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The leaf economics spectrum (LES) is the leading theory of plant ecological strategies
based on functional traits, which explains the trade-off between dry matter investment in
leaf structure and the potential rate of resource return, revealing general patterns of leaf
economic traits investment for different plant growth types, functional types, or biomes.
Prior work has revealed the moderating role of different environmental factors on the
LES, but whether the leaf trait bivariate relationships are shifted across climate regions
or across continental scales requires further verification. Here we use the Köppen–
Geiger climate classification, a very widely used and robust criterion, as a basis for
classifying climate regions to explore climatic differences in leaf trait relationships. We
compiled five leaf economic traits from a global dataset, including leaf dry matter content
(LDMC), specific leaf area (SLA), photosynthesis per unit of leaf dry mass (Amass), leaf
nitrogen concentration (Nmass), and leaf phosphorus concentration (Pmass). Moreover,
we primarily used the standardized major axis (SMA) analysis to establish leaf trait
bivariate relationships and to explore differences in trait relationships across climate
regions as well as intercontinental differences within the same climate type. Leaf trait
relationships were significantly correlated across almost all subgroups (P < 0.001).
However, there was no common slope among different climate zones or climate types
and the slopes of the groups fluctuated sharply up and down from the global estimates.
The range of variation in the SMA slope of each leaf relationship was as follows: LDMC–
SLA relationships (from −0.84 to −0.41); Amass–SLA relationships (from 0.83 to 1.97);
Amass–Nmass relationships (from 1.33 to 2.25); Nmass–Pmass relationships (from 0.57 to
1.02). In addition, there was significant slope heterogeneity among continents within
the Steppe climate (BS) or the Temperate humid climate (Cf). The shifts of leaf trait
relationships in different climate regions provide evidence for environmentally driven
differential plant investment in leaf economic traits. Understanding these differences
helps to better calibrate various plant-climate models and reminds us that smaller-scale
studies may need to be carefully compared with global studies.

Keywords: plant strategies, leaf economics spectrum (LES), functional traits, trade-offs, Köppen–Geiger climate
classification, allometry, trait variation
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INTRODUCTION

It is well-known that plant functional traits have the potential
to explain species’ adaption strategies and the response of
plants to environments (Westoby and Wright, 2006). In most
previous studies, leaf traits are considered to be sensitive and
important indicators of environmental changes and particularly
useful in explaining how plants are responding to the current
climate change of great concern (Garnier et al., 2001; Poorter
et al., 2009; Salazar Zarzosa et al., 2021). Quantifying the
relationship between leaf functional traits and climate is the
key to explaining what traits make plants suitable for living
in specific climatic regions and have the potential to predict
the response of communities and ecosystems to future climate
change (Heilmeier, 2019). Indeed, plant functional traits tend not
to vary independently (Reich et al., 1997, 2003; Wright et al.,
2001, 2004), which shows covariation or coordination caused
by the allocation of limited resources to balance different needs
(Candeias and Fraterrigo, 2020). The bivariate trait relationships
are not invariant but converge over a wide geographical range,
as summarized by Wright et al. (2004) for the “leaf economics
spectrum” (LES), which reflects a trade-off between the cost
of leaf structure and the rate of resource return. Moreover,
many subsequent studies have verified the existence of this
relationship in additional ecosystems or under extreme climate
conditions (He et al., 2006; Freschet et al., 2010; Fynn et al., 2011).
Based on the framework of “economics spectrum,” wood (Chave
et al., 2009), root (Roumet et al., 2016), seed (Saatkamp et al.,
2019), flower (Roddy et al., 2021), and whole plant economics
spectrums (Reich, 2014; Díaz et al., 2016) have been proposed
in recent years.

Although the LES of vascular plants on a global scale has been
widely accepted, this is not sufficient for us to understand the
contribution of trait variability or plasticity to the differential
adaptation of plants to specific climatic regions (Cui et al.,
2020). Climatic factors such as temperature and precipitation
are important predictors of some leaf functional traits (Moles
et al., 2014; Volaire, 2018), which means that they have the
potential to explain plant adjustments to leaf trait relationships
(Wright et al., 2005b; Blonder et al., 2013). At a global scale,
leaf N and P decrease with increasing average temperature and
with nearness to the equator (Reich and Oleksyn, 2004). The
relationship between leaf lifespan (LL) and leaf mass per area
(LMA) tends to be shifted with climate, showing a flatter slope
with increasing site MAT, VPD, PET, and irradiance (Wright
et al., 2004, 2005b). These trait relationships on environmental
gradients are considered as secondary trade-offs between the
actual plant response to abiotic or biotic factors (Suding et al.,
2003; Gross et al., 2007). However, it is not clear to us whether
the broad global climate gradient drives secondary trade-offs
of leaf functional traits in different patterns. Previous studies
have made us aware of the importance of climate effects on
leaf bivariate relationships, but it is difficult for a single climate
factor to explain variation in multiple traits, which makes the
trait-climate relationship complex and confusing (Moles et al.,
2014; Meng et al., 2017). This complexity is one of the critical
factors limiting the development of many earth system models

FIGURE 1 | Hypotheses for shifts in leaf trait relationships based on allometric
relationships (Adapted from Wright et al., 2001). (1) Shift A indicates that the
trait pairs of the two groups are on a common axis without heterogeneity in
slope or intercept; (2) Shift B indicates that the slope of the trait relationship is
similar between the two groups, but the difference in intercept is significant; (3)
Shift C indicates that the slope of the trait relationship between the two
groups is heterogeneous. Modulated by climatic resources (e.g., precipitation,
temperature), shifts B and C are both possible. Furthermore, we cannot
exclude the influence of biogeographic differences inherent in the region (e.g.,
species composition, evolutionary history) may have an effect.

