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Nitrogen (N) is a primary factor limiting leaf photosynthesis. However, the mechanism
of N-stress-driven photoinhibition of the photosystem I (PSI) and photosystem II (PSII)
is still unclear in the N-sensitive species such as Panax notoginseng, and thus the role
of electron transport in PSII and PSI photoinhibition needs to be further understood.
We comparatively analyzed photosystem activity, photosynthetic rate, excitation energy
distribution, electron transport, OJIP kinetic curve, P700 dark reduction, and antioxidant
enzyme activities in low N (LN), moderate N (MN), and high N (HN) leaves treated with
linear electron flow (LEF) inhibitor [3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU)] and
cyclic electron flow (CEF) inhibitor (methyl viologen, MV). The results showed that the
increased application of N fertilizer significantly enhance leaf N contents and specific
leaf N (SLN). Net photosynthetic rate (Pn) was lower in HN and LN plants than in MN
ones. Maximum photochemistry efficiency of PSII (Fv/Fm), maximum photo-oxidation
P700+ (Pm), electron transport rate of PSI (ETRI), electron transport rate of PSII (ETRII),
and plastoquinone (PQ) pool size were lower in the LN plants. More importantly, K phase
and CEF were higher in the LN plants. Additionally, there was not a significant difference
in the activity of antioxidant enzyme between the MV- and H2O-treated plants. The
results obtained suggest that the lower LEF leads to the hindrance of the formation
of 1pH and ATP in LN plants, thereby damaging the donor side of the PSII oxygen-
evolving complex (OEC). The over-reduction of PSI acceptor side is the main cause of
PSI photoinhibition under LN condition. Higher CEF and antioxidant enzyme activity not
only protected PSI from photodamage but also slowed down the damage rate of PSII
in P. notoginseng grown under LN.

Keywords: nitrogen, photoinhibition, photoprotection, electron transport, Panax notoginseng

INTRODUCTION

Photosynthesis is one of the most important physiological and biochemical reactions in nature
(Berry et al., 2013; Martin et al., 2018). Nitrogen (N) is regarded as a necessary component
of numerous biomolecules, such as Rubisco (Ribulose-1,5-bisphosphate carboxylase/oxygenase),
chlorophyll (Chl), and photosynthetic proteins (Evans and Clarke, 2019). Photosynthetic capacity
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is closely related to leaf N content (Makino and Osmond,
1991). The N fertilizer application might increase N content,
light harvesting capacity, and Pn (net photosynthetic rate) of
leaves (Evans and Clarke, 2019). This has been confirmed by the
performance observed in Oryza sativa and Arabidopsis thaliana
grown under high N (HN) application (Perchlik and Tegeder,
2018; Hou et al., 2019). However, plants exposed to long-term N
deficiency would suffer an imbalance between the capability for
absorbing light energy and consuming this excess light energy,
resulting in the generation of reactive oxygen species (ROS)
(Yamori et al., 2016; Che et al., 2020; Mu and Chen, 2021).
Photosystem II (PSII) is susceptible to HN and low N (LN) (Cisse
et al., 2020; Zhang Z. et al., 2021). HN and LN can inhibit either
on the acceptor side or on the donor side of PSII, resulting in
damaging PSII functions. The donor side of PSII in Porphyridium
cruentum, O. sativa, and Vitis labrusca were seriously impacted by
N deficiency, leading to the inactivation of the oxygen-evolving
complex (OEC) and the reduced photochemical efficiency (Chen
and Cheng, 2003; Zhao et al., 2017; Tantray et al., 2020).
HN supply increases the PSII photoinhibition in O. sativa and
Chenopodium quinoa because it does not sustain the balance of
light absorption and utilization and consequently accumulates
large amounts of H2O2 at PSII (Bascuñán-Godoy et al., 2018;
Cisse et al., 2020). Diverse environmental stress can also result
in the impairment of photosystem I (PSI) (Ivanov et al., 2015;
Lima-Melo et al., 2019). The activity of PSI can be inhibited
in Nicotiana tabacum grown under N stress (Yue et al., 2021).
However, the mechanism of inhibition of PSII and PSI by N stress
is not well-understood.

Plants are susceptible to photodamage under N stress;
however, they can dissipate excessive energy through non-
photochemical quenching (NPQ) pathway, the xanthophyll cycle,
and state transitions (Takahashi and Badger, 2011; Pinnola
and Bassi, 2018). Photoprotection of diatoms are elevated
through NPQ during N starvation (Liefer et al., 2018; Li Z.
et al., 2021). Photosynthetic electron transport [linear electron
flow (LEF) and cyclic electron flow (CEF)] in the thylakoid
membrane is very important for photoprotection in plants grown
under N stress (Shikanai, 2007; Yamamoto et al., 2021). CEF
and LEF are essential for balancing the production ratio of
ATP/NADPH and for protecting photosystems from impairment
by over-reduction of chloroplast stroma (Lu et al., 2020). PSII
photodamage is avoided in Phaseolus vulgaris and Camellia
sinensis grown under N limitation through enhancing CEF
(Antal et al., 2010; Lin et al., 2016). Plants also effectively
dissipated over-excitation by the transition of LEF to CEF, which
relieves the excitation pressure in photosystems and diminishes
ROS generation (Tu et al., 2016; Podgórska et al., 2020). This
was confirmed in Solanum lycopersicum grown under high
temperature and high light treated with LEF inhibitor: 3-(3,4-
dichlorophenyl)-1,1-dimethyl urea (DCMU) and CEF inhibitor:
methyl viologen (MV) (Lu et al., 2017). CEF (CEF-PSI) and
moderate photoinhibition of PSII are two main protecting
mechanisms of PSI photoinhibition (Zhang et al., 2014; Huang
et al., 2016a). CEF-PSI alleviates the over-reduction of acceptor
side of PSI and the generation of superoxide anion, and also
protects PSI from photoinhibition (Huang et al., 2012a). This

has also been confirmed by the results observed in P. vulgaris
and C. sinensis grown under N stress (Antal et al., 2010; Lin
et al., 2016). On the other hand, the excess electron flow
from PSII causes photoinhibition of PSI (Scheller and Haldrup,
2005; Rochaix, 2011). When DCMU is used to block the
electron transport from PSII to PSI, the photoinhibition of PSI
would not be observed in chilled Solanum tuberosum, Cucumis
sativus, and Spinacia oleracea (Sonoike, 1996). Photoinhibition
of A. thaliana pgr5-mutant and Psychotria rubra by high light
can be alleviated when the addition of DCMU restricts the
electron flow from PSII to PSI (Suorsa et al., 2012; Huang
et al., 2016b). PSI photoinhibition is mainly dependent on the
electron flow from PSII to PSI. Thus, photosynthetic electron
transport plays an important role in photoprotection in the
N-stress plants.

