into an object-level feature. Keaton et al.

(2021) utilized object detection as a form of attention with a

bottom-up approach to detect plant organs and combine the

predictions from organ-specific classifiers. Malik et al. (2021)

used a standard ensemble-based approach utilizing Inception,

MobileNet and ResNet CNN architectures.

Several interesting approaches emerged in connection with

the annual PlantCLEF workshops. In PlantCLEF 2017, the best

performing submission competition with an accuracy of 88.5%

was developed by Lasseck (2017). The underlying method is

based on 12 models derived from 3 architectures—GoogLeNet,

ResNet-152, and ResNeXt-101-64x4d. All models were fine-

tuned from the ImageNet-1k checkpoints utilizing various

augmentation techniques, e.g., random cropping, horizontal

flipping, variations of saturation and lightness, and rotation.

While testing, 5 crops for all observation images are predicted

with all models and averaged. In the PlantCLEF 2018, the best

performing submission (Sulc andMatas, 2019) was based on two

TABLE 1 Datasets for plant recognition; “in the wild” scenario.

Number of images in

Dataset Species Training Validation Test

Pl@ntNet-300K 1,081 243,916 31,118 31,112

iNaturalist 2017† 2,101 158,407 38,206 ×

iNaturalist 2018† 2,917 118,800 8,751 ×

iNaturalist 2021† 4,271 1,148,702 42,710 ×

PlantCLEF 2016 1,000 113,205 × 2,583

PlantCLEF 2017‡ 10,000 320,544 × 25,170

ExpertLifeCLEF 2018‡ 10,000 320,544 × 6,892

PlantCLEF 2019 10,000 434,251 × 2,974

Species from the Plantae kingdom marked† , data with “trusted”, i.e., human verified,

labels marked‡ .
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architectures—Inception-ResNet-v2 and Inception-v4 (Szegedy

et al., 2017)—and their ensembles and achieved an accuracy

of 88.4%. The TensorFlow-Slim API was used to adjust and

fine-tune the networks from the publicly available ImageNet-

1k pre-trained checkpoints. All networks shared the following

optimizer settings: RMSprop with momentum and decay set to

0.9, initial learning rate 0.01, and exponential learning rate decay

factor 0.4. Batch size, input resolution, and random crop area

range were set differently for each network. For the used values

please refer to the original article (Sulc and Matas, 2019). The

following image pre-processing was used for training: Random

crop, with aspect ratio range (0.75, 1.33) and with various area

ranges, Random left-right flip, and Brightness and Saturation

distortion. At test-time, 14 predictions per image are generated

by using 7 crops and their mirrored versions: full image, central

crop covering 80% of the original image dimensions, central

crop covering 60% of the original image dimensions, and 4

corner crops covering 60% of the original image dimensions.

The significant improvement in accuracy was achieved by using

running averages of the trained variables instead of the values

from the last training step. This is important especially if the

noisy labels are present in the training set where mini-batches

with noisy samplesmay produce large gradients pointing outside

of the local optima. The use of the Polyak averaging (Polyak

and Juditsky, 1992) resulted in a more stable version of the

training variables.

3. Datasets

This section overviews datasets suitable for plant recognition

“in the wild” which, unlike other plant species datasets, contain

images of various plant body parts observed in an open world.

Such datasets are unique with high inter-class similarities—

bark of one species is similar to the bark of another species—

and high intra-class differences—the bark, flower, and fruit

of one species are visually distinct. Currently, datasets with

large species diversity and a sufficient number of samples

to train a reliable machine learning model are available.

The most significant providers of those datasets—iNaturalist,

Pl@ntNet, EoL, LifeCLEF—are closely connected to citizen-

science platforms, thus their data originate from thousands of

users, and are captured on various devices, observed under

different conditions, and submitted from many countries. The

most influential datasets are described below and their main

characteristics are summarized in Table 1.

For the experimental evaluation in this article, we used

iNaturalist 2018†, PlantCLEF 2017‡, and ExpertLifeCLEF 2018‡,

as they offer a sufficient number of species and test samples while

keeping the training set size and, thus, computational demands

reasonably low.

3.1. LifeCLEF—PlantCLEF

The annual LifeCLEF—PlantCLEF identification challenge

is an important source of data for plant recognition. Since 2017

the PlantCLEF challenges present the following classification

problem: For each plant observations consisting of one or more

images of the same specimen, predict the species. Example

images from one observation are visualized in Figure 2. The

PlantCLEF datasets are mainly intended for benchmarking

machine-learning-based algorithms for plant recognition, thus

are briefly described below.

The PlantCLEF 2016 dataset (Goëau et al., 2016) comprises

1,13,205 training images belonging to 41,794 observations of

1,000 plant species from France and neighboring countries.

Every image is annotated with a plant organ label, i.e., flower,

leaf, fruit, stem, branch, and whole plant. A small fraction

has GPS coordinates. The test set contains 2,583 images.

As in all PlantCLEF challenges, no predefined validation set

was provided.