(Bodegom et al., 2012; Verheijen et al., 2015). For example,
modelers often rely on strong correlations between traits shown
in large-scale studies to assign global or regional model parameter
values, but heterogeneity in environmental factors such as climate
may increase the uncertainty of prediction (Wang et al., 2012,
2017b; Kovenock and Swann, 2018). Hence, understanding how
leaf trait relationships behave in different climate regions can
enable better calibration of earth system models and is crucial for
predicting how plants will respond to future climate change.

The leaf economic traits are closely related to each other and
the relationship between trait x and trait y can be expressed by the
equation: y = cxb (Reich et al., 1997; Wright et al., 2004; Warton
et al., 2006). After the trait is logarithmically transformed,
the equation is: logy = blogx + a, a = logc, where a and b
represent the intercept and slope. Along the environmental
gradient, the leaf trait relationships of different plant groups may
differ in slope or elevation (i.e., intercept when the slope is the
same) due to differences in resource allocation (Wright et al.,
2001; Heberling and Fridley, 2012), or they may be strongly
constrained by intrinsic factors such as the genetic background
and elemental metabolism of the plants to exhibit functional
convergence and thus be distributed along a common axis
(Figure 1). The test for slope heterogeneity (Figure 1, Shift C)
is the prior step in the multiple group comparisons of bivariate
relationships, and when a common slope exists for all subgroups,
we can further test for intercept heterogeneity (Figure 1, Shift B).
The slope of the trait relationship is informative and important
because it can be used as an indicator of plant resource
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capture strategies on environmental gradients (Leishman et al.,
2007; Heberling and Fridley, 2012; Guo et al., 2020). If the
slope of the fit is not significantly different across groups, it
suggests that the trait relationship is relatively robust across
environments (Cui et al., 2020). In this study, we compiled a
leaf functional trait dataset covering 82,957 observations of 7,523
species distributed over six continents with the help of data sets
provided by TRY Plant Trait Database.1 Each observation was
matched to a climate zone and climate type corresponding to
the Köppen–Geiger climate classification (Peel et al., 2007). The
Köppen–Geiger climate classification is a highly advantageous
classification scheme that combines monthly and annual average
temperature and precipitation data, can be used to predict
biome distributions, considers thresholds for plant sensitivity,
and facilitates the construction of bioclimatic models and the
analysis of vegetation response under future climate change
(Mahlstein et al., 2013). There have been many advances in the
effects of single climatic factors on traits and trait relationships
(Reich and Oleksyn, 2004; Wright et al., 2005b; Ordoñez et al.,
2009), but realistic vegetation distribution areas are spatially
compounded by multiple factors, and the role of these factors
may be difficult to be stripped away. Then the classification
of climate regions would be a new perspective to assess the
generality of global leaf trait bivariate relationships. Furthermore,
since many climate types are widely dispersed across continents,
we consider different continents within the same climate type as a
smaller scale where bivariate relationships are more constrained
by non-climatic biogeographic constraints (e.g., differences in
dominant species, differences in evolutionarily distinct floras)
(Heberling and Fridley, 2012). This extended comparison may
help explain potential differences in trait relationships between
plants of different functional groups or geographic locations due
to specific evolutionary history and environmental conditions
(Tian et al., 2018). Here, we aimed to compare the relationships
between key leaf traits across different climate regions and
attempt to compare intercontinental differences within the same
climate type. These two tasks correspond to the following two
important sets of questions:

(1) Are the leaf trait relationships in different climate regions
consistent with the global pattern? If not, do these
relationships reflect differential investment in traits?

(2) Are leaf trait relationships within different continents along
a common axis when controlling for differences in climate
type? Are the slope estimates for these regions consistent
with global estimates?

MATERIALS AND METHODS

Leaf Economic Traits and Trait
Relationships
For the selection of leaf traits, we considered five ecologically
important and closely linked leaf functional traits: leaf dry matter
content (LDMC), specific leaf area (SLA), leaf photosynthesis

1https://www.try-db.org

per leaf dry mass (Amass), leaf nitrogen concentration (Nmass),
and leaf phosphorus concentration (Pmass). Specifically, LDMC
reflects the investment made in leaf tissue construction (Shipley
et al., 2006; Hu et al., 2015). SLA represents the light-interception
area per unit leaf mass (Wright et al., 2004). Amass refers
to the maximum photosynthetic rate measured under high
light, ample soil moisture, and ambient CO2, which is mainly
influenced by the stomatal conductance as well as the diffusion
resistance and diffusion path of CO2 within the leaf (Wright
et al., 2004; Zhang et al., 2015). Nmass and Pmass are mass-
based expressions of leaf nitrogen content and leaf phosphorus
content (Perez-Harguindeguy et al., 2013; Table 1). Some scholars
also analyzed with area-based leaf nitrogen content and leaf
phosphorus content (Lloyd et al., 2013; Osnas et al., 2013), but
the trait relationships derived from area-based expression were
not well-suited to be understood in terms of plant growth and
economics (Westoby et al., 2013). Nmass can be seen as the
potential photosynthetic carboxylation capacity because proteins
of the Calvin cycle and thylakoids represent the majority of leaf
nitrogen (Field and Mooney, 1986; Evans, 1989), while Pmass is
critical for photosynthesis and metabolic processes (Reich et al.,
2009). Moreover, Nmass and Pmass are closely related and often
together reflect the nutrient limitation of the habitat and the
influence of climatic factors such as temperature and moisture
(Reich and Oleksyn, 2004; Han et al., 2005).

