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Grain weight is a key determinant for grain yield potential in wheat, which is highly
governed by a type of quantitative genetic basis. The identification of major quantitative
trait locus (QTL) and functional genes are urgently required for molecular improvements
in wheat grain yield. In this study, major genomic regions and putative candidate genes
for thousand grain weight (TGW) were revealed by integrative approaches with QTL
linkage mapping, meta-analysis and transcriptome evaluation. Forty-five TGW QTLs
were detected using a set of recombinant inbred lines, explaining 1.76-12.87% of the
phenotypic variation. Of these, ten stable QTLs were identified across more than four
environments. Meta-QTL (MQTL) analysis were performed on 394 initial TGW QTLs
available from previous studies and the present study, where 274 loci were finally refined
into 67 MQTLs. The average confidence interval of these MQTLs was 3.73-fold less than
that of initial QTLs. A total of 134 putative candidate genes were mined within MQTL
regions by combined analysis of transcriptomic and omics data. Some key putative
candidate genes similar to those reported early for grain development and grain weight
formation were further discussed. This finding will provide a better understanding of the
genetic determinants of TGW and will be useful for marker-assisted selection of high
yield in wheat breeding.

Keywords: wheat, thousand grain weight, quantitative trait loci, meta-analysis, candidate genes

INTRODUCTION

Wheat (Triticum aestivum L.) is one of the leading cereal crops and is vital for global food and
nutrition security, providing approximately 20% of total calories and proteins for more than 35%
of the human population (FAO)1. However, the sustainable production of wheat will be confronted
with great challenges in the future, owing to ever-growing populations, extreme climate changes
and arable land reductions (Curtis and Halford, 2014). It has been estimated that wheat yield
must grow at least 2.4% per year to meet food demands in the next 30 years (Ray et al., 2013).
In this context, the genetic improvement in grain yield potential is urgently required to achieve
future increases in wheat productivity. Grain yield is a complex quantitative trait determined by
three components, thousand grain weight (TGW), grain number per spike, and reproductive tiller

1http://www.fao.org/faostat/
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number (Duan et al., 2020). Among them, TGW is an important
trait due to its phenotypic stability with moderate to high
heritabilities of 0.6-0.8, and thus serves as a practical selection
criterion for increasing grain yield in the wheat breeding process
(Wang L. et al., 2012; Avni et al., 2018; Duan et al., 2020). For
example, based on the linear regression analysis applied to more
than 1850 Chinese wheat varieties released since the 1920s, the
average TGW increased from 30.16 g in the 1920s to 38.43 g in
the 2010s. The corresponding grain yield increased from 2.01 to
6.58 t ha−1, where selection for higher TGW showed a significant
contribution to yield improvement (Qin et al., 2015).

Thousand grain weight is a complex quantitative trait
governed by polygenes and significantly interacted with
environmental factors (Wang L. et al., 2012; Avni et al., 2018;
Duan et al., 2020). It is essential to identify major TGW
quantitative trait loci (QTL) and further exploit elite genes in
the genetic improvement of modern wheat breeding programs.
In the last two decades, a large number of QTLs underlying
TGW have been successfully identified by traditional bi-parental
linkage mapping (Cheng et al., 2015; Hu et al., 2015; Krishnappa
et al., 2017; Kumari et al., 2018; Xin et al., 2020; Qu et al.,
2021) and genome-wide association approaches (Mir et al.,
2012; Yang et al., 2020; Gao et al., 2021). These loci provide
a great convenience for revealing the genetic basis of wheat
TGW formation. However, the discovery of major and robust
QTLs with closely associated markers as a high potential for
developing new varieties by the marker-assisted selection (MAS)
remains a challenge (Kumar et al., 2020). Most of the reported
QTLs showed minor effects and were located in larger QTL
intervals, and their expressions were significantly affected by
genetic backgrounds and environments (Acuña-Galindo et al.,
2015; Kumar et al., 2020; Liu Y. et al., 2020). In addition, some
independent or co-localized QTLs did not always have similar
loci in different studies, which was usually verified by comparing
the flanking markers or comparing with a reference map when
co-localized QTLs had a large confidence interval (CI) and might
not be identical (Semagn et al., 2013).

As an alternative method of QTL mapping, meta-QTL
(MQTL) analysis provides an effective strategy for validating
consistent QTLs by integrating independent QTLs from different
trials on a consensus or reference map (Goffinet and Gerber,
2000; Semagn et al., 2013; Acuña-Galindo et al., 2015; Soriano and
Alvaro, 2019; Kumar et al., 2020; Liu H. et al., 2020; Liu Y. et al.,
2020; Yang et al., 2021). The statistical power of MQTL analysis
can refine genomic regions that are most frequently involved in
trait variation and narrow down the QTL confidence intervals
(CI) (Goffinet and Gerber, 2000; Soriano and Alvaro, 2019).
Consequently, the integrated MQTLs are not affected by the
genetic background, population type, and planting environment
in the previous independent experiments. It is facilitated to
discover more reliable and consistent QTLs/markers and further
identify candidate genes for map-based cloning and MAS in
breeding application (Goffinet and Gerber, 2000; Semagn et al.,
2013; Acuña-Galindo et al., 2015; Soriano and Alvaro, 2019;
Kumar et al., 2020; Liu H. et al., 2020; Liu Y. et al., 2020; Yang
et al., 2021). Genome-wide MQTL analysis has been successfully
applied in wheat genetic breeding. It has also achieved good

insights into the QTL-integration of various quantitative traits
in wheat, such as yield-related traits (Acuña-Galindo et al., 2015;
Tyagi et al., 2015; Quraishi et al., 2017; Avni et al., 2018; Kumar
et al., 2020; Liu H. et al., 2020; Yang et al., 2021), grain quality
traits (Quraishi et al., 2017; Soriano et al., 2021), root-related
traits (Soriano and Alvaro, 2019), flowering date (Hanocq et al.,
2007), pre-harvest sprouting tolerance (Tyagi and Gupta, 2012),
drought and heat tolerance (Acuña-Galindo et al., 2015; Kumar
et al., 2020; Soriano et al., 2021), disease resistance (Soriano and
Royo, 2015; Cai et al., 2019; Liu Y. et al., 2020). The MQTL
analysis surveyed relevant QTL studies and refined the CIs of
QTLs or QTL clusters to mine more reliable QTLs. However,
most of those studies did not investigate the candidate genes
behind the MQTL, due to the limitations of the wheat genome
sequence. The step-change made recently in wheat genomes is the
release of hexaploid wheat Chinese spring high-quality reference
genome (International Wheat Genome Sequencing Consortium
[IWGSC] et al., 2018). In the same way, a large number of wheat
transcriptomic data has been made available in a user-friendly
platform (Borrill et al., 2016; Ramírez-González et al., 2018). All
these genomic resources present an unprecedented opportunity
to unveil the genetic architecture and to mine candidate genes
of grain yield and its components in wheat at the levels of
physical map and functional genes (Liu H. et al., 2020; Yang
et al., 2021). For instance, Kumar et al. (2020) conducted an
MQTL analysis of drought tolerance in wheat and identified 13
MQTLs, four of which related to yield and yield-related traits.
Interestingly, MQTL4 was a major MQTL with potential for MAS
breeding, and three major candidate genes were identified within
the MQTL. Likewise, 86 MQTLs were revealed from 381 QTLs for
yield and its components, and finally 18 candidate genes or gene
clusters were validated by Liu H. et al. (2020). Based on the large-
scale integration of meta-QTL and genome-wide association
study, Yang et al. (2021) discovered 76 high-confidence MQTL
regions and 237 candidate genes that affected wheat yield
and yield-related traits. All these candidate genes as reviewed
were classified functionally into five groups by Nadolska-Orczyk
et al. (2017), including (1) transcription factors regulating spike
development; (2) genes involved in metabolism or signaling
of growth regulators; (3) genes determining cell division and
proliferation mainly impacting grain size; (4) floral regulators
influencing inflorescence architecture and in consequence seed
number; and (5) genes involved in carbohydrate metabolism
affecting plant architecture and grain yield. In particular, many
key genes cloned via a homology-based approach were also
confirmed within yield-related MTQTL regions (Quraishi et al.,
2017; Kumar et al., 2020; Liu H. et al., 2020; Soriano et al.,
2021; Yang et al., 2021), such as TaVrn1 (Yan et al., 2003),
TaVrn2 (Yan et al., 2004), TaVrn3 (Yan et al., 2006), TaPpd
(Beales et al., 2007; Díaz et al., 2012), TaRht (Díaz et al., 2012),
TaGSD1 (Zhang et al., 2014), TaCKX2 (Zhang et al., 2011),
TaGW2 (Yang et al., 2012), TaTGW6 (Hanif et al., 2015), and
TaSus (Jiang et al., 2011), etc. This thus suggested that MQTL
analysis combined with the wheat reference genome is one of
desirable strategies for discovering functional genes underlying
grain yield-related traits in wheat (Liu H. et al., 2020; Liu Y. et al.,
2020; Yang et al., 2021). However, only a few key genes for TGW
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in wheat have been isolated by map-based cloning (Xu et al.,
2019; Chen et al., 2020; Zhao et al., 2021). The molecular basis
of QTL/genes governing TGW is still limited. Owing to a narrow
genetic background of the biparental populations analyzed or a
lack of tight linkage to functional genes, some markers are not
efficiently applied for MAS or molecular breeding design in wheat
(Duan et al., 2020).