The PlantCLEF 2017 challenge dataset (Goëau et al., 2017)

includes 3,20,544 images from the Encyclopedia of Life with

trusted labels, and noisy web data crawled with Bing and Google

search engines (∼1.15M images). The dataset covers 10,000

plant species—mainly from North America and Europe—

representing the biggest plant species identification dataset in

FIGURE 2

A PlantCLEF observation—images of di�erent plant parts. Images by Hugo Santacreu.
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the number of classes. The test set contains 25,170 images

(17,868 observations).

The ExperLifeCLEF 2018 training dataset (Goëau et al.,

2018) differs from the PlantCLEF 2017 dataset only in

the test set. The test set contains 6,892 images (2,072

observations) covering speciesmainly fromWestern Europe and

North America. In addition, selected endangered species, and

cultivated and ornamental plant species were added.

The PlantCLEF2019 dataset (Goëau et al., 2019) contains

434,251 images that belong to 10,000 rare species from the

Guiana shield and the Amazon rain forest.The images originate

from EoL and Google/Bing search engines; the majority have the

“noisy” labels. The test set is composed of 742 plant observations

(2,974 images) collected and identified by five experts on

tropical flora.

3.2. iNaturalist

iNaturalist is a crowd-based citizen-science platform

allowing citizens and experts to upload, annotate and categorize

species of the world. iNaturalist has a wide geographic and

taxonomic coverage—more than 343 thousand species with

approximately 97 million observations. The annual iNaturalist

competition datasets that include a significant number of plant

species are described below.

iNaturalist 2017: The iNaturalist 2017 dataset (Van Horn

et al., 2018) contains 2,101 plant species, with 1,58,407 training

and 38,206 validation images that have been collected and

verified by multiple independent users. The dataset features

many visually similar species that have been captured worldwide

and under various conditions. As labels for the test set were

not provided, it is impossible to specify how many plant species

are contained.

iNaturalist 2018: The iNaturalist Challenge 2018 dataset

includes 2,917 plant species, with 118,800 training and 8,751

validation images acquired the same way as in the previous year.

Additionally, complete taxonomy information was given for all

images. Test labels were not provided.

iNaturalist 2021: The iNaturalist Challenge 2021 dataset

with 1,148,702 training and 42,710 validation images is the

most extensive dataset considering the number of images—the

number of plant species was increased to 4,271. Test labels were

not provided as in all iNaturalist Challenge datasets.

3.3. Pl@ntNet-300K

The Pl@ntNet-300K dataset Garcin et al. (2021) is built from

the database of the Pl@ntNet citizen observatory and includes

1,081 species and 306,146 images. The dataset exhibits a long-

tailed class imbalance, where 20% of the most common species

provide 89% of the images. Provided validation and test sets

include 31,118 and 31,112 images, respectively.

4. Methods

This section is divided into three parts. First, the pipeline

for automatic Plant Recognition by the standard Image

Classification pipeline is described. Second, an alternative and

novel approach to Plant Recognition via kNN classification in

deep embedding space is proposed and described. Finally, a

range of methods and techniques that increase classification

performance are introduced.

4.1. Deep neural network classifiers

Plant species recognition can be easily automated through

the standard image classification approach, where a Deep

Neural Network (DNN) serves as a deep feature extractor

and a fully convolutional neural network as a classifier.

Image representations learned by deep neural networks

provide significantly better results than handcrafted features.

Furthermore, DNNs are data-driven and require no effort

or expertise for feature selection as they automatically

learn discriminative features for every task. In addition, the

automatically learned features are represented hierarchically on

multiple levels. Having such deep features is a strong advantage

over traditional approaches.

Currently, many DNN architectures are widely used;

thus, a broad range of Convolutional Neural Networks

and Transformer-based architectures are evaluated to test

the classification capabilities for different feature extractor

architectures. The ResNet-50 (He et al., 2016), Inception-v4,

and Inception-ResNet-v2 (Szegedy et al., 2017) are chosen as

baselines as they are commonly used in related study. We add

the following novel and state-of-the-art architectures:

SE-ResNeXt-101: Extends the ResNet deep residual blocks

by adding the NeXt dimension, called Cardinality (Xie et al.,

2017), and Squeeze and Excite blocks that adaptively re-

calibrates channel-wise feature responses by explicitly modeling

inter-dependencies between channels (Hu et al., 2018).

ResNeSt-269e: Applies channel-wise attention to different

parts of the architecture to leverage and allow the cross-

feature interactions and learning of the more diverse

representations. (Zhang et al., 2020).

EfficientNetV2-S: Similarly to the first EfficientNet

generation, the EfficientNet-v2 architectures are developed by a

combination of training-aware architecture search and scaling,

to jointly optimize training speed and parameter efficiency (Tan

and Le, 2021). Newly, the models: (i) were searched from the

space enriched with Fused-MBConv, and (ii) the last stride-1

stage in the original EfficientNet was removed.
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FIGURE 3

Image augmentations—Horizontal and vertical flip, small brightness/contrast adjustments, and 80–100% crops—used while training the deep
neural network classifier. Image by Zoya Akulova.