Panax notoginseng (Burkill) F. H. Chen (Sanqi in Chinese)
is a typically shade-tolerant and N-sensitive species from the
family of Araliaceae (Yang et al., 2008; Chen J.W. et al., 2016;
Ou et al., 2020; Zhang Q.H. et al., 2020; Zhang J.Y. et al., 2021).
Excessive application of N fertilizer is a problem in P. notoginseng
production (Ou et al., 2020). N application rate in conventional
cultivation of P. notoginseng is 450 kg ha−1 (Xia et al., 2016),
which not only exceeded its demand (Ou et al., 2011) but also
increased root decay and mortality rate; thus, P. notoginseng has
been commonly believed to be the N-sensitive species (Zheng
et al., 2017; Wei et al., 2018; Zhang J.Y. et al., 2020). There is
an elevation in leaf biomass and Chl content of P. notoginseng
accompanying with the decrease of Pn under HN application
(Li, 2017; Cun et al., 2020). In our previous work, it has been
recorded that the photosynthetic performance was significantly
suppressed in HN- and LN-grown P. notoginseng (Cun et al.,
2020; Zhang J.Y. et al., 2020; Cun et al., 2021). P. notoginseng
grown under LN condition reduces the photochemical efficiency
of PSII through NPQ, xanthophyll cycle, antioxidant pathways,
Chl degradation, and nitrate metabolism (Zhang J.Y. et al.,
2020). Photosynthetic capacity is reduced in P. notoginseng
grown under HN application mainly due to the inactivation
of Rubisco (Cun et al., 2021). In addition, the activation of
CEF cannot completely protect PSII donor side from damage in
P. notoginseng under HN, but can attenuate PSI photodamage
(Cun et al., 2021). However, the mechanism of the PSI and
PSII photoinhibition in the N-sensitive species P. notoginseng
under N stress is still not completely understood, and the role of
electron transport of PSII and PSI in photoinhibition needs to be
further investigated.

In the present study, the photosystem activity, photosynthetic
rate, excitation energy distribution, electron transport,
OJIP kinetic curve, antioxidant enzyme activity, and P700
dark reduction curves were examined in the LN, MN,
and HN plants in the presence of DCMU and MV. The
spraying of DCMU and MV would inhibit LEF and CEF,
respectively. We hypothesized that (i) LEF-mediated damage
to the PSII OEC is the main cause of PSII photoinhibition
under LN condition; (ii) over-reduction of PSI acceptor
side is the main cause of PSI photoinhibition under LN;
and (iii) the activation of CEF might protect PSI from
photodamage under LN.
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MATERIALS AND METHODS

Plant Materials and Growth Conditions
The experiment site was situated in the teaching and
experimental farm of Yunnan Agricultural University in
Kunming, China (102◦45′E, 25◦08′N). The physical and chemical
properties of the raw soils used in the present study were as
follows. pH 6.84, organic matter 3.18%, total N 0.17%, total
phosphorus 0.23%, total potassium 0.24%, available potassium
127.32 mg g−1, and available phosphorus 11.04 mg kg−1.
In January 2019, healthy 1-year-old P. notoginseng seedlings
(purchased from the Wenshan Miao Xiang P. notoginseng
Industrial Co., Ltd., Wenshan, China) were sterilized by 50%
chloroisobromine cyanuric acid 1,000-fold dilution for 10 min
and transplanted in pots (32 cm × 19 cm × 21 cm) with
each containing three rootstocks, 140 pots per treatment
were arranged. Five independent experiments were conducted
in an environmentally controlled house with irradiance of
about 10% full sunlight. Based on the application of 225 kg
of phosphorus (P2O5) and 225 kg of potassium (K2O) per
hectare in P. notoginseng production, three nitrogen levels, LN
(without N addition), moderate nitrogen (MN, 225 kg ha−1 N),
and HN(450 kg ha−1 N), were designed for the present study.
Fertilizer was applied in four times a year, and N was supplied in
April, May, July, and August, respectively, each year. In August
2020, photosynthetic parameters were measured in mature leaves
grown under different N regimes.

Steady-State Photosynthetic Gas
Exchange Rate
The steady-state gas exchange parameters were measured by
the photosynthesis system (Li-6400, Li-COR, Lincoln, NE,
United States). The blue light ratio of the instrument, leaf
temperature, and CO2 in the chamber were maintained at 10%,
25◦C, and 400 µmol mol−1, respectively. Leaves were adapted
under light (500 µmol·photons·m−2 s−1) for 10 min before
measurement, and the automatic measurement was started
after the data had stabilized. Subsequently, the steady-state
photosynthetic gas exchange rate was recorded after exposure
for 2–3 min to each light intensity (500, 300, 200, 150, 100, 80,
70, 60, 50, 40, 30, and 20 µmol·photons·m−2 s−1; five replicates
per treatment). According to the study of Webb et al. (1974), the
relationship between Pn and photosynthetic photon flux density
(PPFD) was fitted (n = 5), Pn = Pmax − PmaxC0e−α PPFD/Pmax

(Bassman and Zwier, 1991).

