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Avocado is an important agricultural food crop in many countries worldwide. Phytophthora 
cinnamomi, a hemibiotrophic oomycete, remains one of the most devastating pathogens 
within the avocado industry, as it is near impossible to eradicate from areas where the pathogen 
is present. A key aspect to Phytophthora root rot disease management is the use of avocado 
rootstocks partially resistant to P. cinnamomi, which demonstrates an increased immune 
response following infection. In plant species, Nucleotide binding-Leucine rich repeat (NLR) 
proteins form an integral part of pathogen recognition and Effector triggered immune responses 
(ETI). To date, a comprehensive set of Persea americana NLR genes have yet to be identified, 
though their discovery is crucial to understanding the molecular mechanisms underlying 
P. americana-P. cinnamomi interactions. In this study, a total of 161 PaNLR genes were 
identified in the P. americana West-Indian pure accession genome. These putative resistance 
genes were characterized using bioinformatic approaches and grouped into 13 distinct PaNLR 
gene clusters, with phylogenetic analysis revealing high sequence similarity within these 
clusters. Additionally, PaNLR expression levels were analyzed in both a partially resistant 
(Dusa®) and a susceptible (R0.12) avocado rootstock infected with P. cinnamomi using an 
RNA-sequencing approach. The results showed that the partially resistant rootstock has 
increased expression levels of 84 PaNLRs observed up to 24 h post-inoculation, while the 
susceptible rootstock only showed increased PaNLR expression during the first 6 h post-
inoculation. Results of this study may indicate that the partially resistant avocado rootstock 
has a stronger, more prolonged ETI response which enables it to suppress P. cinnamomi 
growth and combat disease caused by this pathogen. Furthermore, the identification of 
PaNLRs may be used to develop resistant rootstock selection tools, which can be employed 
in the avocado industry to accelerate rootstock screening programs.

Keywords: NLR, avocado (Persea americana Mill.), Phytophthora, NB-LRR, resistance gene, NLR expression, 
Phytophthora root rot
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INTRODUCTION

Avocados (Persea americana Mill.) are an agriculturally important 
crop in many countries, including South  Africa, Spain, and 
Mexico (Bulagi et  al., 2016; Vargas-Canales et  al., 2020). The 
annual gross production value of avocados in South  Africa 
increased by 14.2% in 2018–2019 to a total of R1.42 billion, 
when compared to 2017–2018. Phytophthora root rot, caused 
by the hemibiotrophic oomycete, Phytophthora cinnamomi Rands, 
remains the largest threat to the avocado industry, in countries 
where the pathogen is present (Hardham and Blackman, 2018). 
The pathogen infects the fine feeder roots of avocado trees, 
leading to decreased water and nutrient transportation between 
cells (Coffey, 1987). A decline in tree health is observed which 
ultimately leads to plant death. Phytophthora cinnamomi can 
survive in soils over long periods of time through the production 
of chlamydospores and oospores, thus limiting the number of 
effective control methods for Phytophthora root rot (Dobrowolski 
et  al., 2008; Belisle et  al., 2019). Phosphite trunk injections, 
use of partially resistant rootstocks and organic mulching 
practices are methods currently employed by the avocado 
industry to control P. cinnamomi (Giblin et al., 2005). However, 
research has shown that P. cinnamomi has the potential to 
become less sensitive toward phosphite trunk injections 
(Dobrowolski et al., 2008). Continued screening for P. cinnamomi 
resistant rootstocks is thus of utmost importance and can 
be accelerated when host-pathogen interactions are understood.

Plant immune responses influence host-pathogen interactions 
and involve a myriad of proteins which activate complex, 
multilayered signaling pathways in response to pathogen attack 
(Dangl and Jones, 2001; Naveed et  al., 2020). These can 
be categorized into two main responses; the Pathogen associated 
molecular pattern (PAMP) triggered immune response (PTI) 
and the Effector triggered immune response (ETI; Davis and 
Hahlbrock, 1987; Jones and Dangl, 2006). The recognition of 
PAMPs by membrane-bound Pattern recognition receptors 
(PRRs) activate an innate immune response, which is lower 
in amplitude when compared to the ETI response, and forms 
part of the plant’s first line of defense against pathogens 
(Matzinger, 2007). Pathogens, in turn, produce effector proteins 
which are secreted into plant cells to interfere with this process. 
These effector molecules may then be recognized by intracellular 
proteins, such as Resistance (R) proteins, either directly or 
indirectly (Monteiro and Nishimura, 2018). Upon effector 
recognition, R proteins are activated and trigger ETI—a high 
amplitude, robust immune response. The primary mode of 
action of ETI is to activate localized cell death caused by the 
Hypersensitive response (HR), aimed at arresting pathogen 
growth (Cui et  al., 2015).

Resistance proteins are classified into five diverse groups 
based on protein structure and domains (Bezerra-Neto et  al., 
2020). The largest group consists of proteins with Nucleotide 
binding and Leucine rich repeat domains (LLRs), referred to 
as Nucleotide binding-Leucine rich repeats (NLRs; McDowell 
and Woffenden, 2003). Other groups include Receptor-like 
proteins (RLPs), Receptor-like kinases (RLKs), and 
Transmembrane Coiled-coil proteins (TM-CCs). The NLR group 

can be  further sub-divided into two classes, based on the 
NLR’s N-terminus domain. The first class has a Coiled-coil 
(CC) domain, while the second class has a Toll/interleukin-1 
receptor (TIR) structure domain. These NLRs are termed CNLs 
and TNLs, respectively. The CNL class also includes NLR 
proteins with both a CC domain and a RPW8 domain (resistance 
to powdery mildew), termed CCR-NLRs or CRNLs (Zhong and 
Cheng, 2016). CNLs are more abundant in the genomes of 
tree species when compared to TNLs, although the opposite 
is seen in Arabidopsis (Neale et  al., 2017). Certain angiosperm 
and conifer species also do not follow this pattern due to 
TNL duplications, resulting in increased TNL:CNL ratios. Tandem 
duplications and NLR gene family expansions may have increased 
fitness levels of tree species that need long-term defense strategies 
against pathogens (Tobias and Guest, 2014). As a result, these 
duplicated gene sequences are mostly found in gene clusters 
within plant genomes (Meyers et al., 2003). Head-to-head NLR 
genes may express proteins which interact to form homo– or 
heterodimers, often vital for proper NLR function (Liang et al., 
2019). These NLR protein dimers greatly increase the pathogen 
recognition potential of different NLR protein complexes 
(Van Wersch and Li, 2019).