In this study, major genomic regions and putative candidate
genes for wheat grain weight were revealed by QTL linkage
mapping and meta-analysis. The objective was to (i) identify
QTLs for TGW using a RIL (recombinant inbred line) population
under multi-environmental conditions; (ii) conduct a reference-
based MQTL analysis of TGW QTL data published in recent years
and the present mapping results; (iii) further integrate the MQTL
analysis and transcriptome evidence to discover the key genomic
regions and essential putative candidate genes governing TGW
trait in wheat. This finding will provide a well-understanding of
the genetic determinants of TGW and lay a foundation for the
identification of the reliable QTLs and the prediction of putative
candidate genes in wheat genetic improvement.

MATERIALS AND METHODS

Plant Materials and Field Trials
A set of 120 F8-derived recombinant inbred lines (RILs) was
developed from the cross between two Chinese winter wheat
varieties, Longjian 19 and Q9086 (Yang et al., 2016a,b; Li
et al., 2020). The male parent Longjian 19 is an elite drought-
tolerant cultivar widely grown in rainfed areas (300-500 mm
annual rainfall) in northwestern China. The female parent
Q9086 is a high-yielding cultivar suitable for cultivation under
sufficient water and high fertility conditions but is prone to
premature senescence under terminal drought stress. The two
parents differed significantly from TGW and other grain yield
components (Hu et al., 2015; He et al., 2020; Li et al., 2020;
Zuo et al., 2020). Field trials were carried out at Yuzhong
farm station, Gansu, China (35◦48′N, 104◦18′E, 1860 m ASL)
in six years from 2013 to 2018, denoted in turns as E1 to
E6, respectively, and at Tongwei farm station, Gansu, China
(35◦110′N, 105◦190′E, 1740 m ASL) in 2017 and 2018, denoted
as E7 to E8, respectively. The two growing sites are characterized
by a typical arid inland climate of northwest China, where the
annual average temperature is about 7.0◦C, the annual rainfall is
below 400 mm with nearly 60% occurring from July to September,
but the annual evaporation capacity is more than 1,500 mm. All
progenies and parents were sown in late September and harvested
in early July of the following year. Field trials at each site were
managed under rainfed conditions with the rainfall from 128
(E3) to 236 mm (E8) in each growing season (Supplementary
Figure 1). Before sowing, a total of 180 kg nitrogen (N) ha−1,
150 kg P2O5 ha−1, and 75 kg K2O ha−1 were uniformly applied
to the soil surface of the entire experimental site, and all wheat
plants were no longer fertilized during the growing periods. Field
experimental designs were randomized complete blocks with
three replications for each line and parent. Each plot was 1 m
long with six rows spaced 20 cm apart. Approximately 60 seeds

per row were sown. Field management aspects followed the local
practices during wheat production.

Phenotypic Evaluation and Statistical
Analysis
At the grain maturity stage, five plants per plot were randomly
sampled in each of the environments. After threshing, grains
were air-dried and weighed to obtain TGW. TGW was
measured by the SC-G2 kernel testing equipment developed
by Wanshen Science and Technology Ltd. (Hangzhou, China).
TGW phenotypic values from the eight environments were
determined as the mean of each family from three replicates.
The calculations of descriptive statistics, correlation analysis,
analysis of variance (ANOVA), and the best linear unbiased
prediction (BLUP) value for TGW in different environments
were performed using SPSS 19.0 software by IBM, Armonk,
NY United States. The broad-sense heritability (h2

B) for TGW
was estimated with the formula proposed by Toker (2004).
Here, h2

B = σg
2/(σg2 + σge

2/r + σe
2/re), where σg

2, σge
2

and σe
2 were estimates of genotype, genotype × environment

interaction (GEI) and residual error variances, respectively, and
e and r were the numbers of environments and replicated per
environment, respectively.

Genetic Map and Quantitative Trait Loci
Analysis
The genetic linkage map employed in this study was previously
developed using a RIL population (Hu et al., 2015; Yang et al.,
2016a,b; He et al., 2020; Li et al., 2020; Zuo et al., 2020). The
genetic map consisted of 524 simple sequence repeat (SSR)
markers covering 21 chromosomes of wheat. The total length
was 2266.7 cM with an average distance of 4.3 cM between
adjacent markers. The BIP (Biparental populations) module of
the software QTL IciMapping version 4.1 (Li et al., 2010) was
utilized to identify QTLs for TGW traits based on phenotypic
values from eight single environments and the BLUP dataset. The
probability in stepwise regression (PIN) parameter value was set
at the level of 0.001 with the scanning step size of 1 cM, and the
logarithm of odds (LOD) threshold was set at 2.5 to detect the
presence of a significant QTL. The QTL interval on the genetic
map was defined as the genetic distance between the two flanking
markers of the QTL peak. A QTL detected repeatedly across more
than four individual environments was considered as a stable
QTL. The locations of individual QTLs were drawn on genetic
maps using MapChart 2.32 (Voorrips, 2002).

Initial Quantitative Trait Locus Projection
and Meta-QTL Analysis
The initial QTLs for TGW collected from earlier studies and
the present QTL mapping results were integrated to conduct
QTL projection and MQTL analysis further. For each study, the
necessary information was collected as the type of QTL mapping
population (F2, DH, RIL and Backcross), size of the mapping
population, LOD value, QTL position, flanking or closely linked
marker, CI and phenotypic variance explained (PVE) value (Yang
et al., 2021). After collection of QTL database, all individual QTLs
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TABLE 1 | Summary statistics of TGW in the parents and the wheat RIL population under eight environments.