Photosystem I and Photosystem II
Measurements
Biophysical parameters were measured simultaneously by Dual
PAM 100 (Heinz Walz GmbH, Effeltrich, Germany). To measure
the light response of the steady-state PSI and PSII parameters at
various light intensities, healthy matured leaves were illuminated
at a saturating light of 172 µmol·photons·m−2 s−1 for 20 min.
Subsequently, photosynthetic capacity was evaluated at 30 s
intervals at PPFD of 501, 330, 214, 172, 94, 36, 18, 10,
and 0 µmol·photons·m−2 s−1. The maximum quantum yield

of PSII, Fv/Fm = (Fm − Fo)/Fm, was measured to monitor
PSII activity. Fo and Fm are the minimum and maximum
fluorescence measured after 2 h dark adaptation. On the other
hand, the PSI photosynthetic parameters were evaluated by Dual
PAM 100 based on P700 oxidation signal (Klughammer and
Schreiber, 2008). The maximum photo-oxidation P700+ (Pm)
was determined using a saturation pulse of far-red pre-irradiation
light; the determination of Pm‘ differs from Pm, in that Pm was
determined using actinic light rather than far-red light (Takagi
et al., 2017). Additionally, treated leaves were illuminated at
a saturating light of 172 µmol·photons·m−2 s−1 for 20 min
to measure the light energy allocation and electron transport
parameters. The formulae of Chl fluorescence parameters were
shown in Supplementary Table 1 (Krall and Edwards, 1992;
Strasser and Srivastava, 1995; Yamori et al., 2011; Huang et al.,
2012b) (n = 5).

Chl a Fluorescence Measurement and
OJIP Transient Analyses
The Chl a fluorescence was measured simultaneously by Dual
PAM 100. The plants were kept in the dark for 2 h to
achieve a dark-adapted state with open reaction centers (RCs).
When leaf was illuminated by a high density of actinic light
(10,000 µmol·photons·m−2 s−1), the fast fluorescence kinetics
was recorded from 10 µs to 1 s. FO, FJ, FI, and FP correspond
to the relative fluorescence intensity at the time points of 20 µs,
2, 30, and 300 ms, respectively. The point of time corresponding
to 300 µs on the OJIP kinetic curves was defined as the K
characteristic points. The ratio of variable FK to the amplitude
(FJ – FO) was calculated as: WK = (FK − FO)/(FJ − FO) (Li P.
et al., 2009). The parameter WK is an indicator of damage to
the OEC activity (Strasser, 1997; Strasser et al., 2000, 2004; De
Ronde et al., 2004; Li P. et al., 2009). The parameter PIABS is
a performance index (potential) for energy conservation from
excitation to the reduction of intersystem electron acceptors
(Strasser et al., 2000, 2004). For a detailed analysis of the
whole fluorescence kinetics, different normalizations and kinetic
differences in calculations were undertaken. Abbreviations,
formulas, and definitions of the JIP-test parameters used in
the present study were presented in Supplementary Table 1
(Strasser et al., 2000; Kumar et al., 2020; Devadasu et al., 2021)
(n = 5).

Measurement of Plastoquinone Pools
The P700 signal was determined during single-turn saturation
pulse [ST, 50 ms, plastoquinone (PQ) pools being oxidized]
followed by multiple-turn saturation pulse (MT, 50 ms, PQ
pools fully reduced) in the presence of far-red background light
(Savitch et al., 2001; Luo et al., 2021). The complementary area
between the P700 oxidation curve after a single-turnover and
multiple-turnover excitations and the stationary level of P700+
under far-red light represents the single-turn and multiple-turn
areas, respectively. These were used to calculate the functional
pool sizes of the intersystem electrons relative to P700 as:
e−/P700 = multiple-turn areas/single-turn areas (Savitch et al.,
2001) (n = 5).
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FIGURE 1 | The effect of nitrogen (N) regimes on biomass partitioning (A), N content (B), specific leaf N (SLN) (C), chlorophyll content (D), and N use efficiency (E) in
Panax notoginseng. Values for each point were mean ± SD (n = 5). Different letters indicate significant differences among treatments (ANOVA; p < 0.05).

Photoinhibitory Treatments
To determine the roles of electron transport from PSII and PSI
redox state in PSI photoinhibition in P. notoginseng grown under
different N levels, leaves were sprayed with H2O, MV and DCMU
in darkness. The electron transport inhibitor concentration with

the greatest inhibition of PSI and PSII activity was selected for the
treatment of P. notoginseng leaves (Supplementary Figure 1). In
August 2020, 3-year-old P. notoginseng leaves were sprayed with
H2O, DCMU (180 µm), and MV (150 µm) for 12 h in darkness.
The treated leaves were allowed to be air-dried for 10 min to
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remove excess water, and then steady-state photosynthetic gas
exchange rate, Chl fluorescence, and PQ pools were measured
(n = 5).

Determination of Biomass and N Content
After completing photosynthetic measurement, the tagged plants
were measured for biomass (they are the dry weight of root,
stem, and leaves). The N content was determined by the Kjeldahl
method (Stafilov et al., 2020). Specific leaf N (SLN, g m−2) was
calculated (n = 5). Based on the biomass and N content, the N
use efficient (NUE) was calculated as: NUE (kg kg−1) = yield
(underground dry weight)/plant N accumulation (Ning et al.,
2012; Wu et al., 2016) (n = 5).

Photosynthetic Pigment Analyses
About 0.5 g fresh leaves extracted by 25 ml extraction mixture
[acetone and anhydrous alcohol were mixed (v/v 1:1)] were
placed under dark condition for 24 h. Absorbance were
performed at wavelengths of 663 and 645 nm, respectively. Then
pigment contents were calculated according to the method of
Pérez-Patricio et al. (2018) (n = 5).

Leaf Rubisco Activity
Rubisco activity was evaluated according to Parry et al. (1997).
The extraction solution was prepared as follows: 50 mM Tris–
HCl (pH 8.0), 10 mM β-mercaptoethanol, 12.5% glycerol (v/v),
1 mM ethylenediaminetetraacetic acid (EDTA)–Na2, 10 mM
MgCl2 and 1% polyvinylpyrrolidone (PVP)-40 (m/v). Extracts
were clarified by centrifugation (8,000 × g at 4◦C for 10 min),
and the supernatant was immediately assayed for Rubisco activity
(n = 5).

