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Linking biochemistry and genetics of tolerance to osmotic stress is of interest for

understanding plant adaptations to unfavorable conditions. The aims of this study were

to investigate the variability in responses of panel of elite maize inbred lines to water

withholding for stress-related traits through association study and to identify pathways

linked to detected associations for better understanding of maize stress responses.

Densely genotyped public and expired Plant Variety Protection Certificate (ex-PVP)

inbred lines were planted in controlled conditions (16-h/8-h day/night, 25◦C, 50% RH)

in control (CO) and exposed to 10-day water withholding (WW). Traits analyzed were

guaiacol peroxidase activity (GPOD), total protein content (PROT), lipid peroxidation

(TBARS), hydrogen peroxide accumulation (H2O2), proline accumulation (proline), and

current water content (CWC). Proline accumulation was found to be influenced by

H2O2 and TBARS signaling pathways acting as an accumulation-switching mechanism.

Most of the associations detected were for proline (29.4%) and TBARS (44.1%).

Gene ontology (GO) enrichment analysis showed significant enrichment in regulation

of integral membrane parts and peroxisomes along with regulation of transcription and

polysaccharide catabolism. Dynamic studies involving inbreds with extreme phenotypes

are needed to elucidate the role of this signaling mechanism in regulation of response to

water deficit.

Keywords: GWAS, ontology, lipid peroxidation, proline, signaling, abiotic stress

INTRODUCTION

One of the key targets of maize (Zea mays L.) breeding is tolerance to abiotic stress conditions.
Phenotyping for stress responses represents the key for success in breeding while the underlying
trait physiology mostly remains unclear (Masuka et al., 2012). Plants adapt to sub-optimal
conditions by morpho-physiological adjustments, with vast number of mechanisms on different
organizational levels at their disposal (Pareek et al., 2010). However, genotypic variability for
these adjustments exists and some genotypes are expected to cope with abiotic stress conditions
better than others (Slafer and Araus, 2007; Tardieu, 2012). Water deficit represents one of
the main abiotic stresses in the field conditions in rain-fed areas and can affect the plant
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growth and development at any time from emergence to yield
formation causing an outburst of physiological responses (Wang
et al., 2019). For example, water deficit affecting the plant
during reproductive stages can cause the formation of smaller
number of kernels or kernel abortion. In grain filling, it results
in smaller grains and premature senescence, whereas the effects
of drought in early plant development received relatively less
attention despite the fact that water deficit at this stage can
cause within-field variability in plant size, deteriorate the stands,
and make the crop more susceptible to diseases (Farooq et al.,
2012; Aslam et al., 2015). Climate change causes a significant
alteration of spatiotemporal patterns of drought occurrence
(Stagge et al., 2017; Grillakis, 2019), with more recent droughts
lasting longer and occurring at less predictable times. Water
deficit results in a number of adverse effects such as reduction of
plant turgidity, reactive oxygen species (ROS) build-up, decrease
in photosynthetic efficiency, and ultimately, the plant death.
However, the plant mechanisms to cope with these adverse effects
include the osmotic adjustments by synthetizing the osmotically
active compounds and increase in enzymatic activity to detoxify
the effects of ROS (Anjum et al., 2017).

During the oxidative stress periods, plant cell suffers damage
at many levels, i.e., outer cell layers, cytoplasmic components,
nucleus, and nucleic contents, inevitably leading to selective cell
death. ROS exert highly oxidative cell surroundings, interacting
with lipids (primarily polyunsaturated fats, PUFAs), proteins,
and nucleic acids often resulting in limitations to biological
yield (Czarnocka and Karpiński, 2018). One family of products
of this highly detrimental interaction is the products of lipid
biomolecule peroxidation called malondialdehydes (MDAs).
MDAs are highly reactive in oxidative surroundings expected
in oxidative stress due to their α-β-unsaturated carbonyl group
and are thus known as reactive carbonyl species (RCS). The
well-known instability and reactivity of these species makes
it unfeasible to measure them directly, so the products of
their secondary activity, reacting with thiobarbituric acid (i.e.,
thiobarbituric acid reactive substances, TBARS), are measured
instead. RCS are in parallel produced both enzymatically
(lipoxygenase activity) and non-enzymatically (ROS-mediated),
and both processes also occur in healthy organisms (Farmer
and Mueller, 2013). However, temporary increase in MDA
levels in stress conditions represents acclimation process that
activates regulatory gene networks involved in plant defense and
development such as dehydration/heat shock-related genes and
genes involved in antioxidant machinery (Morales and Munné-
Bosch, 2019). Moreover, MDA can cause the transcriptional
reprogram of a cell, activating transcription of abiotic-stress
related genes, making them effective signal molecules (Weber
et al., 2004). Another versatile plant signal molecule is hydrogen
peroxide (H2O2). H2O2 is a ROS byproduct of metabolism,
mostly built-up during stress-induced respiratory burst of plant
plasma-membrane NADPH oxidases by superoxide-dismutase
from more toxic oxygen species, or from the process of β-
oxidation of lipid molecules in membrane bound microbodies
peroxisomes (Corpas et al., 2020). In other cell compartments,
lower doses of H2O2 show a limited cellular toxicity, as it
is easily accumulated in plant cells by downregulation of its