The correlation of these leaf traits makes them tightly
connected within a dimension, and there are specific causal
relationships behind these links (Shipley et al., 2006). The
bivariate relationships within the LES dimension are all related
to resource acquisition and nutrient conservation strategies and
can reflect whether the plant prefers a fast or slow growth
strategy. To compare the effects of environmental gradients, we
selected a subset of LES relationships, which involve structural,
chemical, and physiological aspects of leaves. The details are
as follows: (1) LDMC–SLA relationship (fundamental trade-
off between leaf structural traits); (2) Amass–SLA relationship
(allometry between leaf physiological and structural traits); (3)
Amass–Nmass relationship (allometry between leaf physiological
and chemical traits); (4) Nmass–Pmass relationship (allometry
between leaf chemical traits).

Data Description
In this study, 82,957 observations of 7,523 plant species
worldwide were collected from the TRY Plant Trait Database.
In addition to the original dataset of leaf economic spectrum
(GLOPNET), 69 other datasets were involved in compiling the
data (Cornelissen et al., 1996; Baruch and Goldstein, 1999;
Shipley, 2002; Adler et al., 2004; Wright et al., 2004; Louault
et al., 2005; Michaletz and Johnson, 2006; Craven et al., 2007;
Swaine, 2007; Montgomery and Givnish, 2008; Craine et al., 2009;
Kattge et al., 2009; van de Weg et al., 2009; Freschet et al., 2010;
Messier et al., 2010; Ordoñez et al., 2010; Powers and Tiffin, 2010;
Wright et al., 2010; Butterfield and Briggs, 2011; Campetella et al.,
2011; Laughlin et al., 2011; Prentice et al., 2011; Swenson et al.,
2011; Han et al., 2012; Rolo et al., 2012; van de Weg et al., 2012;
Vergutz et al., 2012; Auger and Shipley, 2013; Boucher et al., 2013;
Chen et al., 2013; Dahlin et al., 2013; Kichenin et al., 2013; Lukes
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TABLE 1 | List of leaf traits selected for this study, their abbreviations, functional significance, and related references.

Traits Abbreviations Unit Functional significance and relevant literature

Leaf dry matter content per leaf
water-saturated mass

LDMC g g−1 Growth, competitive ability, stress tolerance (Wilson et al., 1999; Cornelissen et al., 2003; Kleyer
et al., 2008)

Leaf area per leaf dry mass SLA mm2 mg−1 Growth, resource acquisition, and use (Wilson et al., 1999; Wright et al., 2004; Díaz et al., 2016)

Photosynthesis per leaf dry mass Amass µmol g−1s−1 Resource acquisition and use (Wright et al., 2004; Zhang et al., 2015)

Leaf nitrogen content per dry mass Nmass mg g−1 Nutrient conservation, decomposition (Perez-Harguindeguy et al., 2013; de la Riva et al., 2019)

Leaf phosphorus content per dry mass Pmass mg g−1 Nutrient conservation, decomposition (Perez-Harguindeguy et al., 2013; de la Riva et al., 2019)

TABLE 2 | Summary of leaf economic traits based on individual species values and site mean values.

Traits N Mean SD CV (%) Minimum Maximum

Individual trait values

SLA (mm2 mg−1) 77,210 20.01 12.39 61.9 1.09 148.08

LDMC (g g−1) 67,111 0.31 0.10 33.0 0.05 0.89

Amass (µmol g−1s−1) 6,246 0.15 0.11 76.2 0.01 1.28

Nmass (mg g−1) 23,470 19.80 8.42 42.6 0.60 79.09

Pmass (mg g−1) 15,757 1.47 1.03 69.8 0.09 9.59

Site mean trait values

SLA (mm2 mg−1) 690 16.29 8.17 56.2 1.91 71.41

LDMC (g g−1) 401 0.30 0.08 26.0 0.12 0.55

Amass (µmol g−1s−1) 143 0.14 0.08 55.6 0.03 0.43

Nmass (mg g−1) 460 19.64 6.58 33.5 0.88 42.12

Pmass (mg g−1) 360 1.30 0.68 52.7 0.15 4.19

et al., 2013; Martinez-Garza et al., 2013; Joseph et al., 2014; van
der Plas and Olff, 2014; Seymour et al., 2014; Siefert et al., 2014;
Smith et al., 2014; Takkis, 2014; Walker et al., 2014; La Pierre
and Smith, 2015; Li et al., 2015; Maire et al., 2015; Blonder et al.,
2016; Gos et al., 2016; Lhotsky et al., 2016; Petter et al., 2016;
Herz et al., 2017; Wang et al., 2017a; Chacon-Madrigal et al.,
2018; Dalke et al., 2018; Li and Shipley, 2018; Miller et al., 2018;
Buchanan et al., 2019; Kattenborn et al., 2019; Sharpe and Solano,
unpublished data). A detailed list of data contributions can be
found in Supplementary Table 1.

During data retrieval, data sets containing two or more target
traits at the same time will be initially accepted. Data from
artificially controlled experiments rather than under natural
conditions or without a location will be excluded to ensure that
trait data can be matched with actual site environmental data.
In addition, we used a metric of the risk of error (z-scores)
provided by TRY to remove outliers with obvious errors and
potentially high risk (Kattge et al., 2011). Trait records with
z-scores >4 are those with distances greater than >4 standard
deviations from the mean of the species, genus, family, or higher-
rank taxonomic group (Díaz et al., 2016), and they were directly
excluded because they have a very small probability and are
likely to have some problems, such as non-standardized methods,
wrong unit, measurements under very uncommon conditions
(Kattge et al., 2011). In our dataset, trait values were extracted
from each observation for the individuals of each species, and
each site may contain observations of one or hundreds of species,
so we were able to calculate site means of traits for sites that
contain at least four species. It is worth mentioning that the
sample size of the site means is much smaller than that of
individual values, so we compared the two methods in the global

analysis and the climate zone analysis, while our further analysis
used only the individual values of each trait (Table 2).