Determination of Antioxidant Enzyme
Activity
Determination of antioxidant enzyme activity was measured
as described in Fatemi et al. (2021). After photoinhibitory
treatments, the leaves were harvested and immediately frozen in
liquid N, and stored at –80◦C. Leaves (ca. 0.1 g) were crushed
into a fine powder using a mortar and pestle under liquid
N. Cell-free homogenates for antioxidant enzyme assays were
prepared. Superoxide dismutase (SOD) activity was measured by
the nitroblue tetrazolium (NBT) reduction method (Nebot et al.,
1993). Glutathione peroxidase (POD) activity was measured by
the guaiacol oxidation method (Polle et al., 1994; Shi et al., 2010).
Catalase (CAT) activity was measured by the UV absorption
method (Chen et al., 2011).

Statistical Analysis
All data obtained were analyzed with one-way ANOVA with
statistical software (IBM SPSS 20.0, IBM Corp., Armonk, NY,
United States). Means were separated by the Duncan’s test, and
p-values less than 0.05 were considered statistically significant,
where the data were tested to confirm normality and the
variables were present as the mean ± SD (n = 5). Subsequently,
SigmaPlot 12.5 (Systat Software Inc., San Jose, CA, United
States) and GraphPad Prism 8.0 (CA, United States) software
were used to plot.

RESULTS

Effect of N Regimes on Biomass
Partitioning, N, and Chl Content
There were significant differences in biomass allocation under N
regimes. Leaf and stem biomass were greater when plants were
exposed to HN compared with MN and LN, but the maximum
value of root biomass was obtained in the LN plants (Figure 1A).
N contents of different organs were significantly increased with
the increase of N levels (Figure 1B), and the N content in
leaves was significantly higher than that in roots and stems
(Figure 1B; p < 0.05). Additionally, SLN increased by 72.34%
in HN plants compared with MN plants, and SLN declined by
40.00% in the LN plants (Figure 1C; P < 0.05). The contents
of Chl a, Chl b, and Chl were significantly increased with the
increase of N levels, but the ratio of Chl a to Chl b (Chl a:
Chl b) was not significantly different among three treatments
(Figure 1D). N use efficiency (NUE) did not show apparent
differences between LN and MN plants, but the minimum values
of NUE were generally recorded in the HN plants (Figure 1E;
p < 0.05).

Effect of N Regimes on Photosynthetic
Rate, Photosystem, and Rubisco Activity
The leaf exhibited a significant difference in response of Pn
to incident PPFD within N regimes (Figure 2A). Pn were
highest in MN-grown plants (Figure 2A). LN-grown leaves were
dramatically reduced in activity of PSI (Pm, maximum photo-
oxidation P700+) and PSII (Fv/Fm, maximum photochemistry
efficiency of PSII) (Figures 2B,C). Fv/Fm did not show apparent
difference between MN and HN plants (Figure 2B). Moreover,
MN treatment exhibited 52.11–93.84% more Rubisco activity
than others (Figure 2D; p < 0.05).

Effects of
3-(3,4-Dichlorophenyl)-1,1-Dimethyl Urea
and Methyl Viologen on Photoinhibition
of Photosystem I and Photosystem II
Under N Regimes
The Fv/Fm and Pm decreased in samples were treated with
DCMU and MV (Figure 3). Compared with the H2O-
treated plants, Fv/Fm decreased by 4.8 and 12.5% in the
DCMU- and MV-treated LN-grown plants (Figure 3A). In
LN-grown plants treated with DCMU and MV, the value
of Pm reduced by 27.9 and 36.3%, respectively (Figure 3B).
In MN-grown plants treated with DCMU and MV, the
value of Fv/Fm reduced by 11.0 and 8.5%, respectively
(Figure 3A). Pm decreased by 11.6 and 19.3% in the
DCMU- and MV-treated MN-grown plants (Figure 3B). Fv/Fm
declined by 4.0 and 2.8% in HN-grown plants treaded with
DCMU and MV (Figure 3A). Meanwhile, Pm reduced by
21.4 and 30.1% in the DCMU- and MV-treated HN-grown
plants (Figure 3B).
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FIGURE 2 | (A) Response of net photosynthetic rate (Pn) to photosynthetic photon flux density (PPFD) in Panax notoginseng grown under low nitrogen (LN,
0 kg hm–2), moderate nitrogen (MN, 225 kg hm–2), and high nitrogen (HN, 450 kg hm–2). The effects of nitrogen regimes on PSI (B), PSII (C), and Rubisco activity
(D) of P. notoginseng. Pm is the maximum photo-oxidation P700+; Fv/Fm is the maximum efficiency of PSII photochemistry. Values for each point were mean ± SD
(n = 5). Different letters among nitrogen regimes indicate significant difference (p < 0.05).

FIGURE 3 | Effects of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and methyl viologen (MV) on Fv/Fm (A) and Pm (B) in leaves of Panax notoginseng grown
under different nitrogen regimes. After infiltration with chemical reagents (H2O, DCMU, and MV) in darkness for 12 h. Fv/Fm, and Pm were measured as described in
the section “Materials and Methods.” Values for each point were mean ± SD (n = 5). Different letters indicate significant differences among treatments (p < 0.05,
one-way ANOVA).
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FIGURE 4 | Effects of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and
methyl viologen (MV) on ETRII, ETRI, and cyclic electron flow (CEF) in leaves of
Panax notoginseng grown under different nitrogen regimes. (A) ETRII is the
electron transport rate of PSII. (B) ETRI is the electron transport rate of PSI.
(C) CEF is the cyclic electron flow. Values for each point were mean ± SD
(n = 5). Different letters indicate significant differences among treatments
(p < 0.05).