A few NLR proteins are constantly expressed at low basal 
levels which allow plants to “scan” for invading pathogens 
(Meyers et  al., 2002). Most of the genes coding for NLR 
proteins, however, show differential expression patterns after 
pathogen attack. This is influenced by the species of pathogen, 
excreted effector proteins and the plant’s genotype (Christie 
et al., 2016; Andam et al., 2020). In Eucalyptus grandis challenged 
by Leptocybe invasa and Chrysoporthe austroafricana, 218 and 
343 NLRs were differentially expressed, respectively (Christie 
et  al., 2016). RGA1, a TNL protein in the tree species Salix 
viminalis, showed higher expression in the resistant host when 
compared to its susceptible counterpart after Melamspora larici-
epitea infection (Martin et  al., 2016). Higher RGA1 expression 
allows for earlier ETI activation which ultimately leads to 
enhanced disease resistance. The level and timing of NLR 
expression is crucial, as this ultimately governs whether a plant 
would be  successful in countering pathogen attack (Umadevi 
and Anandaraj, 2017). Transgenic plants with higher NLR gene 
expression demonstrated increased resistance to plant pathogens, 
even when these plants were transformed with non-native NLR 
genes. Expression of ZmNB25, a NLR first identified in maize, 
increased the resistance levels of Arabidopsis and rice toward 
Pseudomonas syringae pv. tomato DC3000 and Bipolaris maydis, 
respectively (Xu et al., 2018). Understanding how the expression 
of NLRs change during pathogen infection, and subsequently 
influence disease resistance, is vital to understanding complex 
plant-pathogen interactions.

To date, 49 complete putative NLR genes have been identified 
in avocado using microarray and RNA-sequencing analysis 
(Van den Berg et  al., 2018; Pérez-Torres et  al., 2021). In the 
study done by Pérez-Torres et  al. (2021), Hass avocado stems 
were infected with Fusarium kuroshium, which causes Fusarium 
dieback disease in avocado. However, only four NLR genes 
were differentially expressed after F. kuroshium infection. 
Additionally, only a single avocado NLR gene has been implicated 
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in the defense against P. cinnamomi infection in an avocado 
rootstock (Van den Berg et  al., 2018). This NLR, functionally 
annotated as RPP13-like protein 4, showed increased expression 
after P. cinnamomi infection in a partially resistant rootstock. 
The use of RNA-seq and microarray data to identify NLR 
genes is limited by the fact that these genes need to be expressed 
to enable detection and identification. Avocado NLR gene 
identification has further been hampered by the lack of a 
high-quality genome assembly. Three avocado genomes, the 
Mexican landrace cultivar (Persea americana var. drymifolia), 
the Hass fruiting cultivar (Rendón-Anaya et  al., 2019) and 
the West-Indian pure accession (WI) rootstock (Avocado Genome 
Consortium, Article in preparation) have only recently been 
sequenced, providing an opportunity to identify significantly 
more NLR genes within the avocado genome.

The discovery of NLR genes within the avocado genome 
could provide novel insight into the interactions of this plant 
with various pathogens. The current study set out to identify 
avocado NLR genes using the available genome sequences, and 
subsequently assess their expression during P. cinnamomi infection 
of partially resistant and susceptible rootstocks. We  identified 
161 putative PaNLR genes in the WI rootstock avocado genome, 
based on amino acid sequences characteristic of conserved 
NLR domains. Furthermore, we  analyzed the expression of 
the candidate PaNLR genes in a partially resistant and susceptible 
rootstock following P. cinnamomi inoculation using an RNA-seq 
approach. We  found significantly higher expression levels of 
84 PaNLR genes in the partially resistant rootstock when 
compared to the susceptible rootstock after P. cinnamomi 
inoculation. This knowledge may benefit future rootstock 
screening programs aimed at increasing resistance levels toward 
P. cinnamomi. The PaNLR gene sequences identified in this 
study serve as an invaluable resource which can be  used to 
pinpoint proteins that play a role in defense responses against 
other avocado pathogens.

MATERIALS AND METHODS

Putative PaNLR Gene Identification
The P. americana West-Indian pure accession genome was 
obtained from the Avocado Genome Consortium (Article in 
preparation). Gene and protein names assigned during genome 
annotation (Peame105C00g000000) were abbreviated to 
PC00g000000. The Hass fruiting cultivar (P. americana cv. Hass; 
GCA_008087245.1) and Mexican rootstock (P. americana var. 
drymifolia; GCA_008033785.1) genomes (Rendón-Anaya et  al., 
2019) were obtained from GenBank (NCBI Genbank). Putative 
Resistance genes were identified and classified using the Resistance 
Gene Analog (RGA) prediction pipeline, RGAugury1 (Li et  al., 
2016; downloaded in September 2020). The avocado WI genome, 
as well as whole genome protein sequences from the WI, 
Mexican and Hass genomes were used as input with default 
parameters. The pipeline identifies conserved RGA sequences 
and domains using five programs: BLAST v. 2.10.1 