Using the location of each trait record, we matched
the continent to which it belonged and the corresponding
climate zone and climate type in the Köppen–Geiger climate
classification (Peel et al., 2007). Our dataset covers most of
the spatial distribution of vegetation and is large enough
to support the analysis of different climate regions on six
continents, with the exception of Antarctica (Figure 2 and
Supplementary Figure 1). Based on the criteria of this climate
classification, we have divided the climate region first into
five climate zones, which are further divided into 12 climate
types (Table 3). In particular, only leaf trait data for the
Tundra climate type (ET) was included within the Polar climate
zone because of the scarcity of observations within the Frost
climate type (EF).

Statistical Analysis
All leaf trait data were log10-transformed and the transformed
data were approximately normally distributed. Bivariate
relationships for leaf traits were fitted by standardized major axis
(SMA) regression because it takes into account the concurrent
errors in the x and y axes (Wright et al., 2005b; Heberling and
Fridley, 2012; Cui et al., 2020). SMA regression and further
inference on the fitted lines can be done in R 4.0.4 using
the “smart” package version 3.0 (Warton et al., 2012; R Core
Team, 2020). First, the best estimate of the slope and intercept
was fitted by the SMA function based on all observations,
and the fitted line represents the convergence of the global
plant function on one axis. Moreover, the SMA function
can test the slope or intercept heterogeneity of several fitted
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FIGURE 2 | Distribution of the sites to which the leaf traits belong in different climate zones of the world. The climate zones are divided into A (Tropical), B (Arid), C
(Temperate), D (Cold), and E (Polar) zones with reference to the Köppen–Geiger system (Peel et al., 2007).

TABLE 3 | Codes defined in Köppen–Geiger climate classification and their
meanings (Adapted from Peel et al., 2007).

Climate zones (prefix) Climate type (suffix)

A (Tropical) f (Rainforest)

m (Monsoon)

w (Savannah)

B (Arid) W (Desert)

S (Steppe)

C (Temperate) s (Dry Summer)

w (Dry Winter)

f (Without dry season)

D (Cold) s (Dry Summer)

w (Dry Winter)

f (Without dry season)

E (Polar) T (Tundra)

F (Frost)

lines by specifying parameters, which include constructing
confidence intervals for a common slope or intercept and
using a one-sample test to examine the common slope or
intercept between fitted lines. This allows us to check if
there is a common slope between different groups (typically
α = 0.05). If the slopes are heterogeneous (P < 0.05), we
perform multiple comparisons between groups and use adjusted
P-values to control family-wise error rates in a conservative
way. Additionally, SMA allows us to compare the slope of
each group with the results of global estimation in order to
analyze whether a globally estimated parameter applies to

groups divided by different climate zones or other types. If the
slopes are homogeneous (P > 0.05), we further compare the
variation of intercepts.

RESULTS

Global Patterns of Leaf Economic Trait
Relationships
Globally, variation in five leaf economic traits was different,
and the mean values of the traits at the species level and
averaged by site were very close (Table 2). LDMC was the least
variable at both the species level and the site level (CV = 33%,
CV = 26%, respectively). Pmass showed the greatest variation
at the species level (CV = 69.8%), while SLA showed the
greatest variation at the site level (CV = 56.2%). Moreover,
there was a significant correlation between the five leaf traits
(P < 0.001). The relationships we described at the species level for
leaf economic traits (except for LDMC–SLA relationship) with
larger sample sizes were very consistent with those described
in previous global dataset GLOPNET (Wright et al., 2004), and
these relationships were validated at the site level (Table 4).
Across species, SLA was negatively correlated with LDMC
(R2 = 0.12, P < 0.001), but positively correlated with Amass
(R2 = 0.45, P < 0.001). Nmass showed a significant positive
correlation with both Amass and Pmass (R2 = 0.41, P < 0.001;
R2 = 0.62, P < 0.001). With the exception of the Amass–
SLA relationship, the leaf trait relationship showed a higher R2

at the site level.
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TABLE 4 | Comparison of leaf trait relationships on a global scale.

Trait relationships Species Sites GLOPNET dataset (Wright et al., 2004)

Slope (95% CIs) R2 N Slope (95% CIs) R2 N Slope (95% CIs) R2 N

LDMC–SLA −0.60 (−0.60, −0.59) 0.12 66,918 −0.55 (−0.59, −0.50) 0.35 381 − − −

Amass–SLA 1.25 (1.23, 1.27) 0.45 6,107 1.32 (1.13, 1.54) 0.33 113 1.32 (1.26, 1.40) 0.50 764

Amass–Nmass 1.73 (1.69, 1.77) 0.41 4,486 1.59 (1.40, 1.80) 0.62 96 1.72 (1.63, 1.81) 0.53 712

Nmass–Pmass 0.66 (0.65, 0.67) 0.27 15,589 0.74 (0.69, 0.79) 0.59 348 0.66 (0.64, 0.69) 0.72 745

SMA slope and 95% confidence interval (CI), coefficient of determination (R2), and sample sizes are given for each of the three data sets: (1) correlations based on individual
species trait values (“Species”); (2) correlations based on site mean trait values (“Sites”); (3) correlations based on species trait values in GLOPNET (Wright et al., 2004).