3-(3,4-Dichlorophenyl)-1,1-Dimethyl Urea
and Methyl Viologen Induce Changes in
Photosynthetic Electron Transport Under
N Regimes
There were considerable differences in the photosynthetic
electron transport under samples treated with DCMU and

MV (Figure 4; p < 0.05). Electron transport rate of PSI
(ETRI) and electron transport rate of PSII (ETRII) significantly
reduced in LN-grown plants treated with DCMU (Figures 4A,B;
p < 0.05). ETRI and CEF declined in MN-grown plants
treated with DCMU (Figures 4B,C). In MN and HN plants
treated with DCMU, the values of CEF decreased by 28.2 and
38.8%, respectively (Figure 4C). Meanwhile, MV-treated plants
showed lower levels of ETRI and ETRII under N regimes
(Figures 4A,B). In LN, MN, and HN plants treated with
MV, the values of CEF reduced by 47.4, 53.6, and 34.6%,
respectively (Figure 4C).

Responses of the OJIP Kinetic Curve to
3-(3,4-Dichlorophenyl)-1,1-Dimethyl Urea
and Methyl Viologen Under N Regimes
After spraying the electron transport inhibitor, the OJIP curve
changes significantly (Figure 5; p < 0.05). DCMU-treated
samples showed higher K phase (300 µs) and J phase (2 ms)
in the OJIP kinetic curve than those treated with H2O and
MV (Figure 5). Spraying of MV has no significant effect
on the OJIP kinetic curve, but the minimum value of I
phase (30 ms) appeared in MV-treated samples (Figure 5).
IP phase was decreased in MV-treated P. notoginseng
compared with H2O-treated plants, and the minimum
value of P phase (FP) appeared in MV-treated samples
(Figures 5, 6C). Further analysis of the JIP-test parameters
showed that the photosynthetic characteristics of PSII were
significantly affected after spraying the electron transport
inhibitor (Figure 6; p < 0.05). PIABS (performance index
for energy conservation from photons absorbed by PSII
antenna to the reduction of QB) and VJ (relative variable
fluorescence at the J-step) decreased in LN- and HN-grown
plants treated with DCMU and MV (Figures 6B,D), but
WK (the ratio of the variable fluorescent FK occupying the
FJ–FO amplitude) significantly increased in LN-grown plants
treated with DCMU (Figure 6A; p < 0.05). MN-grown plants
treated with DCMU had significantly higher VJ and WK
(Figures 6A,B; p < 0.05). Meanwhile, PIABS significantly
declined in MN-grown plants treated with DCMU (Figure 6D;
p < 0.05).

According to the above result, the PIABS and WK
correlated well with the N levels. To further assess the
N tolerance of P. notoginseng, a model was developed
based on the parameter PIABS and WK (Figure 6E).
The PIABS values decreased linearly as the K-step level
(WK) increased (Figure 6E). A significant negative
linear correlation was observed between PIABS and WK
(Figure 6E). This linear relationship that the most important
determinant of the PSII loss of function is the damage
of OEC centers. The absolute value of the slope (K) of
the relationship between PIABS and WK quantifies plant
sensitivity to N. The absolute value of the slope (K) is
40.53 (LN), 48.23 (MN), and 259.25 (HN), respectively. It
is clear that a lower absolute value of slope has a stronger
tolerance to nitrogen.
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FIGURE 5 | Effects of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and methyl viologen (MV) on chlorophyll fluorescence transients in leaves of Panax
notoginseng grown under different nitrogen (N) regimes. After infiltration with chemical reagents (H2O, DCMU, and MV) in darkness for 12 h. OJIP kinetic curves were
measured as described in the section “Materials and Methods.” Panels (A,C,E) represent the N levels of LN, MN, and HN, respectively. O, J, I, and P phases
represent the fluorescence at T = 20 µs, 2, 30, and 300 ms, respectively. Effect of N levels LN (B), MN (D), and HN (F) on relative variable fluorescence (1Vt) of
Panax notoginseng after infiltration with chemical reagents (H2O, DCMU, and MV) in darkness. 1Vt = V(treatment) – V(control), V(treatment) is the fluorescence of
P. notoginseng treated with DCMU or MV; V(control) is the fluorescence of P. notoginseng treated with H2O. 1K, 1J, and 1I represent the relative variable
fluorescence at T = 300 µs, 2, and 30 ms, respectively. Values for each point were means (n = 5).
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FIGURE 6 | Effects of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and methyl viologen (MV) on WK (A), VJ (B), FP (C), and PIABS (D) in leaves of Panax
notoginseng grown under different nitrogen regimes. WK is the K phase in OJIP kinetic curves (A); VJ is the relative variable fluorescence intensity at the J-step (B);
FP is the fluorescence intensity at the P-step (C); PIABS is the performance index on absorption basis (D). Values for each point were mean ± SD (n = 5). (E) Figures
represent the correlation between PIABS and WK. Letters indicate significant differences at p < 0.05 according to Duncan’s multiple range tests.

Frontiers in Plant Science | www.frontiersin.org 9 February 2022 | Volume 13 | Article 796931

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-796931 February 9, 2022 Time: 14:36 # 10

Cun et al. Electron Transport in Panax notoginseng

FIGURE 7 | Effects of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and
methyl viologen (MV) on light energy allocation of PSI in Panax notoginseng
grown under different nitrogen regimes (light adapted condition). Panels (A–C)
represent the nitrogen (N) levels of LN, MN, and HN, respectively. Y(I) is the
quantum yield of PSI; Y(ND) is the donor side limitation of PSI; Y(NA) is the
acceptor side limitation of PSI. Values for each point were means ± SD
(n = 5). Significant differences are indicated by asterisks (ANOVA; p < 0.05).
LN, low N; MN, moderate N; HN, high N; MV, methyl viologen.