1 https://bitbucket.org/yaanlpc/rgaugury/

(Camacho et  al., 2009), nCoil2 v. 2.2 (Lupas et  al., 1991), 
InterProScan3 v. 5.52-86.0 (Zdobnov and Apweiler, 2001), 
Pfam_scan4 v. 1.6 (Finn et  al., 2010), and Phobius5 v. 1.01 
(Käll et  al., 2004). Putative NLR proteins were classified based 
on the identified domains, namely Nucleotide binding site (NB), 
Coiled-coil domain (CC), Coiled-coil with RPW8 domain (CCR), 
Toll/interleukin-1 receptor (TIR), and Leucine rich repeat domain 
(LRR). Here, N, C, T, and L represent NB, CC, TIR, and LRR 
domains, respectively. Thus, a protein classified as CNL has a 
CC, NB, and LRR domain, and a CN protein only has a CC 
and NB domain. RLKs, RLPs, and TM-CC classifications were 
annotated if the protein sequences contained a transmembrane 
domain. After identification and classification, protein functional 
annotation was done by performing BLASTp analysis in the 
non-redundant NCBI database. Searches were performed using 
an expected threshold value of 0.00001, with only the top hit 
for each candidate NLR gene being considered. If no significant 
match could be  identified, proteins were annotated as Disease 
resistance-like (DRL) proteins.

PaNLR Gene Cluster Identification
Gene clusters were defined based on appropriate definitions 
from Meyers et  al. (2003), Kohler et  al. (2008), and Christie 
et  al. (2016). A gene cluster was defined as: a genomic region 
which contained three or more NLR genes, with less than 
nine other genes between adjacent NLR genes, and with two 
adjacent NLR genes being less than 250 kb apart. The WI 
genome general feature format (GFF) file was used to indicate 
the distance and number of neighboring genes between NLR 
genes. The position of NLR genes were visualized using CViT6 
v. 1.3 (Cannon and Cannon, 2011).

Phylogenetic Analysis
Phylogenetic analysis was used to assess whether PaNLR genes 
from the same gene cluster have high sequence similarity. 
Phylogenetic analysis included 161 P. americana NB-domain 
protein sequences, 10 complete protein sequences from 
Cinnamomum micranthum f. kanehirae (RWR97694.1, 
RWR95032.1, RWR91786.1, RWR92004.1, RWR93015.1, 
RWR98067.1, RWR88343.1, RWR88103.1, RWR87020.1, and 
RWR85657.1; Chaw et  al., 2019) and one complete protein 
sequence from Solanum bulbocastanum (Q7XBQ9.1; Song et al., 
2003). This S. bulbocastanum sequence was used since no RGA2 
sequences were identified in C. micranthum f. kanehirae (Chaw 
et al., 2019). Sequence alignment was performed using ClustalW 
v2.1 with default parameters in MEGA X (Thompson et  al., 
1994; Kumar et al., 2018). A maximum likelihood phylogenetic 
tree was produced using the Jones-Taylor-Thornton substitution 
model and 1,000 bootstrap replications.

2 https://bio.tools/ncoils
3 http://www.ebi.ac.uk/interpro/about/-interproscan/
4 http://pfam.xfam.org/
5 https://phobius.sbc.su.se
6 https://github.com/ekcannon/CViT
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Plant Inoculation and RNA Sequencing
PaNLR expression data were obtained by dual RNA-sequencing 
of P. americana inoculated with P. cinnamomi. Roots from 
partially resistant (Dusa®) and susceptible (R0.12) rootstocks 
were inoculated by dipping in P. cinnamomi (isolate GKB4) 
zoospore suspension with a concentration of 1.4 × 105 zoospores/
ml. Thereafter, plantlets were replanted in a mixture of vermiculite 
and perlite (1:1 ratio) and roots were harvested after 6, 12, 
24, and 120 h post-inoculation (hpi). Three biological replicates 
from three independent plants were harvested at each time 
point. For control samples, three plantlets per rootstock were 
mock-inoculated using sterile water and root samples were 
harvested at 24 hpi.

Root samples were flash frozen using liquid N2 and stored 
at −70°C. The samples were then powdered using an IKA® 
Tube Mill (IKA®, Staufen, DUE). Modified CTAB extractions 
were performed to extract total RNA (Chang et  al., 1993). 
RNA extractions were purified using a Qiagen RNeasy clean 
up kit (Qiagen, Valecia, California, United  States) following 
DNase I  treatment (Fermentas Life Sciences, Hanover, 
United  States). An Agilent 2100 Bioanalyzer (Agilent 
Technologies, Santa Clara, CA, United  States) was used to 
measure RNA purity and quality. Samples were stored at −70°C 
before being sent to Novogene (Novogene Corporation Inc., 
Chula Vista, California, United States) for paired-end (250–300 bp 
insert cDNA library) sequencing using Illumina Hiseq  2500 
with PE150 mode.