Environments Parents RILs

Longjian 19 Q9086 Mean ± SD Min Max Skewness Kurtosis CV (%)

E1 34.76 41.62** 35.86 ± 4.59 25.43 50.46 0.48 0.33 12.80

E2 42.57 47.82** 45.37 ± 4.05 35.03 55.99 −0.24 −0.04 8.93

E3 31.33 36.45** 32.31 ± 3.82 22.87 40.30 −0.35 −0.66 11.81

E4 44.06 47.01* 46.21 ± 2.85 37.77 53.99 0.02 0.24 6.16

E5 35.11 38.39** 36.77 ± 2.51 30.12 43.56 0.11 −0.21 6.83

E6 40.93 45.67** 44.43 ± 2.88 37.91 52.28 0.40 −0.20 6.48

E7 43.77 50.33* 49.71 ± 3.02 42.63 60.50 0.52 0.65 6.08

E8 42.06 46.09* 45.71 ± 3.94 33.27 58.41 0.41 0.57 8.62

BLUP 39.69 41.89* 40.85 ± 3.97 36.45 46.66 0.12 −0.08 9.72

TGW, thousand grain weight; SD, standard deviation; Min, minimum; Max, Maximum; CV, coefficient of variation; BLUP, best linear unbiased prediction. E1-E6,
experimental environments at Yuzhong farm station in six years from 2013 to 2018, respectively; E7 and E8, experimental environments at Tongwei farm station in
2017 and 2018, respectively. Field experimental designs under each environment were randomized complete blocks with three replications for each line and parent. The
asterisks in the column of “parent Q9086” represent significant differences in phenotypic data between two parents by the F test; *P< 0.05, **P< 0.01.

FIGURE 1 | Heatmap depicting the significant correlation of TGW traits under
eight tested environments and BLUP analysis. TGW, thousand grain weight;
E1-E6, experimental environments at Yuzhong farm station in six years from
2013 to 2018, respectively; E7 and E8, experimental environments at Tongwei
farm station in 2017 and 2018, respectively; BLUP, best linear unbiased
prediction; ∗∗P < 0.01.

were projected onto a reference genetic map by BioMercator
v4.2.3 (Sosnowski et al., 2012). The reference genetic map from
two identified genetic maps (Maccaferri et al., 2015; Soriano
and Alvaro, 2019) were integrated as high-density reference
maps (Bilgrami et al., 2020). This map contained 14548 markers,
including SSR, DArT, SNP and other types of markers. The total
length is 4813.72 cM with a range of 155.6 cM to 350.11 cM across
the 21 linkage groups. The initial QTL data and related individual
genetic maps from earlier studies and the reference genetic map
were used as input files to construct a consensus map and to
further perform MQTL analysis (Yang et al., 2021). For those QTL
lacking flanking markers and Cis, the 95% CI was calculated by

Darvasi and Soller (1997) and Guo et al. (2006). Of each equation,
CI = 530/(N× R2), 163/(N× R2) and 287/(N× R2) were applied
for F2/Backcross, RIL and DH population, respectively, where N
was the size of the mapping population used for QTL analysis,
and R2 was the PVE of each initial QTL. The QTLs that could
not be localized to the consensus map and those localized outside
the consensus map were discarded. MQTL analysis was carried
out using BioMercator V4.2.3 (Sosnowski et al., 2012). On each
chromosome, MQTL analysis were calculated using the two-step
algorithm (Veyrieras et al., 2007). An estimator of model fitting,
was used to select the best model for the representing the number
of MQTL or “real” QTL by five statistical methods, such as
the Akaike Information Criterion (AIC), AIC correction (AICc),
AIC3 candidate models (AIC3), Bayesian information criterion
(BIC) and average weight of evidence (AWE). The algorithms
and statistical procedures in the software were well-described
previously (Veyrieras et al., 2007; Sosnowski et al., 2012). As a
requirement of the method proposed by Venske et al. (2019),
the meta-analysis was performed with chromosomes including
as a minimum of 10 projected QTLs. Otherwise, attempts to
run analysis when < 10 QTLs were projected returned in error
(Venske et al., 2019).

Mapping of Meta-Quantitative Trait
Locus on the Wheat Genome
Putative candidate genes were the genes localized within MQTL
regions, which were detected based on the positions of flanking
marker regions of the MQTL CIs (or the marker closest to the
flanking markers). The flanking markers within target MQTLs
were searched by the function of “Marker information” in
the Triticeae Multi-omics Center2 to determine the physical
locations. If the physical locations of flanking markers were not
found, the sequences of flanking markers were searched from
GrainGenes database3 or DArT database4. And the most likely

2http://wheatomics.sdau.edu.cn
3https://wheat.pw.usda.gov/GG3
4https://www.diversityarrays.com
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physical location was further identified by the Blastn program,
based on Chinese Spring RefSeq V1.0 chromosomes in the
Triticeae Multi-omics Center (See Text Footnote 2).

Identification of Putative Candidate
Genes
Putative candidate genes within MQTL regions were identified
by two following methods. (i) The homology-based candidate
gene mining (Yang et al., 2021) was given with the close
evolutionary relationship between the genomes of Gramineae
species (Gaut, 2002). Homology analysis of wheat with model
crop rice could broaden our understanding of wheat genes.
Key putative candidate genes within the MQTL region were
mined using wheat-rice orthologous comparison strategy. Basic
information of all grain weight genes in rice was obtained from
the China Rice Data Center5. The homologs genes in wheat
were found using Triticease-Gene Tribe6, based on IWGSC
RefSeqv1.1. The genes located within the MQTL region were
considered to be important putative candidate genes affecting
wheat grain weight (Yang et al., 2021). (ii) When the MQTLs
were available, the preferred criteria of MQTL proposed by
Venske et al. (2019) were conducted as follows: (1) the
MQTL was generated through the projection of at least two
overlapping QTLs; (2) the physical interval corresponding to
the 95% CI was less than 20 Mb at the Chinese Spring wheat
reference genome; (3) the genetic distance was shorter than
1.0 cM. For that, high-confidence genes within each highly
refined MQTL were then listed and thereafter called putative
candidate genes using the Triticeae Multi-omics Center (See
Text Footnote 2), based on IWGSC_v1.1_HC_gene annotated
genomic features.

Expression Analysis of Putative
Candidate Genes
The transcriptomic data of multiple tissues in bread wheat
var. Chinese Spring from expVIP platform7 was obtained to
identify the differential expression characteristics of putative
candidate genes within the target MQTLs (Borrill et al., 2016).
The transcriptomic data included five tissues at different growth
stages, such as grain at 2, 14, and 30 days after anthesis (DAA);
spike at two nodes detectable, flag leaf and anthesis stages; leaf at
the seedling, tillering stages and two DAA; stem at the 1 cm spike,
two nodes detectable, and anthesis stages; root at the seedling,
three leaf and flag leaf stages. Expression levels of putative
candidate genes were evaluated by transcripts per million (TPM)
values (See Text Footnote 7) and displayed using the TBtools8 of
TPM, based on normalized scale method. Gene Ontology (GO)
term analysis within MQTL intervals was conducted with the
GENEDENOVO cloud platform9.

5https://www.ricedata.cn/
6http://wheat.cau.edu.cn/TGT/
7http://www.wheat-expression.com
8https://github.com/CJ-Chen/TBtools/releases
9https://www.omicshare.com/tools/

RESULTS

Phenotypic Variation and Correlation
Analysis
The phenotypic values of the RILs and two parents were shown
in Table 1. In eight tested environments and BLUP analysis,
the parent Q9086 had higher TGW than that of the parent
Longjian 19, which differences reached a significant (P < 0.05)
or very significant level (P < 0.01). The mean values of the
RILs were intermediate between two parents. The corresponding
coefficients of variation ranged from 6.08 to 12.80% in response
to different environments. Some progenies had extreme values
more than either parent. The absolute values of skewness and
kurtosis were less than 1.0. This suggested that TGW traits
showed wide phenotypic variability with continuous variation
and transgressive segregation in the RILs. The correlation
analysis exhibited a very significant and positive correlation
among TGW traits in different environments (P < 0.01). The
correlation coefficients ranged from 0.62∗∗ to 0.92∗∗, and rainfall
for each year was significantly and positively associated with
TGW (r = 0.54, P < 0.05) (Figure 1 and Supplementary
Figure 2). The variance component analysis showed that all
the variance values in the RILs reached a very significant
level (P < 0.01), where the phenotypic variation of TGW
was highly influenced by the environment, genotype, and GEI
(Supplementary Table 1). However, the high value of broad-
sense heritability (h2

B = 0.77) indicated that TGW was mainly
determined by the genetic factor.