VisionTransformers:Unlike CNN, the Vision Transformer

(ViT) (Dosovitskiy et al., 2021) does not use convolutions but

interprets an image as a sequence of patches and processes it

by a standard Transformer encoder used primarily for natural

language processing (Vaswani et al., 2017). Compared to state-

of-the-art convolutional networks, selected ViT architectures

demonstrated excellent performance in fine-grained image

classification (Picek et al., 2022).

4.1.1. Training strategy
All NN architectures were initialized from publicly available

ImageNet-1k or ImageNet-21k pre-trained checkpoints

(Wightman, 2019) and further fine-tuned for 100 epochs.

Mini-batch gradients were accumulated to reach an effective

size of 128 for all the architectures—most of the time, 4 batches

of size 32 are accumulated. SGD with momentum (0.9) was used

as an optimizer with a custom learning rate (LR) schedule—

Reduce LR to a fraction of 0.9 if validation loss does not

decrease for 2 epochs. The loss was calculated as Softmax Cross

Entropy. While training, we employ a few data augmentation

techniques from the Albumentations library (Buslaev et al.,

2020). A sample image and its augmented variations are shown

in Figure 3. Augmentation methods, their description, and

specified non-default parameters are:

• RandomResizedCrop: creates a random resized crop with a

scale of 0.8− 1.0.

• HorizontalFlip: randomly (50% probability) flips the

image horizontally.

• VerticalFlip: randomly (50% probability) flips the

image vertically.

• RandomBrightnessContrast: changes contrast and

brightness by a random factor in a range −0.2 − 0.2

with 20% probability.

All images were: resized to match the pre-trained model

input size of 224 × 224 or 384 × 384, re-scaled from 0 − 255

to 0 − 1, and normalized by mean (0.5) and std (0.5) values in

each channel.

4.1.2. Test-time
At the test time, all images are resized to the appropriate

size, i.e., 224 × 224 or 384 × 384, and normalized as in

training. Next, all observation images are feed-forward and class

predictions are combined. The study about different methods

for prediction combinations is included in Section 5.3. The

classification performance for all selected models is evaluated on

both resolutions—224 × 224 and 384 × 384—and two different

test sets—PlantCLEF 2017 and ExpertLifeCLEF 2018.

4.2. Plant recognition via kNN
classification in deep embedding space

Fine-grained recognition of plant species can be alternatively

solved via the k-Nearest Neighbors algorithm (kNN) in an

embedding space where the samples from the same semantic

class are grouped together, and the samples from different

classes are far apart. Recent study by Touvron et al. (2021);

Khosla et al. (2020) have shown such a recognition technique

to outperform standard cross entropy based training. For

training of such an embedding, we use the current state-of-

the-art image retrieval method Patel et al. (2021), where a

deep neural network is trained on a surrogate loss—Recall@k.

The notations and methodology for the retrieval approach are

described below.

4.2.1. Notations
For a query example q ∈ X, the objective of a retrieval

model is to obtain semantically similar samples from a collection

� ⊂ X, also known as database, where X is the space of

all images. The database is divided into two subsets based

on the positive or negative samples to the query q. These

subsets are denoted by Pq and Nq, respectively, such that � =

Pq ∪ Nq. For the query q, all database samples are ranked

based on a similarity score, with the goal to rank positives

before negatives.
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4.2.2. Deep embedding
Image embedding, a learned vector representation of an

image, is generated by function fθ :X → Rd. Function fθ
is a deep neural network, either a ResNet-50 or a Vision

Transformer in this article, mapping input images to an L2-

normalized d-dimensional embedding. Embedding for image x

is denoted by xxx = fθ (x). Parameters θ of the network are learned

during the training using Recall@k surrogate loss. The similarity

score between a query q and a database image x is computed by

the dot product of the corresponding embeddings and is denoted

by s(q, x) = qqqTxxx, also denoted as sqx.

4.2.3. Recall@k surrogate loss
The Recall@k Surrogate loss is a differentiable

approximation of the Recall@k evaluation metric. For a

query q, the Recall@k metric is the ratio of positive (relevant)

samples in top-k retrieved samples to the total number of

positive samples in the database, given by |Pq|. The metric

focuses only on top-k ranked samples and is one of the

standard metrics to evaluate retrieval benchmarks. Recall@k

cannot be directly used as a loss function. It requires two

non-differentiable operations: ranking the database samples

and counting the number of positives that appear in top-k. The

subsequent text presents Recall@k expressed mathematically,

non-differentiability, and the differentiable approximation as

proposed by Patel et al. (2021).