Expression Analysis
Dual RNA-sequencing data was analyzed by the Avocado 
Research Program and used during this study (Article in 
preparation). In short, RNA-seq reads were trimmed and 
low-quality bases were removed using Trimmomatic v. 0.39 
(Bolger et  al., 2014). FASTQC v. 0.11.9 was used to confirm 
read quality and the resultant reports were summarized using 
MultiQC (Ewels et  al., 2016). RNA-seq reads were aligned to 
the P. americana WI genome using HISAT v. 2.0.6 (Kim et  al., 
2015). Gene level transcript abundance was quantified using 
featureCounts v. 2.0.1 (Liao et al., 2014) during initial expression 
screens within RNA-seq libraries across all time-points (6, 12, 
24, and 120 hpi) using the mock-inoculated or susceptible 
rootstock libraries as a reference. DESeq2 (Love et  al., 2014) 
was used for the normalization and analysis of counts. Library 
data points for transcripts with fewer than 10 reads were 
removed, and transcripts without any read data overall were 
omitted from further analyses. Quantification data for PaNLR 
genes were extracted using R studio v. 1.4.1106 (RStudio Team, 
2020) and gene IDs previously identified by RGAugury. 
Expression level differences were analyzed using two approaches: 
(1) comparing the expression of candidate PaNLR genes 6, 
12, 24, and 120 hpi in both the susceptible and partially resistant 
rootstock to that of their respective mock-inoculated samples, 
and (2) comparing the expression of candidate PaNLRs in the 
partially resistant rootstock to the expression in the susceptible 
avocado rootstock (mock-inoculated, 6, 12, 24, and 120 hpi). 
PaNLR genes were considered to be  up- or downregulated 

when the Log2 Fold Change (Log2FC) value for each gene was 
≥1 or ≤−1, respectively. False discovery rate adjusted values 
of p ≤ 0.05 generated as part of the DeSeq2 package were used 
to indicate statistical significance. Heatmaps and dendrograms 
depicting expression level differences (Log2FC) were generated 
using the Pheatmap package v. 1.0.12 (Kolde, 2012) in R studio 
v. 1.4.1106 (RStudio Team, 2020). To assess whether NLR genes 
within a gene cluster were co-expressed, NLR expression data 
was analyzed using Clust7 v. 1.12.0 (Abu-Jamous and Kelly, 2018).

RESULTS

Putative PaNLR Genes Identified in the 
Avocado Genome
The RGAugury pipeline identified 259 putative PaNLR genes 
within the WI rootstock genome (Figure  1), while no PaNLR 
genes could be identified within the Mexican and Hass genomes. 
NLR gene sequences which did not include a LRR domain 
sequence were removed from further analysis and considered 
as incomplete PaNLR genes. This resulted in 161 PaNLR 
sequences which were classified as complete PaNLR genes. Of 
these genes, 102 were classified as CNLs, two as CRNLs, 56 
as NLs and one as TNL, based on the domains present within 
their predicted amino acid sequences.

Putative protein functional annotation of the 161 complete 
PaNLR candidates were assigned using BLASTp. In total, 31 
sequences were assigned as DRL proteins. More than 52% of 
sequences were putatively identified as RGA2 proteins (Figure 1). 
Other sequence identifications included RGA4, RPM1, RPP13-
like protein 4, RPP8, RPS2, and RPW8-domain containing 
type proteins.

The RGAugury pipeline also identified RLP, RLK, and TM-CC 
proteins using WI whole genome protein sequences. These protein 
sequences were separated from NLR sequences if a transmembrane 
domain sequence was identified. In total, 106 RLP sequences, 
889 RLK sequences and 189 TM-CC sequences were identified.

PaNLR Gene Clusters Identified in the WI 
Genome
PaNLR gene clusters were identified based on neighboring 
PaNLR genes being less than 250 kb apart, and having less 
than three non-NLR genes between them. In total, 13 PaNLR 
gene clusters were identified, accounting for 74 (45.9%) of 
the complete PaNLR gene sequences (Figure  2). Thirteen 
PaNLR genes were mapped to unanchored chromosomes and 
were thus excluded from the cluster analysis. Chromosome 
2 had four gene clusters (the largest set of clusters on any 
of the chromosomes) and also contained the largest gene 
cluster (consisting of nine PaNLR sequences). No gene clusters 
were identified on chromosomes 4, 5, 8, 9, 10, and 12. Eight 
of the gene clusters contained sequences which encode RGA2 
proteins, with the gene clusters occurring on chromosomes 
6 and 7 lacking PaNLR genes encoding RGA2 proteins (Table 1).

7 https://github.com/-BaselAbujamous/clust
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High PaNLR Sequences Similarity Within 
NLR Gene Clusters
Phylogenetic analysis was performed to infer evolutionary 
relatedness between the 161 identified putative PaNLR genes 
using NB-domain protein sequences (Figure  3). Complete NLR 
protein sequences from C. micranthum f. kanehirae and 
S. bulbocastanum were included during analysis. The analysis 
revealed that PaNLR genes from the same NLR gene cluster 
grouped together within a clade, indicating high sequence similarity 
within clusters and possible gene duplication events. Most PaNLRs 

did not form a clade with C. micranthum f. kanehirae NLRs, 
indicating high diversification of P. americana NLRs after these 
two species diverged, especially RGA2 type PaNLRs.

PaNLR Expression Following 
Phytophthora cinnamomi Inoculation
Expression analysis was performed using dual RNA-sequencing 
data obtained from partially resistant and susceptible avocado 
rootstocks inoculated with P. cinnamomi zoospores. In total, 

FIGURE 1 | The number of PaNLR genes identified in the West-Indian pure accession Persea americana genome and the set of protein domains each gene 
encodes for. Putative Nucleotide binding-Leucine rich repeat (NLR) protein functional annotations predicted using BLASTp analysis are also listed (C/CC, coiled-coil 
domain; CR/CCR, coiled-coil RPW8 domain; DRL, disease resistance-like protein; L/LRR, leucine rich repeat domain; N/NB, nucleotide binding domain; and T/TIR, 
toll/interleukin-1 receptor domain).
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145 of the 161 identified complete PaNLR genes were expressed 
in the roots of both rootstocks, across all timepoints. A clear 
difference in PaNLR expression was observed between the 
two rootstocks in response to P. cinnamomi inoculation. In 
the partially resistant rootstocks (Dusa®), a total of 84 PaNLR 
genes showed a significant (p ≤ 0.05) change in expression 
level during at least one timepoint after P. cinnamomi 
inoculation, when compared to mock-inoculated samples 
(Figure  4). However, only 74 PaNLRs showed a significant 
(p ≤ 0.05) change in expression in the susceptible rootstocks 
(R0.12) after inoculation, when compared to mock-inoculated 

samples. The number of PaNLR genes with expression level 
differences in response to P. cinnamomi inoculation differed 
most notably between the two rootstocks at 12 and 24 hpi 
(Table 2). Only six PaNLR genes were differentially expressed 
in R0.12 at 12 and 24 hpi, compared to 74 PaNLR in Dusa®. 
PaNLR genes within a cluster were shown not to be co-expressed 
based on the Clust analysis.