FIGURE 3 | Leaf trait relationships within different climate regions. (A) LDMC–SLA relationship. (B) Amass–SLA relationship. (C) Amass–Nmass relationship. (D)
Nmass–Pmass relationship. The diamond represents the fitted standardized major axis (SMA) slope estimate for all observations globally or within a subgroup. The
points with error lines give the slope estimates and 95% confidence intervals for each climate type. A “↑” indicates the slope is significantly higher than the global
estimate (P < 0.05), “↓” indicates the slope is significantly lower than the global estimate (P < 0.05), “−” indicates the slope is not significantly different from the
global estimate (P > 0.05). In addition, the sample sizes, coefficients of determination (R2), and P-values for all SMA fits are given.

Comparison of Standardized Major Axis
Slopes Among Different Climate Regions
At the species level, shifts in leaf trait relationships were
substantial in some climate regions (Figure 3), which was
also reflected at the site level, although the slope variation
range at the site level was narrower (Supplementary Table 3).
Because species-level trait relationships were directly related to
the species’ resource acquisition and utilization strategies, here
we only showed analyses based on individual species trait data.

Leaf Dry Matter Content–Specific Leaf Area
Relationships
There was a significant negative correlation between LDMC and
SLA in all climate regions (P < 0.001). At the species level,
there was no common slope among the different climate zones

(P � 0.001), although SMA slopes within Arid climate (B)
and Polar climate (E) were not significantly different from the
global estimate (Figure 3A and Supplementary Table 3). SMA
slope fitted within the Tropical climate (A) showed the lowest
slope of the several climate zones and decreased from the global
estimate of −0.6 to −0.81. The SMA slope within the Cold
climate (D) was the flattest, significantly less negative than the
slope within the Temperate climate (C) and the Tropical climate
(−0.58 vs. −0.68, P < 0.001; −0.58 vs. −0.81, P < 0.001),
but not significantly different from the slope within the Arid
climate or the Polar climate (both P > 0.05). Also, the SMA
slopes were heterogeneous among the different climate types
(P � 0.001). The LDMC-SLA trade-offs varied considerably
among climate types, ranging from −0.84 for the Am climate to
−0.41 for the Ds climate.
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Photosynthesis Per Leaf Dry Mass–Specific Leaf
Area Relationships
Higher Amass was often associated with higher SLA across species
(Figure 3B). The SMA slopes were detected to be heterogeneous
among different climate zones (P � 0.001) and only the
Polar climate shared a common slope with global estimates. The
Arid climate held the steepest SMA slope of 1.55, while the
Temperate climate had a slope of only 1.11. Moreover, the slope
estimates were not homogeneous within different climate types,
with the Am climate slope decreasing from a global estimate of
1.25–0.83, while the slope within the BW climate type was as
high as 1.97. With the exception of the ET climate, the SMA
slopes of the other climates were significantly different from the
global estimate. In addition, smaller sample sizes may lead to
increased errors in estimation and even decoupling of leaf trait
relationships, such as those shown in Figure 3B for the BW and
the Ds climate types.

Photosynthesis Per Leaf Dry Mass–Leaf Nitrogen
Concentration Relationships
Amass and Nmass were positively correlated within each climate
region, except for the Ds climate (Figure 3C). This relationship
had a roughly increasing slope with decreasing heat in different
climate zones, except for a fluctuation in the Arid climate.
Compared to the global estimates, there was no significant
shift in slope within the Temperate climate, but the slopes
were significantly shifted within the remaining climate zones.
The SMA slopes among different climate zones and climate
types were heterogeneous (both P � 0.001). The SMA slope
of the Af climate was the flattest, while the slope of the ET
was the steepest.

Leaf Nitrogen Concentration–Leaf Phosphorus
Concentration Relationships
Nmass and Pmass were positively correlated within each climate
region, except for the Polar climate (Figure 3D). Although
the differences between the Tropical, Cold, and Polar climates
were small, the slope shift between the other climates was
significant (Supplementary Table 4). Within the Temperate
climate, the SMA slope was significantly lower than the global
estimate of 0.66, while within the remaining three climate zones
the slope was significantly higher than the global estimate,
with the highest slope in the Arid climate reaching 0.81.
The slopes fitted within the vast majority of climate types
were heterogeneous and deviated significantly from the global
estimates (Supplementary Table 5).

Comparison of Standardized Major Axis
Slopes Among Different Continents
Within a Common Climate Type
To explore the robustness of leaf trait relationships across
continents within the same climate type, we selected the BS
climate and the Cf climate, which had relatively adequate
sample sizes and were widespread across six continents, for
further analysis.

Intercontinental Differences of Leaf Trait Relationship
Within the Steppe Climate
The four trait relationships did not share a common slope across
continents within the BS climate (all P < 0.01), and many
comparisons between continents exhibited slope heterogeneity
(Supplementary Table 6). LDMC within different continents
was negatively correlated with SLA, except for the decoupling of
the relationship in South America. The LDMC–SLA relationship
within Asia, Europe, and North America exhibited a steeper
slope and differed significantly from the global estimate, while
the slope estimate for Africa didn’t differ significantly from the
estimated value of 0.6 (Figure 4A and Supplementary Table 8).
The correlation of the Amass–SLA relationship in Asia was not
significant within the BS climate (Figure 4B), and the slopes
of the other five continents were heterogeneous. The slopes for
Australia and South America were not significantly different from
the global estimate of 1.25. The positive correlation between
Amass and Nmass held across continents within the BS climate
(Figure 4C), but the slope varied from 1.42 to 3.22, with only the
estimates for Asia and Australia close to the global estimate. In
addition, the slopes of the Nmass–Pmass relationships within the
BS climate were all relatively high (Figure 4D), except for South
America where the fitted slope of 0.61 was insignificantly lower
than the global estimate of 0.66.