Quantitative Trait Locus Mapping for
Thousand Grain Weight
A total of 45 additive QTLs for TGW were detected in
eight tested environments and BLUP analysis. These loci were
distributed on almost all chromosomes except for 1D, 2D, 3D
and 6D and exhibited individual PVE of 1.76-12.87% (Figure 2
and Supplementary Table 2). Of these, 22 QTLs (48.89%)
had negative effects with -0.24 to -1.72, indicating favorable
allele contribution from the parent Longjian 19. The other
23 loci (51.11%) showed positive effects with 0.37 to 1.50
conferred by favorable alleles from Q9086. This indicated that
favorable alleles controlling the TGW trait were almost evenly
contributed by the parents. In addition, 25 QTLs (55.56%) were
identified in single environments, implying that these QTLs were
expressed as an environment-dependent pattern. Most of these
loci individually explained lower PVE from 1.76% to 8.79%,
and only three loci (Qtgw.acs-4D.1, Qtgw.acs-4D.2 and Qtgw.acs-
5A.1) had higher PVE from 9.76 to 10.96%. The rest 20 of 45
QTLs (44.44%) were detectable repeatedly across two or more
environments and BLUP analysis, indicative of the features of
stable expressions. In particular, three stable QTLs (Qtgw.acs-
2B, Qtgw.acs-5B.1, and Qtgw.acs-5B.3) were identified across four
individual environments, with individual PVE of 6.65-12.23%.
Other seven stable QTLs, such as Qtgw.acs-1A.3, Qtgw.acs-1B.1,
Qtgw.acs-2A.1, Qtgw.acs-4A.2, Qtgw.acs-6B.1, Qtgw.acs-7B.1, and
Qtgw.acs-7D.1, were frequently expressed in four to six individual
environments and BLUP analysis, accounting for individual
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FIGURE 2 | Genetic map with additive QTLs for TGW under eight tested environments and BLUP analysis. The squares represent the locations of QTLs. The black
squares are QTLs expressed only in one environment and red squares are expressed repeatedly in at least two environments.
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FIGURE 3 | (A) Number of QTLs on seven homoeologous groups (1-7) and three sub-genomes (A,B,D) from the collected QTL studies. (B) supporting intervals
estimated from the initial QTLs. (C) the individual PVE from QTLs. PVE, phenotypic variance explained.

PVE of 6.74-12.87%. This suggested that these ten loci were
significantly stable QTLs for TGW.

Characteristics of Initial Quantitative
Trait Locus for Thousand Grain Weight
The reported QTLs for TGW were collected from 45 earlier
studies published from 2003 to 2020 that were employed in 39 bi-
parental mapping populations, including 22 RIL populations, ten
double haploids (DH) populations, five F2 populations and two
backcross populations (Supplementary Table 3). By integrating
these earlier reported 349 QTLs and 45 QTLs detected in this
study, a total of 394 initial QTLs for TGW were employed for
meta-analysis. These loci were distributed on all 21 chromosomes
belonging to seven homoeologous groups (1-7) and three sub-
genomes (A, B, and D). However, QTL distributions greatly
varied from different homoeologous groups, sub-genomes and
individual chromosomes (Figure 3A). For instance, the number
of initial QTLs ranged from 45 (11.42%) on the homoeologous
group 3 to 68 (17.26%) on the group 2, and from 6 (1.50%)
on chromosome 1D to 35 (8.89%) on 2A. By comparison, more
QTLs were distributed on A (165/394, 41.88%) and B sub-
genomes (159/394, 40.36%), but fewer were harbored on the D
sub-genome (70/394, 17.77%). In addition, these QTLs had initial
CIs varying from 0.10 to 45.50 cM, with an average of 11.85 cM.
There were 55.08% (217) of these 394 loci with initial CIs lower
than 10 cM and 80.71% (318) with initial CIs lower than 20 cM
(Figure 3B). Correspondingly, the individual PVE ranged from
1.00% to 39.70%, with an average of 9.38% (Figure 3C). Only
36.04% of loci showed the PVE values higher than 10%, indicating
that most of them were minor QTLs.

Initial Quantitative Trait Locus Projection
and Identification of Meta-QTL for
Thousand Grain Weight
Based on the above TGW QTL collection, a total of 394 initial
QTL data were used to project onto the consensus map developed

by integrating individual maps from 45 earlier studies into a
reference genetic map. As a result, 286 QTLs were successfully
mapped, while the remaining QTLs were eliminated due to the
absence of their flanking markers on the consensus map. For the
requirements of both the lowest model value and the minimum of
ten QTLs projected on each chromosome for an accurate MQTL
analysis, 274 of 286 projected QTLs were finally grouped into 67
MQTLs on chromosomes 1A, 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4A,
5B, 5D, 6A, 6B, 7A and 7B (Figure 4, Supplementary Table 4,
and Supplementary Figure 3). The 95% CI varied from 0.04
(MQTL-2B-3) to 30.76 cM (MQTL-3D-3), with an average CI
of 3.18 cM, which was 3.73-fold less than that of initial QTLs
(11.85 cM). This suggested that these MQTLs were mapped more
precisely. Considering QTL distributions, each chromosome at
least harbored two MQTLs and eight (5D) to 29 initially projected
QTLs (2A). Based on the flanking marker sequence comparison,
65 MQTLs had definite physical positions on the wheat genome
reference sequence of Chinese Spring, while the positions of two
MQTLs, MQTL-1A-3 and MQTL-2A-1, were not well matched
(Supplementary Table 4). The physical intervals of these 65
MQTLs ranged from 1.13 to 259.05 Mb. In particular, five
core MQTLs, such as MQTL-1B-6, MQTL-2D-2, MQTL-3B-2,
MQTL-6A-4, MQTL-7B-5, were positioned with the narrower
physical intervals less than 20 Mb and genetic distance shorter
than 1.0 cM, which fulfilled the established selection criteria for
further mining putative candidate genes.

Putative Candidate Genes Mined Within
Meta-Quantitative Trait Locus Regions
To further mine the putative candidate genes affecting wheat
grain weight, a detailed search for cloned genes affecting grain
weight in rice was conducted, and 180 functional genes were
finally obtained. Of these, 85 genes were found in 32 MQTLs
regions, with an average of 2.6 genes per MQTL (Supplementary
Table 4). These genes were early reported to affect grain weight
in rice through a variety of pathways, such as MYB transcription
factor, zinc finger protein, gibberellin, kinase family protein,
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FIGURE 4 | The chromosome distribution of 65 MQTLs for TGW by MQTL analysis. The circles from outside to inside represent the chromosome physical distance
(Mb), 65 MQTLs position, density of high confidence genes and wheat chromosome, respectively. The connecting lines in the center of the circular diagram
represents wheat genomic collinearity (gray).

UDP-glycosyltransferase, and so on. In general, these putative
candidate genes were of high confidence, and the effects of
their orthologous on grain weight in rice were investigated
intensively. Meanwhile, five core MQTLs, such as MQTL-1B-
6, MQTL-2D-2, MQTL-3B-2, MQTL-6A-4 and MQTL-7B-5,
showed a genetic distance between 0.16 and 0.66 cM; a physical
distance between 1.39 and 13.9 Mb and were supported by
three or seven initial QTLs. All of them fulfilled the established
criteria to mine candidate genes, i.e., simultaneously obtained
from analysis of at least two initial QTLs, and being shorter
than 1.0 cM and 20 Mb in genetic length and physical length,
respectively. Using the annotation of wheat reference genome
sequence of Chinese spring, there were 513 putative candidate
genes mined within five core MQTLs (Supplementary Table 5).