PC03g007960|RGA2 was the most upregulated PaNLR gene 
in Dusa®, with a Log2FC value of 8.02 (p < 0.01) at 12 hpi 
(Figure  4). This gene was also upregulated in Dusa® at both 
6 (Log2FC = 7.2; p < 0.01) and 24 hpi (Log2FC = 7.8; p < 0.01), while 
only being upregulated in R0.12 at 6 hpi (Log2FC = 7.8; p < 0.01). 
PC03g009000|RGA2 was the most upregulated PaNLR gene in 
R0.12 at 6 hpi with the largest Log2FC value of 8.46 (p < 0.01) 
of all samples. This gene did not show any significant changes 
in expression in any of the samples collected from Dusa®. 
Furthermore, PC11g001210|RGA2 and PC11g001240|RGA2 were 
upregulated in R0.12 at 24 hpi (Log2FC = 7.6; p < 0.01 and 
Log2FC = 5.1; p < 0.05, respectively), but did not show any significant 
change in expression in Dusa®, at any time point.

When PaNLR gene expression was compared between 
the two rootstocks, with susceptible rootstock (R0.12) set 
as the reference, results indicated that PaNLR gene expression 
was higher in the partially resistant rootstocks (Dusa®), 
overall (Table  3). This was evident at the 12 and 24 hpi 
time points especially, with up to 74 PaNLR genes having 
higher expression (p ≤ 0.05) in Dusa® at 12 hpi (Figure  5). 
PC11g001210|RGA2 and PC11g001240|RGA2 were two PaNLR 
genes that were expressed at significantly higher levels in 
Dusa® when compared to R0.12, in all samples collected 
including mock-inoculated roots, even though both PaNLRs 
were significantly upregulated at 24 hpi in R0.12 when 

FIGURE 2 | Chromosomal location of 148 putative PaNLR genes identified within the Persea americana West-Indian pure accession genome (represented by blue 
marks). The genes were mapped to 12 chromosomes (green bars) using CViT. Chromosome 0 was excluded from the analysis as it is not representative of a true 
chromosome, thus 13 PaNLR genes could not be mapped to chromosomes 1–12 and are not shown in the figure.

TABLE 1 | Types of resistance genes found within PaNLR gene clusters on 
different chromosomes within the genome of Persea americana (West-Indian pure 
accession).

Chromosome Cluster
Number of  

PaNLR genes
Type of PaNLR 
proteins encoded

1 1 7 RGA2
2 8 RGA2

2 1 5 RGA2
2 3 RGA2
3 6 DRL, RGA2 and 

RGA4
4 9 RGA2

3 1 3 RGA2
6 1 6 DRL

2 5 RPS2, DRL and 
RPP13

7 1 4 RPM1 and DRL
2 8 RPP13

11 1 3 RGA2
11 2 7 RGA2
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compared to mock-inoculated samples (Figure 4). The Log2FC 
values for both PC11g001210|RGA2 and PC11g001240|RGA2 
were larger than 8.5 (p < 0.01) in all samples except at 24 hpi, 
where the Log2FC values decreased to 3.8 and 6.2 (p < 0.01), 
respectively (Figure  5). The PaNLR gene with the highest 
expression level in R0.12 when compared with Dusa®, was 
PC02g009680|DRL. However, this PaNLR was only expressed 
at significantly higher levels in R0.12 at 6 hpi (Log2FC = −7.6; 
p < 0.01), with no significant difference in expression levels 
being observed at any other time point.

DISCUSSION

Nucleotide binding-Leucine rich repeat proteins play a crucial 
role in plant immune responses by recognizing effector molecules 
produced by invading pathogens. Following effector recognition, 
NLR proteins activate ETI through complex signaling pathways, 
which leads to pathogen resistance (Monteiro and Nishimura, 
2018). NLR proteins have been studied extensively in many other 
crops including S. bulbocastanum, Zea mays, Oryza sativa, and 
Triticum monococcum (Collins et  al., 1998; Mago et  al., 1999; 

FIGURE 3 | Phylogenetic relationship of 161 Persea americana (West-Indian pure accession) Nucleotide binding domains from putative PaNLR genes. Evolutionary 
history was inferred using the Maximum likelihood method and JTT matrix-based model following ClustalW alignment. A total of 1,000 bootstrap replicates were 
performed, with bootstrap values over 50 being shown above branch points. NB-domain protein sequences of Persea americana (PC) with complete NLR 
sequences from Cinnamomum micranthum f. kanehirae (RWR) and Solanum bulbocastanum (Q) were used during the analysis. Persea americana identification 
numbers include the gene cluster number, where appropriate (in blue) and protein type (in red). Unidentified PaNLR protein types were termed Disease resistance-
like (DRL) proteins. Sequences from other species also include protein type (NBS50, NBS-LRR disease resistance protein NBS50; PDR, disease resistance-like 
protein isoform X1).
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Bozkurt et  al., 2007; Lokossou et  al., 2010). The results of these 
studies ultimately led to the breeding of crops with increased 
resistance toward various pathogens (Farnham and Baulcombe, 
2006; Wang et  al., 2019). Thus far, a comprehensive set of 
P. americana NLR genes have not been identified, and moreover, 

P. americana NLR gene expression has never been studied during 
P. cinnamomi infection. Thus, a large knowledge gap remains 
in understanding ETI activation during P. cinnamomi infection 
in avocado rootstocks (Van den Berg et al., 2018). The knowledge 
of avocado NLR functionality is vital to understanding resistance 

FIGURE 4 | Heatmap and dendrogram showing the expression (as Log2 Fold Change) of 94 PaNLR genes following Phytophthora cinnamomi inoculation of a 
partially resistant (Dusa®) and susceptible (R0.12) avocado rootstock. Dots indicate a significant change (p ≤ 0.05 and |Log2FC| ≥ 1) in expression level when 
compared to mock-inoculated samples (hpi, hours post-inoculation).
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toward P. cinnamomi in avocado rootstocks and can be  used 
by the avocado industry for molecular breeding purposes.