peroxisome-localized degradation enzymes such as catalase,
ascorbate peroxidase, glutathione peroxidase, and so on. Which
makes for a robust signaling molecule (Hossain et al., 2015).
Generally, the H2O2 degradation process in maize is carried out
by two classes of peroxidases; the ones utilizing its substrate in
lignification and organogenesis, such as guaiacol peroxidases, and
the others scavenging the peroxide molecules utilizing pyridine
nucleotides, GSH, cytochrome c and ascorbate as electron donors
(Prasad et al., 1995). The former group is involved in the young
plant development, whereas both groups are involved in stress
responses (Gechev et al., 2006) and signaling (Kidwai et al., 2020).
One of the main tasks of H2O2 in stress-signaling appears to be
the regulation of osmolyte synthesis, specifically proline, through
transcriptional upregulation of proline-biosynthesis genes (Yang
et al., 2009), and downregulation of its degradation pathways.
Since the downregulation of peroxisomal H2O2-scavenging
enzymes appears to be the main source of signaling H2O2 in
cells (Su et al., 2019), and the peroxisomes also serve as the
alternative cell energy supply by lipid catabolism, it is possible
that by alterations of the peroxisomal regulation, some other
signaling cascades become dominant or more pronounced.

Maize breeding relies on several germplasm resources (Lee
and Tracy, 2009), key of which is the elite germplasm
available after the expiration of plant variety protection (PVP)
certificate, the so-called ex-PVP germplasm (Mikel and Dudley,
2006). In modern maize breeding, with maize holding the
majority of world seed market (FAO/IHS Markit Agribusiness
Consulting, 2019), the ex-PVP germplasm still prevails the new
inbred registrations (Mikel, 2011; White et al., 2020). This
extremely valuable germplasm resource consists of thousands
of genotypic accessions (Romay et al., 2013) with traceable
pedigrees and available comprehensive genotypic and phenotypic
data (Canaran et al., 2008). Many studies were conducted based
on this resource; however, studies combining the physiological
assessment with dense genotypic data in elite germplasm are
scarce. Moreover, the studies reporting results of association
analysis for traits assessing oxidative status, lipid peroxidation,
and proline accumulation in maize are scarce. Breeding for
tolerance to early osmotic stress might be a meaningful endeavor
due to the adverse effects of stress at this stage on stands and
crop health status (Farooq et al., 2012; Aslam et al., 2015),
corroborated by high variability of available germplasm resources
in terms of ancestry (Lee and Tracy, 2009), genotype (White
et al., 2020), and consequently the phenotype (Galić et al.,
2020). It was hypothesized that integration of data assessing
plant osmotic status (CWC, proline, PROT), plant oxidative
status (TBARS, H2O2), and dense genotypic data might enhance
detection of new important loci or pathways for adaptation to
osmotic stress, as well as to highlight the gene ontology (GO)
enrichment, thus facilitating the discovery of new regulatory
networks involved in plant response to water withholding. An
enrichment analysis of GO is an efficient methodology for the
assessment of functions linked to large gene lists increasing the
likelihood of interpretation of the detected biological processes
and regulatory networks (Tian et al., 2017). In the advent of
high-throughput molecular techniques identifying more and
more genes and generating the big data, combining GO with

Frontiers in Plant Science | www.frontiersin.org 2 July 2022 | Volume 13 | Article 804630

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
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association mapping helps to bridge the gap in translation of
genomes to phenomes (Pan et al., 2019).

Based on that, the aims of this study were to investigate
the contrasts in responses of panel of diverse, elite ex-PVP
and public maize inbred lines in proline accumulation lipid
peroxidation and oxidative status to water withholding in early
stages of growth and combine these results with dense genotypic
data to increase precision and true detection rate in association
analysis. We further aimed to establish the relationships between
the assessed phenotypic traits and use the results of genetic
analysis to determine the enriched biological processes involved
in maize osmotic regulation. Our study represents a novel effort
in maize to corroborate the findings in stress biochemistry with
enrichment analysis of underlying genetic associations in a panel
of elite inbred lines with global significance.

MATERIALS AND METHODS

Plant Material and Experimental Design
The experimental design was previously described in Galić
et al. (2020). Briefly, seeds of maize inbred lines were freely
collected according to the US Plant Variety Protection Act
upon the expiration of their respective certificates from US
National Plant Germplasm System (NPGS) according to their
Distribution Policy (https://npgsweb.ars-grin.gov/gringlobal/
distribution, accessed May 5, 2022). Seeds were transferred with
their enclosed passport documents and USDA-APHIS Plant
Export and Phytosanitary Certificates in fall of 2017. The maize
inbred lines used to carry out this research were not subjected to
any form of modification. Seeds were planted in field in growing
season 2018 and selfed to obtain seeds in sufficient quantity for
experiments. Selfing was successful for 109 inbreds. Experiments
were conducted with awareness of the requirements the IUCN
Policy Statement on Research Involving Species at Risk of
Extinction and the Convention on the Trade in Endangered
Species of Wild Fauna and Flora with intention to comply with
all relevant institutional, national, and international guidelines
and legislation. Experiments were set in controlled conditions
(25◦C, RH = 50%, 16-h/8-h day/night, 200 µmol/m2/s) in trays
(510mm × 350mm × 200mm) divided to 15 rows with 7 boxes
(50mm × 35mm). Each tray was filled with 8.67 kg (20 L) of
air-dry soil [pH (CaCl2) = 5.7, N (NH+