Those genes were associated with E3 ubiquitin-protein ligase,
cytochrome P450 family protein, F-box family protein and
zinc finger protein. To further identify more reliable genes by
combining transcriptomic data, 134 putative candidate genes
were found as highly and specifically expressed in the grain
and/or spike (TPM > 2), with higher expression values than in
other tissues (Figure 5 and Table 2). The expression patterns
of these putative candidate genes could be further divided into
three classes (Figure 5). Putative candidate genes in Class I
was mostly expressed in the spike at the anthesis and 2-DAA
grain stages. Putative candidate genes in Class II were mainly
expressed in the spike at the two nodes detectable and flag
leaf stages. Putative candidate genes in Class III were highly
expressed in the grain at the 14 DAA and 30 DAA stages. Even
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FIGURE 5 | Expression characteristics of 134 putative candidate genes in five tissues. The transcriptome data was downloaded from expVIP
(http://www.wheat-expression.com), and TPM value was used to characterize the expression level based on normalized scale method.

in the same organ, the gene expression patterns significantly
varied from different growth stages, e.g., TraesCS3B02G039000,
TraesCS2D02G571500, TraesCS3B02G049800, and so on. This
implied that these putative candidate genes showed tissue- and
development-dependent expression patterns. As a result, these
crucial genes were highly and specifically expressed in grains and
spikes, which could highly affect the TGW trait in wheat.

By the GO and KEGG analysis, these genes were mainly
associated with biological process (17 sub-functions), cellular
component (9 sub-functions) and molecular function (8 sub-
functions) (Figure 6). The most significantly enriched GO terms
associated with biological process were for cellular (51/134,
38.06%) and metabolic (51/134, 38.06%). In terms of cellular
component, the genes were enriched mainly in cell (40/134,
29.85%) and cell part (40/134, 29.85%). In KEGG pathways, these
putative candidate genes were highly involved in the pathways of

ubiquitin mediated proteolysis, amino sugar and nucleotide sugar
metabolism and starch and sucrose metabolism (Figure 7).

DISCUSSION

Quantitative Trait Locus Identification
and Stable Quantitative Trait Locus
Comparisons for Thousand Grain Weight
Thousand Grain Weight is a key determinant that is related
to grain yield potential in wheat and is influenced by both
genetic and environmental factors (Wang L. et al., 2012; Avni
et al., 2018; Duan et al., 2020). Compared with other yield
components, TGW had more stable phenotypic variation and
higher heritability (Mir et al., 2012; Wang L. et al., 2012;
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TABLE 2 | Summary of 134 putative candidate genes exhibiting significant expression (TPM > 2) within MQTLs.

MQTL Putative Candidate gene ID Gene function annotation Ortholog in rice

MQTL-1A-1 TraesCS1A02G083100 MYB transcription factor MYB61; qNLA1; qCel1

TraesCS1A02G086500 Mitogen-activated protein kinase OsMPK15; OsMPK16

MQTL-1B-1 TraesCS1B02G288100 Dual specificity phosphatase OsCOI1b

TraesCS1B02G293100 Mitogen-activated protein kinase OsLAC

TraesCS1B02G352200 Coronatine insensitive 1-like protein OsSec18

TraesCS1B02G354000 Laccase SLG

TraesCS1B02G449700 ATP-dependent zinc metalloprotease FtsH OsAGPL2; OsAPL2; shr1; GIF2

MQTL-1B-5 TraesCS1B02G058600 HXXXD-type acyl-transferase family protein OsMKP1; GSN1

TraesCS1B02G104900 Glucose-1-phosphate adenylyltransferase OsMPK15; OsMPK16

MQTL-1B-6 TraesCS1B02G018900 Ras-related protein, expressed Os05g0105100

TraesCS1B02G019100 Ras-like protein Os05g0105200

TraesCS1B02G019200 Tubulin-specific chaperone cofactor E-like protein Os05g0105300

TraesCS1B02G021200 RNA-binding family protein Os05g0105900

TraesCS1B02G021300 Phosphatidate cytidylyltransferase Os01g0758400

TraesCS1B02G022100 NBS-LRR disease resistance protein-like protein Os01g0547000

TraesCS1B02G022500 Protein trichome birefringence Os10g0254720

TraesCS1B02G022900 Nuclear inhibitor of protein phosphatase 1 Os08g0326100

MQTL-2A-4 TraesCS2A02G312200 Zinc finger protein NSG1; LRG1

TraesCS2A02G336000 Aldehyde dehydrogenase OsALDH10A5; OsBADH1

MQTL-2A-5 TraesCS2A02G464000 Alcohol dehydrogenase, putative GSD1; gsd1-D

MQTL-2A-6 TraesCS2A02G424600 Remorin family protein FC1; OsCAD7

MQTL-2B-3 TraesCS2B02G211100 Gibberellin regulated protein OsGASR9

MQTL-2D-2 TraesCS2D02G568400 DNA/RNA helicase protein ENL1

TraesCS2D02G580700 Ubiquitin Os06g0681400

TraesCS2D02G580900 CsAtPR5 Os04g0689800

TraesCS2D02G581300 RNA-binding region RNP-1 Os04g0689700

TraesCS2D02G582400 PI-PLC X domain-containing protein Os04g0689300

TraesCS2D02G583000 Peroxidase Os04g0689000

TraesCS2D02G585300 ABC transporter G family member Os01g0615500

TraesCS2D02G586100 30S ribosomal protein S11 Os03g0385900

TraesCS2D02G586500 WAT1-related protein Os04g0687800

TraesCS2D02G586800 Cysteine proteinase inhibitor Os03g0429000

TraesCS2D02G586900 Cysteine proteinase inhibitor Os03g0429000

TraesCS2D02G587300 Chaperone protein DnaJ Os04g0687300

TraesCS2D02G587500 Lectin protein kinase family protein NA

TraesCS2D02G587800 CsAtPR5 Os04g0689800

TraesCS2D02G588600 Kinase family protein Os04g0686600

TraesCS2D02G567600 Magnesium transporter, putative (DUF803) Os01g0882300

TraesCS2D02G569900 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein Os04g0692400

TraesCS2D02G570300 RING/FYVE/PHD zinc finger superfamily protein Os04g0692300

TraesCS2D02G570400 RING/FYVE/PHD zinc finger superfamily protein Os04g0692300

TraesCS2D02G571200 EamA-like transporter family protein OsUGT1

TraesCS2D02G571400 Chitinase Os05g0399300

TraesCS2D02G571500 DNA-directed RNA polymerase subunit Os05g0151000

TraesCS2D02G571600 Chitinase Os03g0418000

TraesCS2D02G571700 C2 calcium/lipid-binding and GRAM domain protein Os04g0691800

TraesCS2D02G571900 RING/FYVE/PHD zinc finger protein Os04g0691700

TraesCS2D02G575200 Chaperone DnaK Os03g0113700

TraesCS2D02G576800 DDB1-and CUL4-associated factor-like protein 1 Os04g0691200

TraesCS2D02G577200 E3 ubiquitin-protein ligase RNF126-A NA

TraesCS2D02G577700 GEM-like protein 1 Os03g0187600

TraesCS2D02G577900 UPF0503 protein, chloroplastic Os04g0690500

(Continued)
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TABLE 2 | (Continued)