Intercontinental Differences of Leaf Trait Relationship
Within the Temperate Humid Climate
The four trait relationships did not share a common slope
across continents within the Cf climate (all P < 0.001),
and comparisons between continents tend to exhibit slope
heterogeneity (Supplementary Table 7). The LDMC–SLA
relationship within the Cf climate decoupled in Africa, while
the slope shifted from −0.47 to −0.79 within other continents
(Figure 5A). There was no significant shift in the slope in Asia
and North America compared to the global estimate of 0.6
(Supplementary Table 8). It was interesting to note that for the
Amass-SLA relationship, the slope estimates for both Asia and
South America were highly consistent with the global estimate
of 1.25 (Figure 5B). The Amass–Nmass relationship showed less
variation, exhibiting a slope close to the global one of 1.73 (Figure
5C), except for Australia where the slope estimate of 1.35 was
significantly smaller than the other continental estimates and
the global estimate. Furthermore, the slope of the Nmass–Pmass
relationship for Australia was close to the global estimate of 0.66
(Figure 5D), but other continents did not show a converging
trend as the slope changes from 0.47 to 0.8 (Figure 5D).

DISCUSSION

Variation in Leaf Trait and Shifts in Trait
Relationships
Over a long period of evolution and development, plants have
developed many functionally relevant intrinsic and extrinsic
traits that reflect their ability to adapt to their environment
(Cornelissen et al., 2003). This study shows that the range of
variation in different leaf economic traits is different (Table 2).
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FIGURE 4 | Relationships between leaf economic traits across species within the BS climate. The significance test results of the slope heterogeneity among the
fitted lines are shown (***P < 0.001). The solid line is a significant fit to the standardized major axis (SMA) regression within a continent (P < 0.05), while insignificant
relationships are shown as dashed lines (P > 0.05). Black solid lines are SMA regression lines for all species on a global scale. The respective slopes, sample sizes,
and coefficients of determination of the SMA regressions are as follows (all P < 0.001 unless noted): (A) LDMC–SLA relationship. Africa: b = −0.62, n = 64,
R2 = 0.06; Asia: b = −0.84, n = 1048, R2 = 0.03, P = 0.04; Europe: b = −0.69, n = 1623, R2 = 0.18; North America: b = −1.03, n = 740, R2 = 0.22; South America:
b = −0.7, n = 68, R2 = 0.02, P = 0.29. (B) Amass–SLA relationship. Africa: b = 2.35, n = 14, R2 = 0.95; Asia: b = 1.43, n = 42, R2 = 0.03, P = 0.27; Australia:
b = 1.16, n = 122, R2 = 0.71; Europe: b = 1.45, n = 46, R2 = 0.86; North America: b = 1.62, n = 42, R2 = 0.83; South America: b = 1.62, n = 30, R2 = 0.46. (C)
Amass–Nmass relationship. Asia: b = 1.42, n = 16, R2 = 0.39, P = 0.01; Australia: b = 1.89, n = 123, R2 = 0.58; Europe: b = 2.05, n = 40, R2 = 0.89; North America:
b = 2.12, n = 47, R2 = 0.77; South America: b = 3.22, n = 32, R2 = 0.68. (D) Nmass–Pmass relationship. Africa: b = 0.97, n = 98, R2 = 0.62; Asia: b = 0.73, n = 1128,
R2 = 0.11; Australia: b = 0.88, n = 190, R2 = 0.69; Europe: b = 0.78, n = 123, R2 = 0.53; North America: b = 0.94, n = 37, R2 = 0.45; South America: b = 0.61,
n = 49, R2 = 0.6.

For instance, as a pair of closely related structural traits, LDMC
has much less variation than SLA, which is consistent with
previous reports (Poorter et al., 2010; Perez-Harguindeguy et al.,
2013). Indeed, variation in traits can arise from three sources:
phenotypic plasticity, intraspecific variation, and interspecific
variation (Weiner, 2004; Auger and Shipley, 2013). This
suggests that phenotypic plasticity and intraspecific variation are
adequately accounted for when using different individual trait
values for each species within a site, whereas using the mean of
traits for all species within a site represents differences in trait
variation across sites mainly in species composition. As our study
shows, individual species trait values have larger coefficients of

variation (CV) than site mean trait values, and SMA regressions
between the former are more indicative of trade-off strategies
across species (Wright et al., 2005b).

The LES quantified the classical trade-off theory in ecology
based on scaling relationships between functional traits, which
allowed us to understand the adaptive strategies of plants
between rapid growth and resource conservation in terms of
leaf tissue investment and carbon gain (Wright et al., 2004).
Our findings supported this global result with a larger sample
size analysis, but reveal a clear shift in trait relationships across
different climate regions worldwide. Indeed, this is not the first
time that global leaf trait relationships have been observed to
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FIGURE 5 | Relationships between leaf economic traits across species within the Cf climate. The significance test results of the slope heterogeneity among the fitted
lines are shown (***P < 0.001). The solid line is a significant fit to the standardized major axis (SMA) regression within a continent, while insignificant relationships are
shown as dashed lines. Black solid lines are SMA regression lines for all species on a global scale. The respective slopes, sample sizes, and coefficients of
determination of the SMA regressions are as follows (all P < 0.001 unless noted): (A) LDMC–SLA relationship. Africa: b = −0.61, n = 18, R2 = 0.01, P = 0.67; Asia:
b = −0.6, n = 1304, R2 = 0.37; Australia: b = −0.47, n = 533, R2 = 0.49; Europe: b = −0.79, n = 9796, R2 = 0.33; North America: b = −0.61, n = 2564, R2 = 0.48.
(B) Amass–SLA relationship. Asia: b = 1.25, n = 155, R2 = 0.63; Australia: b = 1.06, n = 331, R2 = 0.37; Europe: b = 1.95, n = 24, R2 = 0.87; North America:
b = 0.92, n = 307, R2 = 0.34; South America: b = 1.25, n = 516, R2 = 0.46. (C) Amass–Nmass relationship. Asia: b = 1.77, n = 149, R2 = 0.57; Australia: b = 1.35,
n = 326, R2 = 0.4; Europe: b = 2.3, n = 13, R2 = 0.06; North America: b = 1.78, n = 310, R2 = 0.4; South America: b = 1.37, n = 21, R2 = 0.31, P = 0.01.
(D) Nmass–Pmass relationship. Africa: b = 0.73, n = 219, R2 = 0.44; Asia: b = 0.48, n = 1670, R2 = 0.07; Australia: b = 0.63, n = 851, R2 = 0.4; Europe: b = 0.8,
n = 1825, R2 = 0.46; North America: b = 0.78, n = 91, R2 = 0.47; South America: b = 0.47, n = 103, R2 = 0.45.