4 + NO−

3 ) = 70 mg/L,
P (P2O5) = 50 mg/L, K (K2O) = 90 mg/L, EC = 40 mS/m]
and the planting was performed to 2 cm depth. The experiment
was set with single water withholding treatment (WW) and
control (CO). A total of three biological replicates (trays) of
each genotype were planted, with one tray containing a single
biological replicate of 15 genotypes (rows), with single row (7
planting boxes) each to enable shuffling. Watering regime for
WW was optimized in preliminary trials to obtain the 50%
reduction in fresh weight per plant in WW treatment compared
to CO. Plants in CO were watered with spray bottle in planting
and every 2 days thereafter with 8ml of tap water per plant.
Amount of water added to CO was determined by weighting the
soil after 3-day drainage following complete saturation of soil
with water (field water capacity). Plants in WW were watered
in planting with full dose (8ml) and two times thereafter (last

watering on 4th day) with half a dose of water added per plant in
C (4ml). After that, water was withheld up to the 14th day since
planting (10 days of water withholding) when the aboveground
parts of three equally developed plants per genotype in each
replicate were harvested. A total of eight trays were left without
plants in the same conditions for soil weighting. Trays were
treated in the same way as the experimental ones, with four trays
representing Co and the other four representing WW. Trays
were weighted every day. The 1 g samples were taken for analysis
of current water content (CWC), whereas the rest was frozen on
liquid nitrogen and left in −80◦C freezer for further analyses.
Tubes with 1 g samples were dried for 24 h in digital laboratory
oven on 80◦C. Current water content (CWC) was calculated:

CWC =
Fresh weight − Dry weight

Fresh weight
∗ 100 (1)

Biochemical Analyses
All biochemical analyses were carried out in three biological
replicates, each further measured in three technical (lab)
replicates. Proline content (proline) was determined according
to Carillo and Gibon (2011). About 20mg of fresh seedling
tissue was extracted in 400 µl (ethanol: water, 40:60 v/v)
overnight at 4◦C. For measurements, 50 µl of extract was used.
Measurements were taken onmicroplate reader (Tecan, Spark) at
520 nm. Proline content was calculated from the standard curve
using proline as standard and expressed as nmol/mg of fresh
weight (FW).

Analysis of TBARS (thiobarbituric acid reactive substances)
was performed according to the method described by
Jambunathan (2010). After tissue homogenization in liquid
nitrogen, about 0.2 g of plant tissue was extracted by the addition
of 1ml of 0.1% trichloroacetic acid (TCA). The samples were
centrifuged for 5min at 6,000 g at 4◦C. After centrifugation,
0.5ml of the supernatant was separated into a screw cap tube
and 1ml of TBA in TCA (0.5% thiobarbituric acid solution
in 20% trichloroacetic acid solution) was added. The blank
contained 1.5mL of TBA in TCA. The reaction mixture was
vortexed and incubated in a water bath for 30min at 95◦C
followed by centrifugation for 15min at 18,000 rpm at 4◦C. The
absorbance was measured at 532 and 600 nm. Obtained results
were expressed as nmol/g of fresh weight (FW).

Concentration of H2O2 was determined by the method
according to Mukherjee and Choudhuri (1983). After tissue
homogenization in liquid nitrogen, 0.1 g of powder was extracted
with 1ml of cold acetone. The reaction mixture was vortexed
and centrifuged for 5min at 6,000 g and 4◦C. The supernatant
was separated, and 400 µl of titanium sulfate solution and
500 µl of concentrated ammonium hydroxide (NH4OH) were
added. The reaction mixture was centrifuged at 15,000 rpm for
10min at 4◦C. The supernatant was decanted and the resulting
precipitate was dissolved by the addition of 1ml of 2M H2SO4

solution. The absorbance was measured at 415 nm, and the
H2O2 concentration was expressed as nmol/g of sample fresh
weight (FW).

The method described by Siegel and Galston (1967) for
determination of guaiacol peroxidase (GPOD) was adapted for
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microplate reader. Briefly, approximately 0.2 g of previously
powdered seedling tissue was extracted with 1ml of 0.1M
phosphate buffer (pH 7.0). Samples were centrifuged at 18,000
rpm at 4◦C. After centrifugation, samples were re-extracted
and supernatants were pooled. Reaction mixture was prepared
using 8mM H2O2 and 90mM guaiacol in 1:1 ratio (v/v).
All measurements were taken in triplicates in 96-well plates
using microplate reader (Tecan, Spark) by adding 150 µl of
phosphate buffer, 40 µl guaiacol/H2O2 mix, and 10 µl of extract.
Absorbance was read at 436 nm using extinction coefficient of
25.5 mM−1cm−1, and results were expressed as units per gram
of sample fresh weight (U/FW).