Using the P. americana WI genome, we identified 161 putative 
complete PaNLR gene sequences. No PaNLR gene sequences 
could be identified in the Mexican and Hass genome assemblies, 
since these genomes are highly fragmented (Rendón-Anaya 
et  al., 2019; Talavera et  al., 2019). Of the 161 complete PaNLR 
sequences, 102 were classified as CNL proteins, two as CRNL 
proteins, 56 as NL proteins, and one as a TNL protein (Figure 1). 
The 56 gene sequences encoding NL proteins were found to 
be  expressed during P. cinnamomi infection, indicating that 
these proteins may play a role in this host-pathogen interaction, 
even though they lack CC and TIR domains. NLR sequences 
lacking these motifs are also expressed in other plant species, 
including E. grandis, Malus x domestica, and Vitis vinifera, 
further suggesting that these NLR proteins are still functional 
(Arya et  al., 2014; Christie et  al., 2016; Goyal et  al., 2020). 
A higher CNL:TNL ratio was also observed in E. grandis, 
M. x domestica, and V. vinifera woody species, making it 
unsurprising to observe a higher CNL:TNL ratio in P. americana. 
However, it was not expected that only one TNL sequence 
would be  identified. This could be  a result of the genome 
assembly and annotation programs used not identifying full 
length gene sequences, thus producing truncated protein 
sequences as a result. BLASTp analysis was performed on the 
entire set of P. americana protein sequences and no additional 
PaNLR sequences could be  identified. Furthermore, an 
independent study found only one TNL gene being expressed 
in Hass avocado stems during F. kuroshium infection (Pérez-
Torres et  al., 2021). This validated that no TNL motifs were 
missed during PaNLR identification using the RGAugury program 
and WI genome.

Putative protein functional annotation revealed that more 
than 50% of the identified PaNLR genes encode RGA2-like 
proteins (Figure 1). This type of NLR protein was first identified 
in S. bulbocastanum and is encoded for by Rpi-blb1 (Van der 
Vossen et  al., 2003). RGA2 proteins elicit an immune response 
and confer resistance toward Phytophthora infestans in potato 
and tomato plants, after recognizing ipiO RxLR proteins 
(Champouret et  al., 2009). Recently, two P. cinnamomi RxLR 
proteins with high sequence similarity to P. infestans ipiO 
RxLRs were identified by Joubert et  al. (2021). One of these 
RxLRs, PcinRxLR34a, was significantly upregulated in 
P. cinnamomi during infection of the susceptible rootstock 
R0.12, when compared to expression in mycelia. This suggests 
that this RxLR plays a role during pathogen infection. Future 

research should focus on identifying whether P. americana 
RGA2 proteins recognize these P. cinnamomi RxLRs.

RPP13-like protein 4 type proteins were the second largest 
group of PaNLR proteins identified in P. americana. RPP13-
like protein 4 and RPP8 has been shown to confer resistance 
toward Peronospora parasitica and Hyaloperonospora arabidopsidis, 
respectively, in Arabidopsis thaliana (Bittner-Eddy et  al., 1999; 
Mohr et  al., 2010). Peronospora parasitica, H. arabidopsidis, 
and P. cinnamomi are oomycetes, suggesting that these pathogens 
may express Avirulence (Avr) proteins with similar structure 
and function (Cooke et  al., 2000). This indicates that RPP13-
like protein 4 and RPP8 in avocado may recognize P. cinnamomi 
effectors and play a role in rootstock resistance toward 
P. cinnamomi. The same assumption can be  made regarding 
RPS2, which confers partial resistance toward Phytophthora 
sojae, a close relative to P. cinnamomi, in Glycine max (Mideros 
et  al., 2007).

RPM1-like NLR proteins were also identified in avocado. 
Homologs of RPM1-like NLR genes in A. thaliana are responsible 
for recognizing P. syringae effectors during infection (Boyes 
et  al., 1998). Pseudomonas syringae has been isolated from 
avocados; however, no symptoms of infection were observed 
(Scortichini et  al., 2003). This might also explain why so few 
(5.6% of NLRs) RPM1-like genes were identified in avocado. 
Furthermore, since P. syringae infection does not present a 
threat to the avocado industry, NLR genes which confer resistance 
toward this pathogen would likely be of limited use in avocado 
screening programs. Lastly, two PaNLRs were annotated as 
RGA4-like proteins; in O. sativa, RGA4 proteins form 
heterodimers with RGA5 proteins, which recognize Magnaporthe 
oryzae infection (Césari et  al., 2013). RGA5 proteins act as a 
receptor for M. oryzae Avr proteins and as a repressor of 
RGA4. Once RGA5 recognizes Avr proteins, RGA4 is released 
and activates cell death responses. Thus, in the absence of 
RGA5 proteins, RGA4 activates cell death in an Avr-independent 
manner (Césari et  al., 2014). Since no P. americana proteins 
were identified as RGA5 proteins, it remains unclear whether 
the RGA4 proteins would respond to P. cinnamomi Avr proteins 
in avocado.