Patel et al. (2021) denotes Recall@k by Rk
�
(q) when

computed for query q and database � and expresses it

mathematically in terms of ranks of samples in the database:

Rk
�
(q) =

∑
x∈Pq

H(k− r�(q, x))

|Pq|
, (1)

where the rank of sample x is denoted by r�(q, x), which depends

on the query sample q and the database �. H(.) is the Heaviside

step function, which is 0 for negative values and otherwise 1. The

rank r�(q, x) of sample x is computed according to the similarity

score, and it can be expressed mathematically as:

r�(q, x) = 1+
∑

z∈�,z 6=x

H(sqz − sqx), (2)

where H(.) is also the Heaviside step function applied on

the difference of similarity scores. Therefore, Recall@k from

Equation (1) can also be directly expressed as a function of

similarity scores as:

Rk
�
(q) =

∑
x∈Pq

H(k− 1−
∑

z∈�,z 6=x
H(sqz − sqx))

|Pq|
. (3)

The computation of Recall@k in Equation (3) involves the use

of two Heaviside step functions, one to obtain the rank and

the other to count the positives in top-k retrieved samples. The

gradient of the Heaviside step function is a Dirac delta function.

Hence, direct optimization of recall with back-propagation is not

feasible. Patel et al. (2021) provide a smooth approximation of

the Heaviside step function by the logistic function, a sigmoid

function στ :R → R controlled by temperature τ :

στ (u) =
1

1+ e−
u
τ

, (4)

Replacing the two Heaviside step functions with the sigmoid

functions of appropriate temperatures, a smooth approximation

of Recall@k can be expressed as:

R̃k
�
(q) =

∑
x∈Pq

στ1 (k− 1−
∑
z∈�
z 6=x

στ2 (sqz − sqx))

|Pq|
, (5)

The Recall@k Surrogate loss from Equation (5) is differentiable

and is used for training the parameters θ of the deep embedding

model. In practice, the Recall@k Surrogate loss is re-scaled to

have values between 0 and 1, by dividing it by min(k, |Pq|)

instead of |Pq|, and by clipping the values larger than k in

the numerator. The single-query loss to be minimized in a

mini-batch B, with size |B|, and query q ∈ B is given by:

Lk(q) = 1− R̃kB\q(q). (6)

The final loss is computed by averaging the loss across multiple

values of k as:

LK (q) =
1

|K|

∑

k∈K

Lk(q). (7)

In practice, we use following values K = {1, 2, 4, 8, 16}. All

examples in the mini-batch are used as queries, and the average

loss over all queries is minimized during the training.

4.2.4. Training
The training is set up for 100 epochs using an AdamW

optimizer (Loshchilov and Hutter, 2019) with an initial learning

rate of 0.0001, which decreases by a factor of 0.3 using a step

decay. For data augmentation, images are resized to 256 × 256,

and a random crop of 224× 224 is taken, followed by a random

horizontal flip with a probability of 0.5 and normalization with

mean and SD. The mini-batch is constructed via class-balanced

sampling with 4 samples per class and a large batch size of

4, 000 is used. Two feed-forward passes (Patel et al., 2021) are

accumulated to create a larger batch size to address the GPU

hardware demands. The first feed-forward pass is performed on

the batch with 4, 000 samples in chunks of 200 samples at a time.

All embedding vectors are stored while the intermediate features

are discarded from the GPU memory. Using the embedding

vectors and the ground truth labels, the loss (Equation 7) and the

gradients for each sample with respect to the embedding vectors
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are calculated. Finally, a second feed-forward is performed, also

in the chunks of 200 samples at a time, allowing the propagation

of the gradients through the deep embedding model for the

current chunk of 200 samples. At the end of the second feed-

forward stage, the model’s weights are updated.

4.2.5. Test-time
At inference, the test image is resized to 256 × 256, and a

central crop of 224 × 224 with normalization is the input to

the deep embedding model. A feed-forward pass is performed

through all the training and testing samples, and the embedding

vectors are stored. Each test sample is treated as a query for

retrieval, and the ten closest samples from the training set are

obtained. A majority vote determines the semantic class of the

test sample.

4.3. Class prior estimation

Commonly in Machine Learning, the class prior

probabilities are the same for the training data and test

data. However, plant species distributions change dramatically

based on various aspects, i.e., seasonality, geographic location,

weather, the hour in a day, etc. The problem of adjusting CNN

outputs to the change in class prior probabilities was discussed

in Sulc and Matas (2019), where it was proposed to recompute

the posterior probabilities (predictions) p(ck|xi) by Equation (8).

pe(ck|xi) = p(ck|xi)
pe(ck)p(xi)

p(ck)pe(xi)
=

p(ck|xi)
pe(ck)

p(ck)
K∑
j=1

p(cj|xi)
pe(cj)

p(cj)

∝ p(ck|xi)
pe(ck)

p(ck)
, (8)

The subscript e denotes probabilities on the evaluation/test

set. The posterior probabilities p(ck|xi) are estimated by

the Convolutional Neural Network outputs since it was

trained with the cross-entropy loss. For class priors p(ck),

we have an empirical observation—the class frequency in the

training set. The evaluation and test set priors pe(ck) are,

however, unknown. To evaluate the impact of changing class

priors, we compare three existing prior estimation algorithms—

the Expectation–maximization algorithm (EM) of Saerens et al.