Total protein content (PROT) in the samples was determined
by the Bradford method (Bradford, 1976) adapted for microplate
reader. Proteins were measured in same extract used for
peroxidase activity assay. Briefly, 5 µl of sample and 250 µl
of Bradford reagent were mixed and absorbance was read at
595 nm. The preparation of standard curve dilutions of bovine
serum albumin (BSA) was used (0.125–1.4 mg/ml). The protein
concentration was expressed as mg/g fresh weight.

Analyses of Phenotypic Traits
Pearson’s product-moment correlations were calculated between
genotypic means of all traits to establish trait connections within
as well as between control and WW treatment. Genotypic means
represented a mean value of three technical replicates over
three biological replicates, totally 9 data points per genotype
in each treatment. For each trait, fold-change values were
calculated to examine specific patterns of reactions as Trrel =
Trww−Trco

Trco
, where Trrel represents trait fold-change in water

withholding (Trww) relative to trait value in control conditions
(Trco). Correlations were also calculated between trait fold-
changes to establish connections between different physiological
indicators. Correlation coefficients were displayed using the
R/gplots package (Warnes et al., 2013) function heatmap.2.
Relationships between traits were imposed using a correlation
distance-based clustering.

To inspect the distinct patterns of reactions between groups
of genotypes, unsupervised K-means clustering analysis was
carried out in R/factoextra library (Kassambara and Mundt,
2020) with Trrel values as input. To determine the optimal
number of clusters, a Silhouette statistic was computed (Charrad
et al., 2014), and the optimal number of clusters was 2
(Supplementary Figure S1).

Variance components of all traits were calculated in R/sommer
library (Covarrubias-Pazaran, 2016). Models were specified with
unstructured error variances as follows:

yijk = Gi + (Tj)+ GTij + εijk (2)

where yijk was value of i-th genotype in j-th treatment in k-
th replicate, Gi represents random effects of genotype, (Tj)
represents fixed treatment effects, GTij is the random genotype-
treatment interaction term, and εijk is the overall model error
term. Estimates of errors of variance components and the trait
repeatabilities were calculated in package’s pin calculator. Trait

repeatabilities were calculated as: H2 =
σ
2
G

σ
2
G +

σ
2
GxT
nt

+
σ
2
ε

nt∗nr

, where

σ
2
G, σ

2
GxT , and σ

2
ε
represent variance components of genotype,

genotype by treatment interaction and error, respectively,
whereas nt is the number of treatments and nr is the number
of replicates. Satterthwaite’s estimates of p-values for differences
between treatment effects were calculated in R/lmerTest library
(Kuznetsova et al., 2017).

Genotypic Data Manipulation and Analysis
Genotyping was performed at Cornell University with
genotyping by sequencing approach with protocol from
Elshire et al. (2011). Genotypic data were the part of the
genotyping efforts of the US National Plant Gemplasm System
Gene Bank consisting of tens of thousands of maize accessions
(Romay et al., 2013). The genotypic data were retrieved from
Panzea (panzea.org) repository (Canaran et al., 2008) as partially
imputed calls with ∼955,000 SNP positions on AGPv4 B73
reference alignment. Dataset 1 was constructed by filtering the
original partially imputed GBS data to maximum 10% missing
data, minor allele frequency of 0.02, and no heterozygotes.
Filtering resulted in 107,527 positions. Positions were imputed
by using LinkImpute methodology (Money et al., 2015) with
30 sites in high LD and 10 nearest neighbors. For Dataset 2,
LD pruning of positions was performed in Plink 1.9 (Purcell
et al., 2007) with –indep 50 5 0.95 flag to prevent false positives
in association analysis. Pruning resulted in 70,130 variants.
Dataset 2 was used for PCoA, kinship, and association analysis.
Association analysis was performed inmixed-effects linear model
framework (MLM+Q+K) with Q matrix calculated in principal
coordinate analysis with 7 assumed axes and identity-by-state
kinship matrix (K) as covariate in Tassel software (Bradbury
et al., 2007) version 5.2.67. To further control false detection rate
(FDR), cluster affiliations of different genotypes from K-means
analysis were used as covariate. The Trrel values were used as
phenotypes in association analysis. Arbitrary –log(p) threshold
of 4 was used to declare significant associations according to
the results of Bian and Holland (Bian and Holland, 2017) that
showed the stable predictive abilities of the loci detected in
the range of –log(P) thresholds from value of 4 to Bonferroni-
corrected value in oligogenic and polygenic traits. Bonferroni
threshold was also determined following the simpleM procedure
described by Gao et al. (2008, 2010). Briefly, of the 70,130 filtered
and imputed markers, the effective number of markers (M-eff)
was determined to be 13,966 and the significance threshold of
α = 0.05 was divided with the Meff which resulted in –log(p)
value of 5.446.