be shifted at smaller subgroups. Wright et al. (2001) found
that soil nutrient and rainfall conditions led to shifts in leaf
trait relationships and highlighted that species in dry habitats
have water conservation strategies that differ from those in
wetter areas. Also, Wright et al. (2005b) found a notable
climate-related trend in the Amass–Nmass relationship, with
the SMA slope becoming flatter with increasing mean annual
temperature, potential evapotranspiration, or irradiance, with
shifts in the log-log slope between about 1.4 and 2. Heberling
and Fridley (2012) compared the leaf trait relationships of
several different floristic regions around the world and found
that Amass–Nmass relationships showed significant differences,
with Northern Hemisphere showing significantly higher SMA

slopes than Southern Hemisphere, and Eastern North American
showing SMA slopes homogeneous with East Asian, but with
significantly higher intercepts. Our study confirms that the highly
correlated bivariate relationships for leaf traits differ across
climate regions and even within continents, with SMA slopes
fluctuating up and down the slope of the global estimates. The
leaf economic trait relationship is a reflection of the optimization
of plant resource use under a range of environmental conditions
(Heberling and Fridley, 2012). Differences in resource availability
may cause plants to adjust their traits and the functional focus
of the traits, which is a shift in plant adaptation strategies. In
the recently developed study of plant trait networks, the shift
in the relationships between traits has been given a new way of
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understanding (Flores-Moreno et al., 2019; He et al., 2020). For
example, in cold-temperate forests, the network formed between
multiple traits is loose, whereas in tropical forests the plant trait
network is tight and complex (He et al., 2020). In this sense, plants
in different climatic zones have reason to use flexible or different
strategies to cope with their local environment.

Climate Modulation of Leaf Trait
Relationships
The influence of climatic factors on leaf traits has long been
of interest to ecologists. Evergreen species in arid areas usually
have hardened leaves (Maksimov, 1929; Knight, 1932). In order
to conserve water and nutrients, plants usually exhibit a low
SLA with a long leaf life span, low Amass, and slow growth rate
(Reich et al., 1992; Poorter et al., 2009; de la Riva et al., 2016).
We found that this was indeed the case in the Arid climate
zone and the Polar climate zone (and the species had a higher
LDMC), but that SLA was not necessarily be smaller for species
with water deficits (Supplementary Table 2). It may be that
species within climate types with seasonal water deficits have
diverse adaptive strategies (Hoffmann et al., 2005). Specifically,
the variation in leaf economic traits is poorly explained in
deciduous shrub and tree species (Wright et al., 2004), and
these species may be able to maintain lower leaf construction
costs (higher SLA) and higher potential payback capacity (higher
Amass) to cope with the unfortunate dry season (Franco et al.,
2005). Wright et al. (2005b) saw a positive correlation between
SLA and mean annual temperature. There is a similar trend in
our comparisons between climate zones, with the exception of
the Polar climate. However, these researchers graded individual
climate factors, which was not a good predictor of trends in
bivariate relationships in a given region because the relationship
between SMA slope and climate becomes confounded under
the compounding influence of various factors. The method of
classifying climate regions used in our study is perhaps more
comprehensive and representative. Moreover, Reich and Oleksyn
(2004) found a pattern that leaf nitrogen content and leaf
phosphorus content decreased with increasing nearness to the
equator and average temperature. We found that species within
the Polar climate had higher Nmass and lower Pmass, as well as
species in the Temperate climate had lower Nmass and higher
Pmass, which may be difficult to explain by a single average
temperature factor.

In this study, we observed shifts in the slope of all leaf
economic trait relationships across different climate regions,
suggesting that differences in precipitation and temperature do
modulate the resource capture strategies of plants and that
previous studies may have underestimated the effect of climate
on leaf economic trait relationships (Reich et al., 1997; Wright
et al., 2004). For instance, although species in both the Tropical
climate and the Polar climate exhibited lower SLA and higher
LDMC, the LDMC–SLA relationships in these two climate
zones were very different. For a given global average SLA
(20 mm2 mg−1), the LDMC within the Polar climate was c. 4.6-
fold greater than the LDMC in the Tropical climate (Figure 3A).
LDMC within the Ds climate type (lower temperature and
summer water deficit) was the highest for a given SLA. This