Effects of
3-(3,4-Dichlorophenyl)-1,1-Dimethyl Urea
and Methyl Viologen on the Distribution
of Photosystem I Absorbed Light Energy
in Panax notoginseng Leaves Under N
Regimes
Compared with the H2O-treated leaves, values for Y(I) (quantum
yield of PSI) in plants of leaves treated with DCMU and MV

were decreased (Figure 7). Y(I) was lowest when the plant was
exposed to LN, and the minimum value of Y(I) appeared in MV-
treated plants (Figure 7A). The samples treated with DCMU
and MV had significantly higher Y(ND) (donor side limitation
of PSI) than the H2O-treated samples (Figure 7; p < 0.05).
Meanwhile, MN-grown plants showed the highest levels of
Y(ND) (Figure 7B). The value of Y(NA) (acceptor side limitation
of PSI) was kept at low levels in samples treated with H2O,
DCMU, and MV, whereas the LN-grown plants showed higher
Y(NA) (Figure 7). Concurrently, Y(NA) considerably enhanced
in the MV-treated plants (Figure 7). Y(NA) was zero in the
DCMU-treated plants (Figure 7).

Response of the Redox Kinetics of P700
to 3-(3,4-Dichlorophenyl)-1,1-Dimethyl
Urea and Methyl Viologen in N Regimes
The P700 signal was determined during ST followed by MT in
the presence of far-red background light and used ST areas/MT
areas to characterize PQ pool size and the redox state (Savitch
et al., 2001; Figure 8). In LN-, MN-, and HN-grown plants treated
with DCMU, the PQ pool size increased by 60.3, 22.3, and 59.5%,
respectively (Figure 8D). However, there were no significant
differences in PQ pool size between MV-treated and H2O-treated
plants (Figure 8D; p > 0.05).

Effects of
3-(3,4-Dichlorophenyl)-1,1-Dimethyl Urea
and Methyl Viologen on Leaf Antioxidant
Enzyme Activity Under N Regimes
Activity of antioxidant enzymes in P. notoginseng showed
significant differences between treatments (Figure 9; p < 0.05).
SOD and CAT activity substantially increased in LN- and MN-
grown plants treated with MV (Figures 9A,C; p < 0.05).
Interestingly, SOD and CAT activity greatly reduced in MN-
and HN-grown plants treated with DCMU (Figures 9A,C;
p < 0.05). All these MV-treated samples showed high levels of
POD activity, and the highest activity was found in HN-grown
plants (Figure 9B). Meanwhile, POD activity markedly declined
in LN- and MN-grown plants treated with DCMU (Figure 9B;
p < 0.05).

DISCUSSION

In this study, we examined the roles of electron transport in PSI
and PSII photoinhibition in the N-sensitive species P. notoginseng
under N stress by treatments with diuron (DCMU) and MV.
DCMU affects the primary photochemistry and blocks the
electron transport from QA to the secondary quinone acceptor
QB by interacting with D1 protein (Chen et al., 2007; Guo
et al., 2020), whereas MV captures electrons from PSI ahead of
FNR at almost the same rate as PSII is pumping them to PSI
(Schansker et al., 2005). We found that PSI and PSII activities
were considerably inhibited in LN plants as comparison with
the other two treatments. Furthermore, LEF and CEF were
an important determinant of PSI and PSII photoinhibition in
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FIGURE 8 | Effects of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and methyl viologen (MV) on plastoquinone (PQ) in leaves of Panax notoginseng grown
under different nitrogen regimes. Panels (A–C) represent the nitrogen (N) levels of LN, MN, and HN, respectively. Panel (D) is the PQ pool size. Values for each point
were mean ± SD (n = 5). Letters indicate significant differences at p < 0.05 according to Duncan’s multiple range tests. ST, single-turn saturation pulse; MT,
multi-turn saturation pulse; LN, low N; MN, moderate N; HN, high N.

P. notoginseng grown under LN. Our present study has revealed
some insights into the mechanism of N stress-induced PSII and
PSI photoinhibition in an N-sensitive species.

Non-optimal N Regimes Inhibit
Photosynthetic Capacity in an
N-Sensitive Species
Nitrogen is one of the most important elements for plant
photosynthesis as N is the main constituent of Rubisco, Chl, and
photosynthetic proteins (Li et al., 2013; Mu and Chen, 2021).
N uptake and utilization significantly affects photosynthetic
efficiency (Evans and Clarke, 2019). Evidence shows that
photosynthetic efficiency was increased with the increase of
NUE in Platycodon grandiflorus and Abrus cantoniensis (Hu,
2006; Duan et al., 2015). However, root biomass and NUE
increased in LN plants (Figure 1), whereas Pn, Fv/Fm, and Pm
declined (Figure 2). P. notoginseng promotes the accumulation
of root biomass by increasing the NUE for survival under LN,
but it does not contribute to photosynthesis. This has been
confirmed by the performance observed in A. thaliana grown
under N deficiency (Jia et al., 2020). Additionally, photosynthesis

is closely related to leaf N and Chl contents (Rogers et al., 2017;
Fraser, 2020). High SLN and Chl content induce the increase
of light harvesting (Hikosaka, 2004). Our results are consistent
with the previous studies that show SLN, Chl, Pn, Fv/Fm, and
Pm were reduced in Isatis indigotica and P. notoginseng under
LN condition, thereby reducing light harvest and inhibiting
photosynthesis (Guan et al., 2018; Figures 1, 2). Numerous
studies have shown that the continued increase in SLN and Chl
contents are detrimental to the balance of light harvesting and
utilization, leading to a decrease in photosynthetic capacity (Li Y.
et al., 2009; Moriwaki et al., 2019; Fraser, 2020). SLN, Chl, leaf,
and stem biomass increased in HN plants, whereas Pn and NUE
decreased (Figures 1, 2A), indicating photosynthetic efficiency
was suppressed in HN condition. Meanwhile, the decrease in
Rubisco and Pn has been observed in P. notoginseng grown under
HN level (Figures 2A,D). The reduction in Rubisco activity
and photosynthetic efficiency has been recorded in plants such
as Malus domestica and Pseudotsuga menziesii var. menziesii
(Cheng and Fuchigami, 2000; Manter et al., 2005). These results
suggest that relatively less N operates on photosynthesis, when
a high proportion of N served as N storage in HN-grown
plants (Liu et al., 2018). Excessed SLN and Chl might cause
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FIGURE 9 | Effects of 3-(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) and
methyl viologen (MV) on superoxide dismutase (SOD) (A), peroxidase (POD)
(B), and catalase (CAT) (C) in leaves of Panax notoginseng grown under
different nitrogen regimes. Values for each point were mean ± SD (n = 5).
Letters indicate significant differences at p ≤ 0.05 according to Duncan’s
multiple range tests.