The scan for genes associated with detected positions was
carried out using a Ensembl Plants service (Howe et al., 2020),
BioMart tool (Kinsella et al., 2011). The scan was limited to
protein-coding genes 120 kbp from the detected associations in
both directions, according to the results of linkage disequilibrium
in this association panel (Galić et al., 2020). Only the protein-
coding genes were analyzed. All 182 detected genes were
subjected to AgriGo version 2.0 analysis for enrichment of
biological processes, pathways, and cellular components (Tian
et al., 2017), but only 162 genes with known pathways were
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TABLE 1 | Mean values ± standard deviations and p-values of differences in means in control (CO) and 10-day water withholding treatment (WW) for GPOD (AU/g FW)

PROT (mg/g FW), TBARS (ng/g FW), proline (nmol/mg FW), H2O2 (nmol/g FW), and CWC (%) followed by variance components and repeatabilities ± standard errors of

repeatabilities and the results of K-means clustering analysis with cluster means of trait fold-change and the accompanying p-values of pairwise t-tests between cluster

means.

GPOD PROT TBARS Proline H2O2 CWC

Treatment effects

CO 0.94 ± 0.23 0.72 ± 0.21 4.14 ± 1.18 1.85 ± 0.66 1.66 ± 0.55 93.52 ± 0.85

WW 1.00 ± 0.29 0.67 ± 0.25 6.15 ± 2.00 5.33 ± 3.55 2.05 ± 0.71 90.92 ± 1.67

p-value 0.00808 0.362 <0.001 <0.001 <0.001 <0.001

Variance components and repeatabilities

σ2G 0.036 1.404 1.181 1.068 0.269 0.862

σ2GxT 0.028 0.998 1.461 5.360 0.117 0.627

σ2e 0.014 0.467 0.193 0.263 0.049 0.781

R2 0.68 ± 0.06 0.71 ± 0.06 0.61 ± 0.08 0.28 ± 0.14 0.80 ± 0.04 0.66 ± 0.07

K-means cluster analysis

Cluster 1 (n = 65) 0.010 ± 0.22 −0.002 ± 0.421 0.321 ± 0.265 0.982 ± 0.691 0.188 ± 0.299 −0.312 ± 0.152

Cluster 2 (n = 44) 0.195 ± 0.37 −0.107 ± 0.324 0.863 ± 0.517 3.400 ± 2.475 0.407 ± 0.353 −0.545 ± 0.243

p 0.003964 0.1453 <0.001 <0.001 0.001127 <0.001

analyzed. AgriGo uses the Fisher’s test and the z-scores to retrieve
the enriched terms, taking into the account total number of one
organism’s genes annotated with GO or of the user-provided
background, the number of genes mapped to the background in
the query list, the total number of genes in one GO term and the
counts of overlapped genes as well as the means, and standard
deviations of sample counts. The software’s acyclic drawer is
based on semantic similarity measurement (SSM) described in
Wang et al. (2007).

RESULTS

Treatment Effects and Variance
Components
Water withholding treatment induced visible drying of soil
in terms of field water capacity (FWC). On the day 0 (last
watering inWW), the mean soil water content inWWwas 75.4%
compared to 90.1% in CO. The difference was induced by adding
only a half dose of water to the soil in WW compared to CO
at day 0. On the day of sampling (day 10), the mean soil water
content dropped to 22.8% FWC (Supplementary Figure S2). In
CO, the soil water content was maintained between 72.5 and
93.2% FWC. Water withholding treatment induced significant
changes in all measured biochemical traits (Table 1) except
PROT (p = 0.362). TBARS was in average significantly
increased in WW treatment compared to control (48.5%
increase), as well as proline (288.1%), H2O2 (23.5%), and
GPOD (6.38%). Significant decrease was observed only in
CWC (2.61%). Non-zero estimates of variance components
were observed for GPOD, TBARS, proline, H2O2, and CWC
(Table 1). Genotype by treatment interaction was larger than
genotypic variance only in proline and TBARS. All repeatability
estimates were larger than zero, spanning from 0.28 (proline) to
0.80 (H2O2).

Correlation Analysis
Correlation analysis of trait values between CO and WW
treatment showed moderate to strong, significant correlations
between all traits (Figure 1A). Lowest correlation between CO
and WW was observed for proline (0.455, not shown), whereas
the highest was observed for H2O2 (0.690). Very weak to
weak positive and negative correlations were detected between
all traits in CO, whereas in WW, most of the correlation
strengths increased. Moderate positive correlation was observed
in WW between GPOD and TBARS (0.555) and between TBARS
and proline (0.595). Contrarily, the strong negative correlation
was observed in WW between CWC and proline (−0.637),
whereas the correlation between TBARS and CWCwas moderate
negative (−0.404).