Gene cluster analysis was performed to identify possible 
duplication events of P. americana NLRs (Meyers et  al., 2003). 
If NLR genes within a cluster were shown to be  functionally 
important for rootstock resistance, NLR gene clusters can 
be  targeted during molecular screening strategies. In total, 13 
PaNLR gene clusters were identified in the P. americana genome 
(Table 1). Of these, four clusters were identified on chromosome 

TABLE 2 | Number of PaNLR genes expressed in two avocado rootstocks in response to Phytophthora cinnamomi inoculation at different timepoints post-inoculation, 
when compared to mock-inoculated rootstocks (hpi, hours post-inoculation).

Time (hpi)
Partially resistant rootstock (Dusa®) Susceptible rootstock (R0.12) Common between 

rootstocks
Upregulated genes Downregulated genes Upregulated genes Downregulated genes

6 63 1 64 1 54
12 64 2 1 1 1
24 55 2 4 0 2
120 7 12 2 11 2
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2 with one containing nine PaNLR gene sequences. No clusters 
were observed on chromosomes 4, 5, 8, 9, 10, and 12 (Figure 1). 
Eight clusters only contained RGA2 protein sequences, indicating 
that these genes may have originated from gene duplication 
events as described by Meyers et  al. (1998) and López et  al. 
(2003). Retained NLRs following duplication indicate functional 
relevance, suggesting that these RGA2 NLRs may play an 
important role in avocado defense responses. In Phaseolus 
vulgaris, RGA2 gene clusters were identified as Quantitative 
trait loci (QTL), which confer resistance toward Colletotrichum 
lagenarium (López et  al., 2003). Further investigation focusing 

FIGURE 5 | Heatmap and dendrogram showing PaNLR expression levels in a partially resistant avocado rootstock (Dusa®) mock-inoculated (MI) and following 
Phytophthora cinnamomi inoculation (hpi, hours post-inoculation) using a susceptible rootstock (R0.12) as the reference. A positive Log2FC indicates higher 
expression in the partially resistant rootstock, while a negative Log2FC indicates higher expression in the susceptible rootstock. Dots indicate a significant difference 
(p ≤ 0.05 and |Log2FC| ≥ 1) in expression between the two rootstocks.

TABLE 3 | Number of PaNLR genes with a significantly higher expression in 
either the partially resistant (Dusa®) or susceptible (R0.12) avocado rootstock 
before and following Phytophthora cinnamomi inoculation (hpi, hours post-
inoculation).

Time (hpi)
Genes with higher 

expression in Dusa®
Genes with higher 

expression in R0.12

mock-inoculated 10 9
6 9 7
12 74 3
24 61 7
120 16 11
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on functional significance will help identify whether the PaNLR 
gene clusters in P. americana can be  used as QTL molecular 
markers during rootstock breeding programs. Ultimately, these 
clusters serve as a reservoir for NLR diversity since duplicated 
genes are free to mutate, which may lead to novel NLRs being 
able to recognize novel effector proteins from pathogens (Innes 
et  al., 2008).

Phylogenetic analysis revealed high similarity between 
PaNLRs within gene clusters, further indicating that PaNLR 
gene clusters may have originated from gene duplication events 
(Shao et  al., 2014). During phylogenetic tree construction, 
161 PaNLR Nucleotide binding domain protein sequences 
were used together with protein sequences from C. micranthum 
f. kanehirae and S. bulbocastanum (Song et  al., 2003; Chaw 
et  al., 2019). Sequences from C. micranthum f. kanehirae 
were used since this species is the closest relative to P. americana 
(both species form part of the Lauraceae family) in which 
NLRs have been identified (Wu et al., 2017). A RGA2 sequence 
from S. bulbocastanum was also included, since no RGA2 
proteins were identified in C. micranthum f. kanehirae (Chaw 
et  al., 2019). Phylogenetic analysis revealed that NB domain 
sequences within a PaNLR gene cluster grouped together, 
indicating high sequence similarity within these clusters 
(Figure  2). Moreover, few PaNLRs formed a clade with NLR 
sequences from C. micranthum f. kanehirae, indicating large 
NLR diversification within P. americana species. These 
observations might be the result of different pathogens shaping 
the PaNLR arsenal during the coevolutionary arms race 
between hosts and pathogens (Anderson et  al., 2010).

Once putative PaNLR genes were identified in the WI 
genome, their expression was analyzed using dual transcriptomic 
data from partially resistant (Dusa®) and susceptible (R0.12) 
rootstocks inoculated with P. cinnamomi. Of the 161 PaNLRs 
identified in this study, 16 PaNLRs were not expressed in 
either rootstock at any timepoint. Many NLRs have tissue-
specific expression levels in other plants, making these results 
unsurprising (Munch et al., 2018). Since this study investigated 
PaNLR expression in root tissues, it is expected that these 16 
PaNLRs might play a role in recognizing pathogens which 
infect other avocado tissues. Interestingly, PaNLR genes within 
a gene cluster did not show similar expression patterns after 
P. cinnamomi inoculation. This was also observed in E. grandis 
when infected with C. austroafricana and L. invasa. The authors 
attributed this to expressed NLR genes being functionally 
relevant, and not the result of being located within active 
transcription zones by coincidence (Christie et al., 2016). Thus, 
we can hypothesize that PaNLRs in gene clusters being expressed 
following P. cinnamomi inoculation, do indeed have functional 
significance in activating defense responses against the invading  
pathogen.