(2002) and the recently proposed CM-L and SCM-L methods of

Sipka et al. (2022).

4.3.1. EM—expectation maximization
In our ExpertLifeCLEF 2018 challenge submissions, we

followed the proposition from Sulc and Matas (2019) to use

an EM algorithm of Saerens et al. (2002) for the estimation

of test set priors by maximization of the likelihood of the test

observations. The E and M step are described by Equation (9),

where the super-scripts (s) or (s + 1) denote the step of the

EM algorithm.

p
(s)
e (ck|xi) =

p(ck|xi)
p
(s)
e (ck)

p(ck)

K∑
j=1

p(cj|xi)
p
(s)
e (cj)

p(cj)

,

p
(s+1)
e (ck) =

1

N

N∑

i=1

p
(s)
e (ck|xi),

(9)

In our submissions, we estimated the class prior probabilities for

the whole test set. However, one may also consider estimating

different class priors for different locations, based on the GPS-

coordinates of the observations. Moreover, as discussed by Sulc

and Matas (2019), one may use this procedure even in the cases

where the new test samples come sequentially.

4.3.2. CM-L—confusion matrix based likelihood
maximization

The prior estimate is based on maximizing the likelihood

of the observed classifier decisions. The CM-L method uses the

classifier’s confusion matrix (CM) in the format Cd|y, where the

value in the k-th column and i-th row is the probability p(D =

i|Y = k) of the classifier deciding for class iwhen the true class is

k. The new class priors P are then estimated by maximizing the

log-likelihood with the following objective:

P̂ = argmax
P

ℓ(P) = argmax
P

K∑

k=1

nk log(Ck,: · P) (10a)

s.t.:
K∑

k=1

Pk = 1; ∀k : Pk ≥ 0, (10b)

where nk is the numbers of classifier’s decisions for class k on test

set and Ck,: is the k-th row of the confusion matrix.

The SCM-L method works analogically, but uses the so-

called soft confusion matrix (SCM) Csoft
d|y

estimated from the

classifier’s soft predictions f as

Ĉ
soft
:,k =

1

Nk

∑

xi : yi=k

f(xi), (11)

where Ĉ
soft
:,k denotes the k-th column of SCM. The probability

psoft
E

(D) can be estimated by averaging predictions f(x) over the

test set.

5. Results

First, we compare the state-of-the-art Convolutional

Neural Networks and Vision Transformers in Section 5.1.
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TABLE 2 Classification accuracy on the PlantCLEF 2017 and the ExpertLifeCLEF 2018 datasets for di�erent image prediction combination strategies.

Architecture Test set Image-wise Max Softmax Mean Softmax Max Logits Mean Logits

EfficientNetV2-S 2017 79.21 84.35 85.26 85.54 85.75

EfficientNetV2-S 2018 53.08 67.28 70.32 72.25 74.13

ViT-Base/32 2017 73.50 80.43 80.55 80.79 81.29

ViT-Base/32 2018 49.36 66.94 66.84 68.87 71.53

TABLE 3 Image classification accuracy for Deep Neural Network Classifiers on the PlantCLEF 2017 (right) and ExpertLifeCLEF 2018 (left) test sets.

PlantCLEF 2018—Accuracy [%] PlantCLEF 2017—Accuracy [%]

Architecture Input Images Observations Images Observations

ResNet-50 224× 224 40.03 56.32 68.00 74.57

Inception-v4 224× 224 43.41 59.41 71.32 77.92

Inception-Resnet-V2 224× 224 44.14 68.15 70.57 78.96

ViT-Base/32 224× 224 49.36 71.53 73.50 81.29

ViT-Base/16 224× 224 51.58 73.70 75.54 82.57

EfficientNetV2-S 224× 224 53.08 74.13 79.21 85.75

ViT-Tiny/16 384× 384 47.43 69.06 73.64 80.59

SE-ResNeXt-101 384× 384 54.61 73.75 80.31 85.98

ResNeSt-269e 384× 384 56.27 74.52 81.68 86.74

ViT-Base/16 384× 384 58.49 77.03 82.28 87.75

EfficientNetV2-L 384× 384 59.90 77.03 84.15 88.52

ViT-Large/16 384× 384 67.03 83.54 86.87 91.15

Observation values calculated as Mean Logits.

Second, we evaluate the image retrieval approach

to classification and compare it with the standard

classifiers in Section 5.2. Finally, additional techniques

for performance improvements are evaluated in

Section 5.3.

5.1. Image classification

5.1.1. Combining several predictions per
observation

LifeCLEF datasets include sets of images belonging

to the same specimen observation. Typically, the images

represent different organs of the specimen, e.g., flower, leaf,

Such sets of images are connected by the ObservationID

values provided in the metadata. The PlantCLEF 2017

test set contains 17,868 observations and 25,170 images.