Trait fold-change was calculated and used for further analyses
because the change in the assessed parameters is of true
interest for understanding plant adaptation to osmotic stress
conditions and differentiate sensitive genotypes from tolerant
ones. When the correlations were calculated between trait fold-
changes, clustering of traits by correlation patterns was observed
(Figure 1B). A number of two separate clusters were formed: one
with TBARS, proline, H2O2, and GPOD and another with PROT
and CWC. Strongest positive correlation was observed between
fold-change values of TBARS and proline (0.583). Significant
weak positive correlations were also detected between H2O2 and
TBARS (0.368) and between H2O2 and proline (0.220). Strongest
negative correlation was observed between fold-change values
of proline and CWC (−0.578). Other two significant negative
correlations were detected between fold-change values of CWC
and TBARS (−0.477) and between CWC and H2O2 (0.300).

Crossover Reactions Indicate Involvement
of TBARS in Osmotic Stress Signaling
To further analyze the relationship patterns of reactions in
lipid peroxidation, hydrogen peroxide build-up, and proline
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FIGURE 1 | Heatmap of correlations between trait mean values in CO and WW (A) and heatmap and correlation-distance cladogram of correlations between trait

fold-change values in WW compared to CO (B). *, **, and *** represent significance of correlations at α = 0.05, α = 0.01, and α = 0.001 levels, respectively.

accumulation, trait fold-changes were plotted on a 2-y-axis
plot (Figure 2A). Highest values of proline accumulation were
observed in accessions where TBARS fold-change crossed the
value of fold-change in H2O2. Contrarily, in genotypes in
which fold-change in H2O2 was larger than the fold-change in

TBARS, proline accumulation appeared to be lower. Genotypes
were divided in two groups following this pattern, the one in
which fold-change of TBARS was larger than fold-change in
H2O2 (TBARS > H2O2), and another in which fold-change in
H2O2 was larger compared to fold-change in TBARS (H2O2 >
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FIGURE 2 | (A) Fold-change in WW compared to CO of TBARS and H2O2 accumulation (left y-axis) and proline (right y-axis); (B) Fold changes in WW compared to

CO of GPOD, PROT, TBARS, proline, H2O2, and CWC in groups with larger fold change of TBARS than H2O2 (TBARS > H2O2 ) and with larger fold change of H2O2

than TBARS (H2O2 > TBARS). p-values of pairwise t-tests between groups are given above bars; (C) radar-plots of fold changes WW compared to CO of GPOD,

PROT, TBARS, proline, H2O2, and CWC in top and bottom 10 performers in fold change of TBARS, proline, and H2O2.

TBARS). The analysis showed significantly larger fold-change
in TBARS (0.645 vs. 0.221) and proline (2.21 vs. 1.19) in
TBARS > H2O2 group, and significantly lower fold-change
in H2O2, whereas other analyzed traits were not significantly
affected (Figure 2B). Moreover, analysis of the top 10 scorers
for proline, TBARS, and H2O2 fold-change revealed that highest
mean fold-change in TBARS was accompanied by second-
highest fold-change in proline accumulation of 4.35 (after top
10 scorers for proline with mean of 6.77), followed by top

10 scorers in H2O2 with mean fold-change in proline of
2.31 (Figure 2C).

Most interestingly, correlation analysis of trait fold-
changes between two groups (TBARS > H2O2 and H2O2

> TBARS) showed strong positive significant correlation
between H2O2 and TBARS in H2O2 > TBARS group
(Table 2), compared to moderate significant correlation
between these traits in TBARS > H2O2 group, indicating
possible activation of the alternative pathway of MDA
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TABLE 2 | TBARS (ng/g FW), proline (nmol/mg FW) and H2O2 (nmol/g FW) means ± standard errors of mean in WW compared to CO, and the correlations (bold)

between the traits in two contrasting groups (Figure 5A), TBARS > H2O2, and H2O2 > TBARS.

Group TBARS PROLINE H2O2

CO TBARS > H2O2 3.958 ± 0.125 1.828 ± 0.074 1.7 ± 0.064

H2O2 > TBARS 4.698 ± 0.23 1.917 ± 0.124 1.535 ± 0.084

WW TBARS > H2O2 6.324 ± 0.23 5.684 ± 0.403 1.994 ± 0.074

H2O2 > TBARS 5.622 ± 0.317 4.244 ± 0.583 2.216 ± 0.153

PROLINE TBARS > H2O2 0.590 – –

H2O2 > TBARS 0.181 – –

H2O2 TBARS > H2O2 0.564 0.391 –

H2O2 > TBARS 0.812 0.118 –

Correlations significant at α = 0.05 level are shown in italic.

build-up. The increase in correlation strength from non-
significant weak in H2O2 > TBARS to moderate to strong
significant positive in TBARS > H2O2 group indicated possible
involvement of this increase in lipid peroxidation in proline
accumulation signaling.

K-means clustering with trait fold-change showed two
distinct clusters of reactions (Figure 3). Clustering explained
53.3% of total variation in first two dimensions. In first cluster,
65 genotypes with moderate reactions to WW treatment were
grouped, whereas in the other, the reactions of 44 genotypes
to WW were more pronounced. Cluster designations of
inbreds are available in Supplementary Table S1, available
online. Differences in changes in reactions between clusters
were significant for all traits except PROT (Table 1, p =

0.1453). The largest, more than three-fold difference between
clusters was observed for proline (346%). Following the
groups identified in Figure 2, groups H2O2 > TBARS and
TBARS > H2O2 were given different symbols to further
analyze their arrangement within clusters showing different
responses to WW. Interestingly, only seven genotypes
from H2O2 > TBARS were located in cluster 2, harboring
genotypes with significantly higher proline accumulation
(Table 1), whereas the remaining 20 genotypes were
located in cluster 1, including the genotype with most
extreme total phenotypic response in the two analyzed
dimensions (PHW65).