differentiated investment in leaf structural traits may imply that
plants in cold environments require greater stress tolerance and
resistance to hazards (Cornelissen et al., 2003; Kleyer et al.,
2008). In terms of the Amass–SLA relationships, differences in
moisture have important implications (Figure 3B). For example,
the Tropical Monsoon climate (Am) and the Desert climate
(BW) had significantly different slopes from most climate types
(b = 0.83; b = 1.54, respectively) and were the two extremes
of deviation from the global estimate of 1.25. This suggests
that species in extreme arid regions can take full advantage of
the limited leaf construction cost to obtain a greater carbon
return, often accompanied by higher Nmass and leaf-level water
use efficiency (Brouillette et al., 2014). There are many possible
reasons why species exhibit low photosynthetic capacity within
the Tropical Monsoon climate, such as they may invest more in
hydraulic transport capacity to cope with the large variability in
water availability, and they may invest more in the mechanical
organization to increase leaf longevity and tolerate stress and
herbivore threats (Warren and Adams, 2004). The Amass–Nmass
relationships seemed to show a climate-related tend, with an
increasingly steep slope from the Tropical climate to the Polar
climate. This may indicate that the leaf nitrogen allocated to
the photosynthetic apparatus is significantly different among
species in different climate regions (Evans, 1989; Hikosaka
et al., 1998), and this variation can be reflected by differences
in the photosynthetic nitrogen-use efficiency. Similar results
were found in the global-scale study by Ali et al. (2015),
which showed that species from tropical zones tend to have
low photosynthetic capacity while species from higher latitudes
have high photosynthetic capacity. Furthermore, the relationship
between Nmass and Pmass did not show a monotonic shift trend
across either climate zones or climate types. Unexpectedly, the
SMA slopes were higher than the global estimate of 0.66 in many
climate zones, which is significantly different from the metabolic
theory prediction of 2/3 (Reich et al., 2010). Our results suggest
that bivariate leaf trait relationships across climate regions are
sometimes inconsistent with broader patterns, indicating that
global analyses need to be applied with caution to regions or
localities with specific environmental conditions (Wigley et al.,
2016). Moreover, the results of such subgroup analysis are quite
important because it reminds us to avoid deriving the patterns of
the world LES under Simpson’s paradox (Simpson, 1951).

Biogeographic Constraints on Leaf Trait
Relationships
Our second scientific question concerns the biogeographic
constraints of leaf trait relationships. It has been found that
different leaf trait relationships exist in some flora with different
evolutionary histories (Heberling and Fridley, 2012). Despite the
fact that continents are not a strict flora boundary, the species
composition of different continents has varied considerably
over a long evolutionary history, so that cross-species leaf
economic trait relationships may exhibit diverse patterns under
different selection pressures (Donovan et al., 2011). We found
that the Amass–Nmass relationships within different continents
were relatively close to global estimates, but that other leaf
trait relationships diverged relatively widely across different
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continents (Supplementary Table 8). Within the BS climate, leaf
trait relationships were a contrasting set in Africa and North
America. For a given SLA (global mean of 20 mm2 mg−1), the
LDMC of species in Africa was 1.5 times higher and the Amass
was 1.9 times higher compared to species in North America, in
addition to a higher scaling exponent between Nmass and Pmass
(0.97 vs. 0.94). Within the Cf climate, the contrast between all
leaf trait relationships in Australia and Europe was remarkable.
Species in Europe had a similar LDMC but 3.3 times higher Amass
at a given SLA of 20 mm2 mg−1 compared to species in Australia.
For a given Nmass (global mean of 20 mg g−1), the Amass of
species in Europe was 1.7 times higher than that of species in
Australia, as well as a higher scaling exponent of Nmass–Pmass
relationship (0.8 vs. 0.63).

In our study, differences in species composition may
contribute to the intercontinental differences in SMA slope
(Supplementary Figure 3). For instance, herbaceous species were
the most sampled in Asia and North America within the BS
climate, while evergreen broad-leaved woody species dominated
in Europe; within the Cf climate, the samples from South America
were almost evergreen broadleaf species, while North America
was dominated by deciduous broadleaf species. Previous studies
have shown that species of different functional groups can be very
different in their strategies. For example, evergreen woody species
are often more slow-growing and resource-conservative, while
herbaceous species tend to be more fast-growing and resource-
acquisitive (Poorter et al., 2009; Ghimire et al., 2017). In addition,
differences in soil properties may also be important factors
influencing the bivariate relationships of leaf traits (Fonseca et al.,
2000; Wright et al., 2001; Ordoñez et al., 2009). Although climate
is an important driver of soil development (Jenny, 1994), and soil
pH, total nitrogen, and total phosphorus vary predictably across
precipitation gradients (Huston, 2012), soil properties have
independent contributions to leaf traits. This may also be one
of the reasons for the appearance of intercontinental differences.
Patterns of terrestrial nitrogen and phosphorus limitation help
explain this view, for example, within the BS climate type, sites
in Australia exhibited mainly phosphorus limitation, while sites
in Asia exhibit predominantly nitrogen limitation (Du et al.,
2020). Furthermore, Maire et al. (2015) found that leaf nitrogen
content and leaf phosphorus content (both on the area basis) were
more affected by the joint effects of soil and climate and that the
independent effect of soil on maximum leaf photosynthetic rate
on the area basis (Aarea) was greater than the independent effect
of climate, indicating the importance of quantifying the effect of
soil factors on leaf economic traits. Several studies have shown

that sample size effects and differences in light intensity may also
affect leaf trait relationships (Cunningham et al., 1999; Wright
et al., 2005a; Keenan and Niinemets, 2016), and we have not yet
fully considered the impact of these factors on intercontinental
comparisons, which need to be refined in future studies and
linked to homogeneous garden experiments to further explain
regional differences in leaf trait relationships (Agrawal et al.,
2015). Finally, we expect these results to provide contribution to
the calibration and scale transformation of earth system models.
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