The ExpertLifeCLEF 2018 test set is smaller with 2,072

observations and 6,892 images. Plant species prediction based

on multiple images is intuitive; it is inspired by the process

used for years by botanists. Four simple approaches of per-

image prediction combination are evaluated. Decide for the

class with

• Max softmax: maximum posterior probability estimate—

softmax—over all images, i.e., follow the most confident

prediction,

• Mean softmax: maximum average (over images) estimated

posterior probability,

• Max logit: maximum activation value (Logit) over

all images.

• Mean logits: maximum average (over images) logit value.

The best results of species prediction combination was achieved

by selecting the species with the maximum value of logit

mean. For the single ViT-Base/32 model and image size

of 224 × 224, the Mean logits approach outperformed the

max softmax by 0.86% on PlantCLEF 2017 and 4.59% on

ExpertLifeCLEF 2018. Overall, the accuracy is significantly

higher for observations then for single images, in some cases

increasing the accuracy by more then 20%. Full results are

shown in Table 2.

Convolutional neural networks: The comparison of the

former and recent state-of-the-art CNN architectures on the

PlantCLEF2017 and the ExpertLifeCLEF 2018 test sets shows

similar behavior as on other fine-grained datasets (Wah

et al., 2011; Van Horn et al., 2018; Picek et al., 2022). The

best performing model on both datasets is EfficientNetV2-L

Frontiers in Plant Science 09 frontiersin.org

https://doi.org/10.3389/fpls.2022.787527
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Picek et al. 10.3389/fpls.2022.787527

FIGURE 4

Classification performance (F1 and Accuracy) as box-plot for three backbone architectures and Classification and Retrieval approaches. Tested
on PlantCLEF2017 test set with input resolution of 224× 224.

TABLE 4 Performance evaluation for Classification (C) and Retrieval (R) based methods.

ExpertLifeCLEF 2018 PlantCLEF 2017 iNat2018–Plantae

Architecture Method Acc. Macro F1 Acc Macro F1 Acc Macro F1

ResNet-50 C 59.87 55.11 77.89 54.48 57.73 52.69

ViT-Base/32 C 65.21 60.29 80.68 59.18 57.24 53.17

ViT-Base/16 C 71.71 67.35 84.48 65.40 67.42 64.51

ResNet-50 R 60.15 56.30 80.27 55.57 57.95 56.32

ViT-Base/32 R 66.48 61.49 84.89 60.79 63.12 61.24

ViT-Base/16 R 71.99 69.20 88.61 66.39 77.67 76.74

All models were trained for 100 epochs with fixed image size (224× 224). No test-time augmentations were used. The most confident image prediction is used for all images belonging to

the same observation.
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with 77.03% accuracy on ExpertLifeCLEF 2018 and 88.52%

accuracy on PlantCLEF 2017. Other deep networks including

ResNeSt-269e and SE-ResNeXt-101 underperformend by a

significant margin. The achieved scores are summarized in

Table 3.

Vision transformers: The performance of different ViT

architectures in the FGVC domain, multiple architectures,

was evaluated for two different input resolutions—224 ×

224 and 384 × 384—on two test sets—PlantCLEF2017 and

ExpertLifeCLEF 2018. More precisely, ViT-Base/16 and ViT-

Base/32 are compared on the input size of 224 × 224 and ViT-

Large/16, ViT-Base/16 and ViT-Tiny/16 are tested on the input

size of 384× 384.

In the 384 × 384 scenario, ViT-Large/16 outperformed the

best CNN model (ResNeSt-269e) 2.63% points on PlantCLEF

2017 and by 6.51% points on ExpertLifeCLEF 2018 while

reducing the error by 22.91% and 28.34%, respectively. In

the 224 × 224 scenario, the relative performance differed;

EfficientNetV2-S outperformed all the models including

both Vision Transformers on the ExpertLifeCLEF 2017

dataset. Comparison on the PlantCLEF2017 dataset, show

the insignificant performance difference between ViT-Base/16

and EfficientNetV2-S.

5.2. Classification vs. metric learning

This section compares training a softmax image classifier

explicitly as in the previous experiments and training an

image retrieval system, which is subsequently used for

nearest neighbor classification. The resolution of images,

pre-trained weights and number of training epochs are

kept the same across the two setups for a fair comparison.

Even though we compare both methods under the same

conditions, those conditions handicap the standard

image classification approach as any additional techniques

are permitted.

Overall, the retrieval approach achieved superior

performance in all measured scenarios. Notably, the ViT-

Base/16 feature extractor architecture achieved a higher

classification accuracy with a margins of 0.28, 4.13, and

10.25% on ExpertLifeCLEF 2018, PlantCLEF 2017, and

iNat2018–Plantae, respectively. Besides, the macro-F1

performance differences margin is noticeably higher—1.85%

for ExpertLifeCLEF 2018 and 12.23% for iNat2018–Plantae

datasets. Even though the standard classification approach

performs better on classes with fewer samples (refer to

Figure 4), common species with high a-prior probability

are frequently wrongly predicted. This is primarily due to

the high-class imbalance preserved in the dataset mimicked

by the deep neural network optimized via SoftMax Cross-

Entropy Loss. Thus, the results of the standard image

classification approach performs way worst in case of the

TABLE 5 Ablation study considering di�erent techniques for

ViT-Base/32 performance improvements.