MQTL Putative Candidate gene ID Gene function annotation Ortholog in rice

TraesCS2D02G578000 Carboxyl-terminal peptidase (DUF239) Os07g0422700

TraesCS2D02G578100 Nodulin homeobox Os05g0188600

TraesCS2D02G578500 cDNA clone: J033115O13, full insert sequence Os04g0690400

TraesCS2D02G578600 Tetratricopeptide repeat Os04g0690300

MQTL-3A-1 TraesCS3A02G077900 NAC domain-containing protein OsNAC20; ONAC020

MQTL-3B-2 TraesCS3B02G038800 NADP dependent sorbitol 6-phosphate dehydrogenase family protein Os02g0123500

TraesCS3B02G039000 Mannose-6-phosphate isomerase Os01g0127900

TraesCS3B02G039300 Protein DETOXIFICATION Os10g0195000

TraesCS3B02G039500 Nuclease S1 Os01g0128100

TraesCS3B02G039700 Nuclease S1 Os01g0128200

TraesCS3B02G039900 Transmembrane protein 214 Os01g0128400

TraesCS3B02G040300 DUF1666 family protein Os01g0129500

TraesCS3B02G040600 DNA-binding storekeeper protein-related transcriptional regulator Os02g0288200

TraesCS3B02G040800 Protein NEGATIVE REGULATOR OF RESISTANCE NRR

TraesCS3B02G041200 Protein NEGATIVE REGULATOR OF RESISTANCE NRR

TraesCS3B02G041300 Disease resistance protein RPM1 Os11g0265900

TraesCS3B02G041400 Disease resistance protein (NBS-LRR class) family Os02g0272900

TraesCS3B02G041700 Alpha-glucosidase Os01g0130400

TraesCS3B02G041800 Translation initiation factor IF-2 Os01g0130900

TraesCS3B02G036600 Dihydroflavonol-4-reductase Os01g0127500

TraesCS3B02G036700 Bowman-Birk type trypsin inhibitor Os01g0127600

TraesCS3B02G037600 Bowman-Birk type trypsin inhibitor Os01g0127600

TraesCS3B02G042400 AP2-EREBP transcription factor Os01g0131600

TraesCS3B02G042600 Signal peptidase subunit family protein Os01g0131800

TraesCS3B02G043100 Mitochondrial import inner membrane translocase subunit TIM22 Os04g0405100

TraesCS3B02G044400 Beta-galactosidase 8 NA

TraesCS3B02G044900 Cytochrome P450 family protein, expressed Os03g0138200

TraesCS3B02G046500 Deoxyhypusine synthase Os03g0740600

TraesCS3B02G046700 Receptor-like kinase Os01g0133900

TraesCS3B02G046800 Eukaryotic translation initiation factor 4E Os01g0970400

TraesCS3B02G051700 B3 domain-containing protein Os01g0723500 NA

TraesCS3B02G052300 E3 ubiquitin-protein ligase Os01g0125000

TraesCS3B02G052800 E3 ubiquitin-protein ligase Os05g0152900

TraesCS3B02G052900 Glycosyltransferase OsGT61-1; XAX1

TraesCS3B02G054000 E3 ubiquitin-protein ligase Os01g0122200

TraesCS3B02G054200 E3 ubiquitin-protein ligase Os01g0121900

TraesCS3B02G054300 E3 ubiquitin-protein ligase Os01g0122200

TraesCS3B02G054400 E3 ubiquitin-protein ligase Os01g0121900

TraesCS3B02G047100 Hydroxyacylglutathione hydrolase Os01g0133500

TraesCS3B02G047400 Carboxyl-terminal peptidase (DUF239) Os07g0573400

TraesCS3B02G047500 RuvB-like helicase Os07g0178900

TraesCS3B02G047700 Cotton fiber-like protein (DUF761) Os01g0133200

TraesCS3B02G047800 Hexose transporter Os01g0133100

TraesCS3B02G048100 Mediator of RNA polymerase II transcription subunit 22 Os01g0132700

TraesCS3B02G048800 Heat-shock protein Os01g0135900

TraesCS3B02G049800 Heat shock protein Os01g0136100

MQTL-4A-1 TraesCS4A02G047100 Activating signal cointegrator 1 complex subunit 2 SPL35

TraesCS4A02G074300 GAGA-binding transcriptional activator OsGBP3

MQTL-4A-2 TraesCS4A02G294000 Guanine nucleotide-binding protein subunit beta OsRGB1

MQTL-5B-3 TraesCS5B02G375800 Squamosa promoter binding-like protein GL3.1; qGL3-1; qGL3; OsPPKL1

TraesCS5B02G378600 Basic helix-loop-helix (bHLH) DNA-binding superfamily protein LO9-177

TraesCS5B02G399200 Serine carboxypeptidase, putative GSA1; UGT83A1

TraesCS5B02G400000 Serine/threonine-protein phosphatase OsPho1

(Continued)
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TABLE 2 | (Continued)

MQTL Putative Candidate gene ID Gene function annotation Ortholog in rice

MQTL-5B-4 TraesCS5B02G286000 KxDL motif protein OsSPL18

TraesCS5B02G292100 UDP-glycosyltransferase OsBC1

TraesCS5B02G307600 Alpha-1,4 glucan phosphorylase OsSCP46

MQTL-5D-1 TraesCS5D02G404500 Alpha-1,4 glucan phosphorylase OsPho1

MQTL-6A-4 TraesCS6A02G115500 S-adenosyl-L-methionine-dependent methyltransferases superfamily protein NA

TraesCS6A02G115800 DNA/RNA-binding protein KIN17 Os03g0570300

TraesCS6A02G115900 Splicing factor 3B subunit 1 OsSF3B1

TraesCS6A02G116200 ATP-dependent RNA helicase OseIF4A

TraesCS6A02G116600 Polynucleotide 5’-hydroxyl-kinase NOL9 Os01g0354700

TraesCS6A02G116800 Harpin-induced protein Os07g0250501

TraesCS6A02G117000 HLA class II histocompatibility antigen, DRB1-16 beta chain NA

TraesCS6A02G117100 DNA-binding protein BIN4 Os02g0147700

MQTL-6A-5 TraesCS6A02G306200 Transcription factor protein PGL2; OsBUL1

TraesCS6A02G309900 Peroxidase YPD1

TraesCS6A02G321000 Plant cadmium resistance 2 qTGW2; OsCNR1

TraesCS6A02G321400 Cyclin-dependent kinase inhibitor OsKRP1

MQTL-6A-7 TraesCS6A02G377300 LIGHT-DEPENDENT SHORT HYPOCOTYLS-like protein (DUF640) TH1; BSG1; BLS1; AFD1; BH1

MQTL-6B-5 TraesCS6B02G352100 Cyclin-dependent kinase inhibitor OsKRP1

TraesCS6B02G366700 Growth-regulating factor OsGRF1; rhd1

TraesCS6B02G414700 LIGHT-DEPENDENT SHORT HYPOCOTYLS-like protein (DUF640) TH1; BSG1; BLS1; AFD1; BH1

MQTL-7A-2 TraesCS7A02G308300 Fertilization independent endosperm 1 protein OsFIE1; Epi-df

TraesCS7A02G312800 Amino acid transporter, putative OsHT; OsLHT1

TraesCS7A02G317400 IQ domain-containing protein OsIQD14

TraesCS7A02G466900 DNA primase/helicase TWINKLE

TraesCS7A02G479100 PLATZ transcription factor family protein GL6; SG6

MQTL-7B-5 TraesCS7B02G481900 F-box family protein Os07g0120200

TraesCS7B02G482100 Protein argonaute OsAGO1c

TraesCS7B02G482300 NBS-LRR disease resistance protein Os02g0456800

TraesCS7B02G482400 Chromodomain-helicase-DNA-binding family protein CHR723

Cheng et al., 2015; Hu et al., 2015; Krishnappa et al., 2017;
Avni et al., 2018; Kumari et al., 2018; Duan et al., 2020; Xin
et al., 2020; Yang et al., 2020; Gao et al., 2021; Qu et al.,
2021). Likewise, TGW trait in the present study also showed
a prominent main-effect of genotype, with a high heritability
(h2

B = 0.77), relatively lower CV% (6.08-12.80%), and significant
correlations (r = 0.62∗∗−0.92∗∗) in the performance of the
RILs under eight different environments. This confirmed that
TGW was predominantly controlled by the genetic factor, and
suggested the role of QTLs expressed across environments
(Figure 1 and Table 1). Indeed, some stable QTLs with relatively
higher PVE (6.65-12.87%) were identified in the present RIL
population (Figure 2 and Supplementary Table 2). However,
in this study, 25 of 45 QTLs were identified in specific
environments and most of them explained lower PVE (1.76-
8.79%), implying that these QTLs were expressed sensitively to
individual environments. Similar results have also been found
in other early studies, where GEI effects and epistatic effects
significantly influenced TGW genetic variation to some extent
(Hu et al., 2015; Kumari et al., 2018; Qu et al., 2021). It
was also interpreted why some loci identified with minor-
effects were always erratic and highly responsible for individual
environments. This suggested that in addition to additive effect,

GEI and epistatic effects should not be ignored in TGW
genetic improvement.