the imbalance between the harvesting and utilization in light,
thus leading to reduced photosynthetic capacity in the HN
plants, as has been confirmed in soybean (Glycine max) by
Jiang et al. (2006). Overall, plants absorb N mainly for the
accumulation of root biomass in LN condition, whereas HN-
grown plants absorb N mainly for the increase of aboveground

biomass and N content. However, the non-optimal SLN, Chl, and
Rubisco activity in the HN and LN plants caused an imbalance
between light energy capture and utilization, thereby inhibiting
photosynthetic efficiency.

Higher Cyclic Electron Flow Cannot
Prevent Photosystem I and Photosystem
II From Photoinhibition Under Low N
Condition
Photoinhibition of photosystems (PSI and PSII) occurs when the
light energy absorbed by antenna pigment exceeds the capacity
of photosynthetic apparatus (Sonoike, 2011; Tyystjärvi, 2013).
LEF and CEF can rebalance ATP/NADPH and alleviate
photoinhibition (Lu et al., 2020). Fv/Fm and Pm were reduced
by adding DCMU and MV that determine whether or not CEF
and LEF are initiated (Figure 3). This has been confirmed by
the performance observed in Fragaria ananassa, Lycopersicon
esculentum, Dalbergia odorifera, Erythrophleum guineense, and
P. rubra treated with DCMU and MV (Huang, 2012; Liu, 2015;
Huang et al., 2016b; Lu, 2016). Fv/Fm and Pm were significantly
decreased in LN-grown plants treated with DCMU and MV
(Figure 3). These results suggest that PSI and PSII are sensitive
to LN, and MV and DCMU mainly inhibit the activities of
PSI and PSII, respectively. On the other hand, it has been
reported that Eupatorium adenophorum and Cerasus cerasoides
adapt to the fluctuating light by enhancing electron transport to
improve the utilization of light energy (Wang et al., 2004; Yang
et al., 2019). ETRI, ETRII, and Fv/Fm showed a decrease in LN-
grown P. notoginseng (Figures 3A, 4A,B). We speculate that the
reduction in PSII activity leads to the decrease in linear electron
transport (ETRI and ETRII) when PSII photoinhibition occurs
in LN-grown plants. The similar results have been recorded in
P. notoginseng grown under low light and HN (Huang et al., 2018;
Cun et al., 2021). In addition, CEF plays an important role in
the adaptation of plants to environmental stress (Nawrocki et al.,
2019; Sagun et al., 2019). The activation of CEF increases the
adaptability of Tradescantia fluminensis leaves to high light stress
(Kalmatskaya et al., 2020). CEF was higher in LN plants than in
the HN and MN plants (Figure 4C). There were no significant
differences in the CEF under LN-grown plants treated with H2O
and DCMU, but CEF, Fv/Fm, and Pm were significantly reduced
in LN-grown plants treated with MV (Figures 3, 4C). Therefore,
higher CEF cannot prevent PSI and PSII from photoinhibition
under LN condition.

Lower Linear Electron Transport Induces
Photodamage to Photosystem II Donor
Side Under Low N Condition
The damage of PSII OEC and production of ROS are regarded as
the two main causes of PSII photodamage (Li et al., 2018). The
appearance of the K phase in OJIP is related to the damage of
the PSII donor side, particularly the OEC (Strasser, 1997; Strasser
et al., 2000, 2004; De Ronde et al., 2004; Li P. et al., 2009). The
free radicals generated by excess excitation energy could damage
the RC of PSII (excess-energy hypothesis; Krieger-Liszkay et al.,
2008; Takahashi and Murata, 2008). Fv/Fm was reduced in
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FIGURE 10 | A model was proposed for the adaptation strategy of photosystem in the nitrogen (N)-sensitive plants represented by Panax notoginseng under low N
(LN) condition. The lower linear electron flow (LEF) leads to the hindrance of the formation of 1pH and ATP under LN, thereby damaging the donor side of the PSII
oxygen-evolving complex (OEC). However, the activation of cyclic electron flow (CEF) slows down the damage rate of PSII under LN. Additionally, the over-reduction
of PSI acceptor side is the main cause of PSI photoinhibition in N-sensitive species P. notoginseng under LN, and higher CEF and antioxidant enzyme activity
protects PSI from photodamage. Craquelure represents the damage of photosystem.

P. notoginseng grown under LN (Figure 3A), and there was no
significance in WK in LN-grown plants treated with MV and H2O
(Figures 5, 6A). It indicates that additional free radicals cannot
directly cause PSII photoinhibition in P. notoginseng under LN.
Therefore, free radicals are not the main cause of photoinhibition
of PSII under LN. Moreover, the photodamage of PSII occurs first
at the OEC and then acts on the RC (Mn hypothesis; Murata et al.,
2007; Nishiyama et al., 2011). Fv/Fm and PIABS were decreased
(Figures 3A, 6D), and WK was increased in LN-grown plants
treated with H2O, DCMU, and MV (Figure 6A). It might be
speculated that LN-induced photoinhibition of PSII might be
caused by the photodamage to the donor side of PSII OEC (Li
P. et al., 2009). This has also been confirmed by the performance
as has been observed in Vitis vinifera and Hordeum vulgare grown
under drought stress (Christen et al., 2007; Oukarroum et al.,
2007). A significant negative linear correlation was observed
between PIABS and WK (Figure 6E), this further confirms that
the most important determinant of the PSII loss of function is
the damage of OEC centers (Chen S. et al., 2016). Additionally,
the most sensitive characteristic parameter PIABS and WK of
the OJIP kinetic curve is a useful and practical method for
screening and assessing plant stress tolerance (Oukarroum et al.,
2007; Boureima et al., 2012; Silvestre et al., 2014). This technique
has successfully been applied to evaluate salinity sensitivity in
Vigna radiata and Brassica juncea and heat tolerance in Ageratina
adenophora (Misra et al., 2001; Chen S. et al., 2016). The absolute
value of the slope (K) is 40.53 (LN), 48.23 (MN), and 259.25
(HN), respectively (Figure 6E). It is clear that P. notoginseng is
tolerant to LN and sensitive to HN. This is consistent with our
previous research results (Zhang J.Y. et al., 2020). Photodamage
of PSII occurs when the rate of PSII photodamage is greater than
the rate of PSII repairment (Miyata et al., 2015; Ueno et al., 2016;
Takahashi et al., 2019). It has been reported that LEF facilitates
the PSII repairment through a rapid formation of 1pH (the
proton gradient across the thylakoid membranes) in A. thaliana