The selection of each cluster representatives for further
analysis was carried with following heuristics. First,
the three nearest-to-centroid points were selected, with
centroid representing an imaginary center of cluster
(average response in reduced 2d hyperplane), as cluster
representatives. Second, the farthest genotype in both
dimensions (PHW65 in cluster 1 and PHP60 in cluster 2)
was selected. The analysis of candidate’s responses (Figure 4)
showed apparent differences in proline accumulation,
accompanied by subtler changes in other biochemical
parameters. To accompany the analysis of relationship
between accumulation of H2O2 and TBARS in context of
proline accumulation (Figure 2), the relative response of
H2O2 was subtracted from relative response in TBARS
and the simple linear regression showed highly significant

relationship (R2= 0.876) between this difference and the proline
accumulation (Figure 4).

Association Analysis and Candidate Genes
Allelic effects in association analysis in all analyzed traits followed
normal distribution and no considerable deviations of effects
were detected up to the value of –log(p) of 4 (Figure 5). Inflations
of effects on the right tails of distributions for proline and
TBARS (Figures 5B,F) indicated the presence of loci crossing
the calculated Bonferroni threshold. Totally, 34 associations were
declared significant (Figure 5; Table 3), most of which were
detected for proline (29.4%) and TBARS (44.1%). A total of
three of the 34 associations crossed the calculated Bonferroni
threshold of 5.446 (Table 3), two of which were detected for
proline (Figure 5B), one on chromosome three (PROLINE2@3),
and another on chromosome eight (PROLINE6@8), along
with a single association for TBARS, TBARS14@9 (Figure 5F).
PROLINE2@3 was located on physical position 189,739,999
bp with peak –log(p) value of 5.970 and four genotypes
carrying the minor variant. PROLINE6@8 was located on
physical position 21,838,456 bp with peak –log(p) 5.897 and
four genotypes carrying the minor allele. Single association that
crossed Bonferroni threshold detected for TBARS (TBARS14@9)
was located on chromosome 9, physical position 139,353,870
bp with –log(p) value of 5.616 and 12 genotypes with minor
allele. Many of the variants detected as different associated loci
represent same associations, however, with different numbers of
genotypes carrying the minor allele. For example, associations
PROT1@2 and PROT2@2 are 18.2 kbp apart with 13 and 11
minor-allele carriers. GPOD2@8 and GPOD3@8 probably also
represent the same association as the distance between these
loci is only 76 bp. TBARS6@6 and TBARS7@6 are 5.3 kbp
apart, whereas TBARS13@9, TBARS14@9, and TBARS15@9 are
49.5 kbp and 7 bp apart, respectively. However, GPOD3@8 and
GPOD4@8 might not represent the same association, as the
143.5 kbp distance exceeds the 120 kbp linkage disequilibrium
block size. Within regions carrying the significant associations,
120 kbp in both directions from the peak physical locations
182 candidate genes from various metabolic pathways were
found in the BioMart analysis (Supplementary Table S3) with
869 putative transcripts.
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FIGURE 3 | Results of K-means clustering of genotypic means using trait fold-change values of GPOD, PROT, TBARS, proline, H2O2, and CWC in WW compared to

CO. Inbred designations are given for all inbreds belonging to the cluster 2 and TBARS > H2O2 group, along with inbreds surrounding the centroid in cluster 1 and the

most extrema phenotype in cluster 1 (PHW65). Large dots show centroid of each cluster.

Gene Ontology Enrichment Analysis
The GO analysis with 162 candidate genes from BioMart analysis
passing the quality check with AgriGO 2.0 online mining tool
showed significant enrichment of cellular components (Figure 6)
and biological processes (Supplementary Figure S3). Highly
significant negative regulation of the integral membrane parts
was detected in cellular component analysis (Figure 6, p <

10−9), along with significant (p < 0.05) negative regulation
of microbodies peroxisomes. Biological processes analysis
(Supplementary Figure S3) showed large number of positively
regulated processes (p < 0.05), linked to regulation of DNA-
dependent transcription and polysaccharide catabolic processes.