Test 2018 - Acc [%] Test 2017 - Acc [%]

TTA CCA RC Images Observations Images Observations

× × × 49.59 71.62 73.59 81.29

X × × +2.51 +1.98 +5.38 +4.65

× X × +0.32 +1.06 +0.70 +0.80

× × X –0.48 +1.30 +3.82 +3.86

× X X –0.10 +1.93 +3.83 +3.89

X × X +2.44 +2.51 +5.22 +4.22

X X × +3.01 +3.72 +5.16 +4.38

X X X +2.83 +2.85 +5.68 +4.67

TABLE 6 Accuracy before and after prior shift adaptation with the EM

algorithm (Saerens et al., 2002) and the (S)CM-L methods (Sipka et al.,

2022) on the ExpertLifeCLEF 2018 and the PlantCLEF 2017 test sets.

Architecture Test set EM CM-L SCM-L

ViT-Large/16 PlantCLEF 2017 +1.17 +1.25 +0.66

ViT-Large/16 ExpertLifeCLEF 2018 +2.21 +1.83 +1.64

SE-ResNeXt-101 PlantCLEF 2017 +1.65 +1.50 +1.07

SE-ResNeXt-101 ExpertLifeCLEF 2018 +3.81 +3.28 +3.23

All results are using the fine-tuned models and Mean Softmax Accuracy for combining

predictions belonging to the same observation. Input size 384× 384.

TABLE 7 Impact of additional noisy data on classification

performance.

Test 2018 - Acc [%] Test 2017 - Acc [%]

Min. samples Images Observations Images Observations

10 +0.17 –0.58 –0.20 –0.49

20 +0.32 –0.53 –0.33 –0.38

30 –0.13 –0.24 –0.44 –0.66

40 –0.10 –1.25 –0.60 –0.82

Baseline 49.77 68.24 74.19 81.16

macro-F1 score. A full comparison of the classification and

retrieval-based methods and their appropriate recognition

scores are listed in Table 4. Three architectures—ResNet-

50, ViT-Base/32, and ViT-Base/16 are evaluated. It can be

seen from the results that for all selected architectures,

retrieval leads to better performance. Furthermore, in

Figure 5, we provide qualitative examples from the

retrieval approach on the iNaturalist dataset. The Top5

predictions for randomly selected target images show that

the retrieval-like approach allows better interpretability of the

results.
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FIGURE 5

Qualitative examples from the retrieval approach on the iNaturalist dataset. The leftmost column shows samples from the test set followed by
five nearest neighbors in the learned embedding space from the training set. The red box denotes the wrong species.
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5.3. A fine-tuning cookbook

In this section, we evaluate several methods that have

the potential to increase performance for almost any deep

neural network architecture considerably. The evaluation

considers different loss functions, learning rate schedulers,

prior estimation methods, and augmentations. Furthermore, the

impact of the noisy data and the contribution of the test-time

augmentations are studied. We list helpful methods and those

that will make the performance worst if utilized. The evaluation

is carried out on the PlantCLEF2017 and ExpertLifeCLEF 2018

datasets andViT/Base-32 architecture with an input size of 224×

224, if not stated differently. All used methods are described

bellow. The ablation study for relevant methods is summarized

in Table 5.

Cyclic cosine annealing: We compare standard cosine, a

custom adaptive strategy where Learning Rate is decayed by

10% if validation loss is not reduced for two epochs, and Cyclic

Cosine Annealing (CCA). The CCA is an alternative to standard

Learning rate scheduling approaches, e.g., Exponential, Linear,

Step, and Cosine. The CCA is divided into multiple cycles where

the start learning rate decreases by 20%, and the learning rate

in each cycle decreases via the standard cosine function. Such

a learning rate schedule allows for diverging from local minima

and searching for better optima. We compare standard cosine,

a custom adaptive strategy where Learning Rate is decayed

by 10% if validation loss is not reduced for two epochs, and

Cyclic Cosine Annealing (CCA). Using the CCA instead of

the standard approaches, we measured relative performance

increases equal to +1.06 and +0.80% on the ExpertLifeCLEF

2018 and LifeCLEF2017, respectively.

Test-time augmentations: Test-time augmentations is a

procedure where various mutations of the original image are

feed-forwarded through the deep neural network in order to

provide images in different rotations or scales. In our case, we

use a simple test-time augmentation procedure—each test image

is processed as a batch of 13 images:

• One original image (resized to 224× 224 or 384× 384),

• Four central crops covering 90, 80, and 70% of the original

image size,

• Two top left corner crops covering 80 and 70% of the

original image size,

• Two top right corner crops covering 80 and 70% of the

original image size,

• Two bottom left corner crops covering 80 and 70% of the

original image size,

• Two bottom right corner crops covering 80 and 70% of the

original image size,

The predictions from all 13 cropped/augmented images are then

combined. The results in Table 5 show than using so called

test time augmentation improves the classification accuracy

up to 1.98 and 4.65% on the ExpertLifeCLEF 2018 and

LifeCLEF2017, respectively.