and D. odorifera grown under high-light stress (Huang, 2012;
Yamada et al., 2020). ETRI and ETRII decreased in LN plants
(Figures 4A,B). These results indicate that lower LEF causes the
formation of 1pH and ATP to be hindered, thereby inhibiting
the repairment of PSII under LN. In other words, the inhibition
of linear electron transport may cause damage to the OEC on the
donor side of PSII under LN condition. VJ had the minimum
value in LN plants treated with DCMU (Figures 5, 6B), and the
DCMU-treated leaves still have the OJIP kinetics under MN and
HN (Figures 5, 6B). The results imply that DCMU has inhibited
all PSII RCs under LN condition, and the deactivation of PSII RC
could produce a large number of free radicals (Domonkos et al.,
2013; Tyystjärvi, 2013). However, the spraying of DCMU would
weaken the inhibition of PSII RCs in P. notoginseng grown under
HN and MN. The generation of ROS and the damage of OEC
leads to PSII photodamage in P. notoginseng grown under LN.
Overall, free radical production only inhibits PSII repairment and
does not cause PSII damage, and lower LEF induces photodamage
to PSII donor side under LN condition.

Over-Reduction of Photosystem I
Acceptor Side Under Low N Condition
A reaction between reduced iron–sulfur centers and hydroxyl
peroxide generates hydroxyl radicals that cause oxidative damage
to PSI complexes (Sonoike, 2011). The over-reduction of PSI
acceptor side and production of hydroxide at PSI acceptor
side are regarded as two main causes of PSI photoinhibition
(Munekage et al., 2002; Tikkanen et al., 2014). Water–water cycle
induces the production of hydroxyl peroxide at PSI acceptor
side in C. sativus, S. oleracea, A. thaliana, and S. lycopersicum
under chilling temperature or high light, which further leads to
PSI photoinhibition (Sonoike, 1996; Zhang and Scheller, 2004;
Lu et al., 2017). Y(NA) decreased with the increase of N levels,
but Y(ND) was significantly higher than Y(NA), and MV-treated
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plants showed higher Y(NA) (Figure 7). These results indicate
that the donor side limitation-induced superoxide anions are
generated at the PSI receptor side under LN, which leads to
excessive reduction of the PSI receptor side, thereby causing
PSI photoinhibition. Moreover, it has been observed that the
excitation of CEF might maintain the low reduction state of
the PSI receptor side and the high oxidation state of P700 to
prevent PSI from damage in P. vulgaris, Triticum aestivum, and
C. sinensis grown under N deficient (Antal et al., 2010; Lin et al.,
2016; Li H. et al., 2021). The size of PQ pool in LN plants
was reduced, and the CEF was increased, and there were no
significant differences in PQ pool size between MV-treated and
H2O-treated plants (Figures 4C, 8D). Therefore, the higher CEF-
induced reduction in PQ pool not only reduces the acidification
of the lumen, thereby preventing photodamage to PSI, but also
slows the rate of damage to PSII OEC under LN, as has been
confirmed in P. vulgaris and C sinensis grown under N starvation
(Antal et al., 2010; Lin et al., 2016). Nevertheless, higher PQ
pool size was recorded in DCMU-treated plants. We speculate
that lower CEF cannot alleviate the over-reduction of the PQ
pool in DCMU-treated plants and thus inhibit the photosynthetic
capacity (Figure 8D), as has been confirmed by Allen (2003).
On the other hand, antioxidant enzymes (SOD, POD, CAT, etc.)
play an important role in scavenging ROS (Foyer et al., 1994). It
has been reported that MV significantly increases the activity of
CAT and POD in Salvia miltiorrhiza, whereas DCMU inhibits the
effects of MV (Xing et al., 2014). These are in line with results
obtained in the present study that MV significantly enhanced
the activity of SOD, CAT, and POD in P. notoginseng, whereas
DCMU suppressed the activity of antioxidant enzyme (Figure 9).
Enhanced antioxidant activity protects PSI from photodamage in
P. notoginseng grown under LN. Therefore, over-reduction of PSI
acceptor side is the main cause of PSI photoinhibition under LN
condition, and higher CEF and activity of antioxidant enzyme
protect PSI from photodamage.

CONCLUSION

Non-optimal N regimes significantly inhibit photosynthetic
capacity of the N-sensitive species such as P. notoginseng.
Plants absorb N mainly for the accumulation of root biomass
in LN condition. A high SLN and Chl might cause the
imbalance between light capture and utilization, thus reducing
photosynthetic carboxylation capacity in the HN plants. A model

was proposed for the adaptation strategy of photosystem in
the N-sensitive plants represented by P. notoginseng under
LN condition (Figure 10). The lower LEF leads to the
hindrance of the formation of 1pH and ATP in LN plants,
thereby damaging the donor side of the PSII OEC. The over-
reduction of PSI acceptor side is the main cause of PSI
photoinhibition under LN condition. Additionally, higher CEF
and activity of antioxidant enzyme not only protected PSI from
photodamage but also slowed down the damage rate of PSII in
P. notoginseng grown under LN.
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