During the first 6 h of infection, more than 60 PaNLR genes 
showed a significant increase in expression in either rootstock, 
with a similar pattern of expression activation for 54 of the 
same PaNLR genes in both rootstocks (Figure 4). This indicates 
that both rootstocks have similar responses with regards to 
PaNLR expression during the first 6 h of P. cinnamomi infection. 
PaNLR genes with the largest increase in expression at 6 hpi, 

were mainly RGA2 type proteins (PC01g020030, PC03g007960, 
and PC11g007690). RGA2 proteins activate the HR, and higher 
RGA2 transcript levels were associated with increased P. infestans 
resistance in S. bulbocastanum (Bradeen et  al., 2009). This 
upregulation of RGA2 in both avocado rootstocks would likely 
result in a strong HR, which may limit P. cinnamomi growth.

PaNLR gene expression levels in Dusa® was higher when 
compared to R0.12, at both 12 and 24 hpi. Very few PaNLR 
genes showed differential expression patterns at 12 and 24 hpi 
in R0.12, which might indicate a decrease in ETI activation 
compared to Dusa®. Thus, the expression analysis revealed 
that Dusa® rootstocks overall have a stronger, more prolonged 
response to P. cinnamomi inoculation when compared to 
R0.12 rootstocks. NLR expression in susceptible varieties of 
S. viminalis, C. arietinum L. and Brassica oleracea do not 
show such stark differences in the expression when compared 
to resistant varieties, when infected with Melampsora larici-
epitea, Ascochyta rabiei, and Fusarium oxysporum f. sp. 
conglutinans, respectively (Martin et  al., 2016; Andam et  al., 
2020; Liu et  al., 2020). It was thus expected that a greater 
portion of PaNLRs would show increased expression in R0.12 
at these timepoints. These results might be  due to either 
the pathogen interfering with PaNLR expression, or the 
pathogen suppressing host responses in R0.12. For example, 
W boxes, which are cis-regulatory elements recognized by 
WRKY transcriptions factors, are often overrepresented in 
plant defense-related gene promoters including NLR promoter 
sequences (Mohr et al., 2010). In A. thaliana, WRKY expression 
was downregulated by Avr3a-type effectors from Phytophthora 
parasitica (Li et  al., 2019). This would subsequently lead 
to decreased NLR expression. It would be  interesting to see 
whether P. cinnamomi uses similar tactics to influence ETI 
in P. americana. Thus, investigating which cis-regulatory 
elements are shared between PaNLR genes would be  of 
interest in future research. Moreover, P. cinnamomi RxLRs 
were shown to have increased expression levels at 12 and 
24 hpi in R0.12 (Joubert et  al., 2021). Since some RxLRs 
suppress programed cell death, P. cinnamomi RxLRs could 
influence PaNLR expression and contribute to the results 
observed for R0.12 (Dalio et  al., 2018). This data will help 
understand which PaNLR proteins might be  important for 
recognizing P. cinnamomi effectors during infection and 
limiting P. cinnamomi growth. However, it must be  noted 
that further studies, including protein–protein interaction 
studies, are needed to concretely state which individual 
PaNLR proteins recognize P. cinnamomi effectors.

A previous study, also done on R0.12 and Dusa® rootstocks, 
showed that R0.12 had significantly higher P. cinnamomi 
pathogen loads when compared to Dusa®, at all tested time-
points (Engelbrecht et  al., 2013). The increased PaNLR 
expression in Dusa®, especially RGA2 PaNLRs, at 12 and 
24 hpi is likely to increase the amplitude of ETI activation 
and the HR, assuming successful P. cinnamomi Avr detection. 
Studies have shown that overexpression of NLR genes leads 
to higher levels of resistance and subsequent decreased 
disease symptoms. In Nicotiana benthamiana plants, 
overexpression of the Vitis amurensis NLR gene, VaRGA1, 
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resulted in increased resistance toward P. parasitica (Li et al., 
2017). Two RGA2 NLRs (PC11g001210 and PC11g001240) 
showed much higher expression in Dusa® when compared 
to R0.12, in all samples (Figure  5). As described earlier, 
the RxLR in P. cinnamomi with high similarity to a RGA2 
protein counterpart, ipiO1, showed increased expression in 
R0.12 at 12 hpi, when compared to mycelia control samples 
(Joubert et  al., 2021). Since R0.12 RGA2 proteins are not 
upregulated at this timepoint, it may suggest that fewer of 
these RxLR effectors are recognized, resulting in a 
compromised HR. However, high expression of RGA2 NLRs 
in Dusa® at all timepoints could result in increased ETI 
and might lead to decreased pathogen growth rates and/or 
decreased zoospore germination. However, in R0.12, pathogen 
load could be higher due to decreased ETI. These differences 
might be  why Dusa® is able to survive P. cinnamomi attack 
for longer periods of time and show less disease symptoms.

This study is the first to identify and classify putative 
PaNLR genes using the P. americana WI genome. Phylogenetic 
analysis revealed that many PaNLRs found within NLR gene 
clusters may have originated from gene duplication events. 
Up to 94 PaNLR genes showed expression differences in 
response to P. cinnamomi attack, indicating a possible role 
in P. cinnamomi recognition and ETI activation. Furthermore, 
PaNLRs showed sustained, increased expression in a partially 
resistant rootstock (Dusa®) after inoculation, which could 
explain how this rootstock is able to suppress P. cinnamomi 
growth. This research paves the way toward understanding 
P. americana-P. cinnamomi interactions on a molecular level. 
Future studies should focus on investigating protein–protein 
interactions between PaNLRs and P. cinnamomi Avr proteins, 
and how P. cinnamomi is able to suppress PaNLR expression 
in R0.12 rootstocks. Furthermore, future studies should also 
include functionally characterizing the identified PaNLRs and 
investigating their role in defense responses against other 
P. americana pathogens. However, the lack of an efficient 

transformation system for P. americana greatly limits functional 
studies, and the results of this study highlights the need for 
the development of an improved system.
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