Random crop: Random crop allows for learning more

detailed object representation as an image is not resized to a

smaller resolution. Furthermore, training with random crops

has high synergy with the test-time augmentation process if

crops of similar size are used for TTA. For just a random crop,

we measured performance increases equal to+1.30 and+3.86%

achieved on the ExpertLifeCLEF 2018 and LifeCLEF2017,

respectively. Combining with TTA, the margin increased to

+1.93%,+3.89%.

Prior shift adaptation: The prior shift adaptation methods

described in Sections 4.3.1 and 4.3.2 are compared in Table 6.

Prior shift adaptation is applied to the prediction of each test

augmentation, before the combination of augmentation and

images per observation by averaging. The results show that in all

cases, prior shift adaptation improves the recognition accuracy.

The EM algorithm of Saerens et al. (2002) achieves the best

result in three cases, the CM-L method of Sipka et al. (2022)

in one case, but the differences are very small among the three

compared prior shift adaptation methods.

Focal loss: Even though commonly used in object detection,

Focal Loss (Lin et al., 2017) has the potential to focus the training

process onmore challenging and rare samples and could prevent

the vast majority of images from dominating the optimizer.

As any considerable performance increase for ViT and CNN

architectures was not measured on both datasets, we do not

recommend using Focal Loss for plant recognition.

Impact of the noisy data: Noisy data, i.e., data without

human-verified labels, are commonly used to increase the

number of rare species samples and balance long-tailed class

distribution. Even though the Krause et al. (2016) showed

unreasonable effectiveness of the noisy labels on small-scale

FGVC datasets, the contribution in the “in the wild” scenario is

not established. In the case of the flora recognition, upsampling

the minimum samples for each class (up to 10, 20, 30,

and 40) did not improve the accuracy on both testing sets,

i.e., the performance difference was statistically insignificant

(see Table 7).

6. Conclusion

The article assessed automatic plant identification as a

fine-grained classification task on the largest available plant

recognition datasets coming from the LifeCLEF and CVPR-

FGVC workshops, counting up to 10,000 plant species.

State-of-the-art classifiers: The comparison of deep neural

network classifiers in Section 5.1 shows the improvement in

classification accuracy achieved by recent CNN architectures.

The state-of-the-art Vision Transformers achieve even higher

recognition scores: the best model, ViT-Large/16, achieves

recognition scores of 91.15% and 83.54% on the PlantCLEF
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2017 and ExpertLifeCLEF 2018 test sets, respectively, before

additional post-processing like test-time augmentations and

prior shift adaptation.

Prior shift adaptation: The prior shift in the datasets,

i.e., the difference between the training and test data class

distribution, is a significant and omnipresent phenomenon. We

test existing prior shift adaptation methods and their impact

on classification accuracy. The experiments with state-of-the-

art methods for prior shift estimation (Saerens et al., 2002;

Sipka et al., 2022), evaluated in Table 6, show that all three

compared methods improve the classification accuracy in all

cases. The differences among all three methods are rather small,

EM achieving slightly better results in 3 of 4 cases. Given the

optimization speed, EM algorithm is a preferred choice.

Retrieval approach to fine-grained classification: Training

an image retrieval system and subsequently performing a nearest

neighbor classification is a competitive alternative, with better

results than direct classification. The prediction obtained via a

nearest neighbor search is more interpretable as the samples

contributing to the prediction can be visualized. Therefore,

a retrieval-based approach is more suitable if utilized within

the humans in the loop. On the other hand, the softmax

predictions of a standard neural network classifier allow for

simple post-processing procedures such as averaging and prior

shift adaptation, which are yet to be explored for the retrieval

approach, and which noticeably improve the final recognition

accuracy of the standard classifiers.

Overall, using image-retrieval has clear advantages, e.g.,

recovering relevant nearest-neighbor labeled samples, providing

ranked class predictions, and allows user or experts to visually

verify the species based on the k-nearest neighbors Besides,

the retrieval approach naturally supports open-set recognition

problems, i.e., the ability to extend or modify the set of

recognized classes after the training stage. The set of classes

may change e.g., as a results of modifications to biological

taxonomy. New classes are introduced simply by adding training

images with the new label, whereas in the standard approach,

the classification head needs re-training. On the negative side,

the retrieval approach requires, on top of running the deep net

to extract the embedding, to execute the nearest neighbor search

efficiently, increasing the overall complexity of the fine-grained

recognition system.

Contrary to our expectations, the error analysis in

Figure 4 shows that the retrieval approach does not bring

an improvement in classifying images from classes with few

training samples. Figure 5 shows that retrieval has a very high

accuracy for a higher number of species, but it also fails for a

higher number of species.
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