In this study, ten stable QTLs were significantly expressed in at
least four environments (Supplementary Table 2). These crucial
QTLs were distributed on chromosomes 1A, 1B, 2A, 2B, 4A, 5B,
6B, 7B and 7D, accounting for the PVE from 6.65% to 12.87%
higher than other identified loci explained. In particular, several
stable QTLs detected in this study shared similar chromosomal
positions or regions with other detected earlier. For example, a
present stable QTL, Qtgw.acs-1A.3, highly adjacent to the marker
Xgwm99 on 1A, was identified and verified earlier as a major
and stable QTL for grain weight (QGw.ccsu-1A.3) by combining
linkage mapping and association mapping methods. The marker
Xgwm99 was also suggested as a functional marker to be used
in MAS for TGW (Mir et al., 2012). The marker intervals of
three stable QTLs, Qtgw.acs-4A.2, Qtgw.acs-5B.3, Qtgw.acs-6B.1,
were overlapped to those of some minor-effect QTLs for TGW
identified earlier (Groos et al., 2003; Wang et al., 2009; Wang
et al., 2010; He et al., 2020), while Qtgw.acs-5B.1 was highly
adjacent to the marker interval with a stable QTL cluster for
TGW and grain width reported by Ramya et al. (2010). The
location of a stable QTL, Qtgw.acs-1B.1, in the marker interval
Xgwm413-Xwmc419 on 1B, was similar to the location of several
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FIGURE 6 | Level 2 GO terms for 134 putative candidate genes from MQTL regions.

clustered QTLs for grain yield-related traits reported by Peng
et al. (2003). Similarly, Qtgw.acs-2A.1 and Qtgw.acs-2B were
mapped to a similar position to other reported loci for heading
time (Fayt et al., 2011), plant height and spike traits (Wang
et al., 2014; Hu et al., 2019), owing to proximity to Xgwm512 on
2A and Xgwm429 on 2B, respectively. A stable QTL, Qtgw.acs-
7D.1, located in the marker interval of Xgwm635-Xgwm428 on
7D, was highly overlapped to the positions of several major and
stable loci for grain size (Yan et al., 2017) and sterile spikelet
number identified earlier (Ma et al., 2007). This indicated that
above-mentioned QTLs for TGW seemed highly collocated or
adjacent to those for some grain yield-related traits. Indeed, it
still remains a puzzling question whether these clustered QTLs
represent close linkages of multiple genes affecting different traits
or have pleiotropic effects of regulatory genes that affect the
related traits. Besides, a stable QTL, Qtgw.acs-7B.1, was detected
only in this study and could be a novel locus. These stable and
common QTL, as well as closely linked molecular markers, were
therefore suggested with a great potential in MAS to improve
TGW, along with yield potential in wheat.

Genetic Architecture of Thousand Grain
Weight Revealed by Meta-QTL Analysis
To further dissect the genetic architecture of TGW trait in the
present study, MQTL analysis was performed using reported

QTLs from previous mapping studies and identified QTLs in
the present study. As a result, 394 initial QTLs were successfully
collected and further employed for MQTL analysis (Figure 3 and
Supplementary Table 3). These loci were unevenly distributed on
21 chromosomes, varying from six QTLs on 1D to 35 QTLs on
2A. By comparison, about 82.2% of initial QTLs were harbored
on A and B sub-genomes. The result was consistent with previous
MQTL analysis for grain yield and yield-related traits, where
72.1%-86.2% of initial loci were reported in A and B sub-genomes
(Acuña-Galindo et al., 2015; Tyagi et al., 2015; Kumar et al.,
2020; Liu H. et al., 2020; Yang et al., 2021). This implied that
these QTLs were located more on the A and B sub-genomes,
but fewer were on D sub-genome. It could be attributed to the
low level of polymorphism in the D sub-genome of hexaploid
wheat. Since the D-genome is a recent evolutionary addition to
the hexaploid wheat genome, there has been limited gene flow
from Aegilops tauschii to cultivated wheat, resulting in a relatively
narrow genetic variation (Kumar et al., 2012). Although fewer
TGW QTLs and MQTLs were identified on chromosomes 2D,
3D, and 5D in this study, it was still noteworthy that some
useful QTL/genes mainly controlling desirable traits have been
discovered on the D sub-genome, including abiotic and biotic
stress tolerance and TGW-related traits in wheat (Kumar et al.,
2012; Yan et al., 2017).

Meta-QTL analysis can refine QTL locations in different
genetic backgrounds and environments, providing more accurate
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FIGURE 7 | Top 20 KEGG enrichment pathways for 134 putative candidate genes from MQTL regions.

genomic regions associated with target traits (Goffinet and
Gerber, 2000; Semagn et al., 2013; Acuña-Galindo et al., 2015;
Soriano and Alvaro, 2019; Kumar et al., 2020; Liu H. et al., 2020;
Liu Y. et al., 2020; Yang et al., 2021). In this study, 274 initial
QTLs were finally grouped into 67 MQTLs on chromosomes
1A, 1B, 2A, 2B, 2D, 3A, 3B, 3D, 4A, 5B, 5D, 6A, 6B, 7A and
7B (Figure 4 and Supplementary Table 4). The average 95%
CI of MQTLs (3.18 cM) was 3.73-fold less than that of initial
QTLs (11.85 cM). A similar result was reported earlier by Yang
et al. (2021), where the average CI of identified MQTLs for yield-
related traits was 2.9 times less than that of initial QTLs. By
the peak marker sequences compared with the wheat genome
reference sequence of Chinese Spring, 65 MQTLs had definite
physical positions and the physical intervals ranged from 1.13 to
259.05 Mb. However, some MQTLs were excluded from further
elucidation, because they only harbor singular QTL. For these
under-represented QTLs, more loci should be added to analyze
the responsibility of these regions for TGW (Venske et al., 2019).

Among 67 MQTLs identified, five core MQTLs, such
as MQTL-1B-6, MQTL-2D-2, MQTL-3B-2, MQTL-6A-4 and
MQTL-7B-5, fulfilled the criteria with narrower physical intervals
(< 20 Mb) (Supplementary Table 4), shorter genetic distance
(< 1.0 cM) and more initial QTLs (n ≥ 2) (Venske et al., 2019).

Therefore, these MQTLs will be highly favorable for future MAS
in TGW improvement, and for isolating key genes by the map-
based cloning approach in wheat (Kumar et al., 2020; Liu H.
et al., 2020). In addition, since five core MQTLs comprised
initial QTLs detected in quite diverse and various segregating
populations, the probability of involvement of the genomic
regions in the regulation of target phenotype in new genetic
backgrounds increases (Ribaut and Ragot, 2007; Löffler et al.,
2009). For example, MQTL-2D-2 was formed by seven initial
QTLs with average PVE of 8.29% from five different populations
(Huang et al., 2003; Cuthbert et al., 2008; Wang et al., 2009;
Wu et al., 2011; Zhang et al., 2019). MQTL-3B-2 covered five
initial QTLs with average PVE of 5.68% from four different
populations (Huang et al., 2006; Cuthbert et al., 2008; Wu
et al., 2015) (including the population in this study). MQTL-
7B-5 contained two initial QTLs with average PVE of 8.20%
from two different populations (Shukla et al., 2015; Guan et al.,
2018). In particular, the accuracy and validity of MQTL-1B-6
and MQTL-6A-4 would be further increased when the number
of observed QTL was at least five (Zhang et al., 2017) and
had high PVE (Löffler et al., 2009). MQTL-1B-6 was comprised
of five initial QTLs with average PVE of 13.11% from five
different populations (Yu et al., 2014; Roncallo et al., 2017;
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Guan et al., 2018; Goel et al., 2019) (including the population in
this study). MQTL-6A-4 was composed of five initial QTLs with
average PVE of 12.44% from four different populations (Peleg
et al., 2011; Mir et al., 2012; Guan et al., 2018; Goel et al.,
2019). They contained more QTL from different populations
with high PVE, indicating that these crucial MQTLs had more
extensive adaptability in TGW improvement (Kumar et al., 2020;
Yang et al., 2021). In addition, MQTL-1B-6 and MQTL-3B-2
overlapped the physical positions of MQTLs for wheat yield-
related traits detected in recent studies (Liu H. et al., 2020; Yang
et al., 2021). This further confirmed the reliability of present
MQTLs, which would be highly favorable for future MAS in
TGW improvement, and for isolating key genes by the map-based
cloning approach in wheat (Kumar et al., 2020; Liu H. et al., 2020).

Putative Candidate Genes for Thousand
Grain Weight Mined in Meta-QTL
Regions
In order to obtain reliable candidate genes, two strategies
were combined to screen for candidate genes. On the one
hand, it was feasible to screen important candidate genes by
the interspecific homology analysis. In this context, candidate
genes might be confirmed to have rice homologs with similar
function in wheat, because these development pathways were
conserved among related grass species (Li and Li, 2016; Liu et al.,
2017). On the other hand, given the fundamental differences
in seed development, not all gene functions were conserved
(Brinton and Uauy, 2019). Thus, the method proposed by
Venske et al. (2019) was used as a supplement to fully mine
candidate genes. Among 67 MQTLs identified in this study,
five core MQTLs, such as MQTL-1B-6, MQTL-2D-2, MQTL-
3B-2, MQTL-6A-4, and MQTL-7B-5, meet the above-mentioned
criteria (Supplementary Table 4).

Whilst most stages of grain development had been widely
characterized phenotypically, the genetic basis how these
processes were controlled and how they affected final grain
weight was not well known in wheat. (Brinton and Uauy,
2019). Understanding gene expression patterns were favorable
to narrow down candidate genes within a defined genetic
interval (Borrill et al., 2016). Meanwhile, transcriptomic and
omics studies provided a global overview of the types of
genes involved in grain development (Brinton and Uauy, 2019).
Therefore, the data from expVIP platform would facilitate
the meta-analysis and easily allow integration of data for
candidate gene expression analysis (Borrill et al., 2016). Analysis
of putative candidate genes in the MQTL intervals were
conducted, including diverse developmental time courses and
tissues underlying expVIP platform, GO and KEGG enrichment.
Those can deepen our understanding of differential expression
and regulative mechanisms, in order to prioritize candidate
genes (Zheng et al., 2020). Herein, putative candidate genes
presenting over 2 TPM were only considered (Wagner et al.,
2013; Venske et al., 2019). A total of 134 genes were found with
high and/or specifical expression patterns in the grain and/or
spike (TPM > 2) (Figure 5). Herein, these putative candidate
genes showed tissue- and development-dependent expression

patterns, which could highly affect the TGW trait in wheat.
For example, TraesCS3A02G077900, encoding NAC domain-
containing protein, was specifically expressed in grain 14 DAA.
In rice, its homologous genes OsNAC20, as a NAC transcription
factor, significantly decreased starch and storage protein content
by OsNAC20/26 double mutant, and the phenotype was
characterized by a significant reduction in TGW (Wang et al.,
2020). TraesCS3B02G051700, encoding a B3 domain-containing
protein from a large B3 transcription factor superfamily, was
highly expressed in spike two nodes detectable stage. It has
been demonstrated that B3 superfamily plays a central role in
the embryogenesis to seed maturation and dormancy of the
plant (Wang Y. et al., 2012). TraesCS2D02G571200, encoding
EamA-like transporter family protein, was widely expressed in
wheat tissue. Li et al. (2018) found that EamA-like transporter
as an auxin transporter required for auxin homeostasis was
significantly associated with yield and yield-related traits by
GWAS. Those genes deserved further study to unveil their
possible role in TGW and their application in breeding programs.
Although the relationship between these genes with grain
development in wheat has not been reported, several homologous
genes have been shown to participate in the regulation of TGW
in rice, such as OsSec18, OsBADH1, and OsLHT1, indicating
that these 134 putative candidate genes could be involved in
TGW regulation in wheat (Tang et al., 2014; Sun et al., 2015;
Guo et al., 2020).

GO enrichment and KEGG analysis for differentially-
expressed genes in MQTL intervals provided new insights
into the genetic control of TGW (Zheng et al., 2020).
Herein, these putative candidate genes were highly involved
in the pathways of ubiquitin mediated proteolysis, amino
sugar and nucleotide sugar metabolism and starch and sucrose
metabolism (Figure 7). Likewise, early studies had found that
the ubiquitin proteolytic system played an important role
in a broad array of basic cellular processes. For instance,
Zhang et al. (2018) reported TaGW2 encoded an E3 ubiquitin
ligase and had two homeologs, TaGW2-B1 and TaGW2-
D, both of which were highly associated with the genetic
control of grain weight in wheat. Starch was the main
component of wheat grains, so it was considered as a
key determinant of wheat yield, and sucrose and starch
metabolism might be correlated with increasing grain yield
(Guan et al., 2019).

In summary, this implied that these above-mentioned genes
could directly or indirectly participate in the regulation of wheat
grain development, and ultimately affect grain weight formation.
Once these putative candidate genes were successfully cloned and
verified in the future, they would increase our understanding
of the complex molecular mechanisms underlying TGW and
provide a great application potential in the molecular breeding
for TGW in wheat.

CONCLUSION

In this study, a total of 45 TGW QTLs were identified using
a RIL population, where ten loci were highly stable across
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more than four environments. By the MQTL analysis, 274
of 394 initial QTLs were successfully refined into 67 MQTLs
for TGW. The average confidence interval of these MQTLs
was 3.73-fold less than that of initial QTLs. This suggested
that the present MQTLs were mapped more precisely.
In particular, five core MQTL regions were positioned in
narrower genetic distance (< 1 cM) and physical distance
(< 20 Mb). Putative candidate genes were mined by genomic
sequence comparison to that of Chinese Spring wheat
reference genome. Crucial genes were involved in three
pathways of ubiquitin mediated proteolysis, amino sugar
and nucleotide sugar metabolism, and starch and sucrose
metabolism. Some of the genes had similar functions to
those reported earlier for grain development and gran weight
formation. This suggested that the key genes would have
a great application potential in the molecular breeding
for TGW in wheat.
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Supplementary Figure 3 | Distribution and location of 67 MQTLs on 15 different
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QTLs and the vertical lines shows the confidence intervals of individual QTLs. And
right side on the chromosomes means the markers genetic distance and
markers, respectively.
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