DISCUSSION

Variation of Stress-Related Traits in Water
Withholding Treatment
The studies reporting quantitative genetic analysis of biochemical
parameters involved in stress response are scarce, although these
parameters harbor information about the well-known biological
processes, such as detoxification of ROS, lipid peroxidation, or
proline accumulation and might thus represent well-worth traits

in breeding for osmotic stress tolerance and consequently higher
yields (Tardieu, 2012). For example, in the study on sunflower
hybrids by Khalil et al. (2016), higher broad-sense heritabilities
were reported compared to repeatabilities detected in our study,
which could be explained by the different crops, different stages
and using hybrids compared to inbred lines. Several studies
reported loci associated with proline accumulation in barley
(Fan et al., 2015; Jang et al., 2020) and rice (Sayed et al.,
2012), hydrogen peroxide build-up (Gill et al., 2019; Kumar
and Nadarajah, 2020), and TBARS in rice (Jiang et al., 2009),
wheat (Ma et al., 2015), and cotton (Yasir et al., 2019); however,
there are no available results for these important physiological
processes in maize up to this date. Non-zero genetic variances
in variance component analysis (Table 1) imply feasibility of
breeding directly for these traits, although the fold change
compared to control might be more useful in screening of maize
accessions due to the functional diversity of analyzed traits even
in non-stressful conditions. Designed experiments conducted in
controlled conditions lack in diverse conditions and stressors that
plant must cope with in field (Farooq et al., 2012). However, any
drought-related trait can confer drought tolerance if addressed
to a proper climatological scenario (Tardieu, 2012), and analysis
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FIGURE 4 | Analysis of trait fold-change values in inbred representatives surrounding the centroids of clusters in Figure 3 and the most extreme phenotypes in cluster

one (PHW65) and two (PHP60). Linear model shows the relationship between the difference in trait fold-change values of TBARS and H2O2 and Proline accumulation

in WW treatment in eight selected inbreds.

of responses to water withholding represents low-cost means
for high throughput mass-screening of potentially favorable
genotypes. Furthermore, it was found that the responses of maize
to certain osmotic pressure were strongly correlated between
controlled and field conditions (Chapuis et al., 2012).

The lowest repeatability of proline accumulation caused by the
highest relative genotype by treatment interaction component
is in accordance with proline manifold physiological functions
and multiple pathways of biosynthesis (Verslues et al., 2014),
along with differences in capacities of different genotypes to
accumulate proline with increase of osmotic pressure (Khalil
et al., 2016) causing the crossovers of genotype reactions. Increase
in correlation strengths between different traits inWW treatment
(Figure 2A) implies adaptive activation of plant physiological
mechanisms to alleviate the stress effects (Bustos-Korts et al.,
2018). Expectedly, reduction of plant CWC was negatively
associated with TBARS, proline, and H2O2 (Figure 2B). The
decrease in CWC value is expected in water deficit conditions
(Avramova et al., 2016) and was shown to be negatively associated
with photosynthetic efficiency and plant development in maize
hybrids and antioxidant enzyme activity (Holá et al., 2017). The
CWC reduction implies loss of leaf water, but without assessment
of saturated leaf mass, thus providing only a loose estimate of leaf
relative water content. However, its reduction is a good estimate
of the effects of the drop in available soil water content especially
in monitoring of drought development (Zhou et al., 2021).

Crossovers of Genotype Reactions
Indicate TBARS Signaling Function
Water withholding stress induces stomatal closure leading to
impaired CO2 fixation and consequently excessive production
of ROS such as hydrogen peroxide (H2O2) among others
(Gill and Tuteja, 2010). To cope with water scarcity, plants
developed different enzymatic and non-enzymatic mechanisms
of ROS scavenging. Water withholding treatment caused
generation of ROS in treated maize genotypes leading to
increased levels of TBARS, H2O2, proline, and the activity
of GPOD.

Previous studies demonstrated that H2O2 has dual role in
plants by acting as a signaling molecule at low concentrations,
thus triggering adaptation to stressful conditions (Gupta et al.,
2016) while at higher concentrations can trigger programmed cell
death (Gill and Tuteja, 2010). Its homeostasis is maintained at
different cell parts and organelles such as peroxisomes by enzyme
catalase (Hossain et al., 2015), in cytosol and chloroplasts by the
ascorbate peroxidase (Guo et al., 2020b) and various peroxidases
in mitochondria, such as guaiacol peroxidase (Tognolli et al.,
2002). In this study, H2O2 levels showed induction of oxidative
stress and the ROS scavenging capacity in maize genotypes
exposed to water withholding stress. H2O2 is involved in
numerous physiological processes in plants such as development,
senescence, cell cycle, photosynthesis, and stomatal movement
(Huang et al., 2019).
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FIGURE 5 | Manhattan and quantile-quantile plots of the –log(p) values of associations of the trait fold-change values between CO and WW for CWC (A), proline (B),

H2O2 (C), PROT (D), GPOD (E) and TBARS (F). Horizontal dashed lines represent arbitrary threshold of 4 (gray) and Bonferroni threshold of 5.45 (light red).

Peroxidases are the enzymes responsible for scavenging
hydrogen peroxide and reactive intermediary forms of O2 under
stress conditions. Guaiacol peroxidase (GPOD) is involved in
oxidative stress response by catalyzing reduction of H2O2, thus
decreasing its negative effects (Gill and Tuteja, 2010) using
phenols (guaiacol) as a substrate. Another interesting feature of
GPOD is the fact that it is involved in the process of lignification
during the young plant development (Kidwai et al., 2020). It
has been reported that peroxidases can play important role in
ROS scavenging in maize under stressful conditions (Rohman
et al., 2016), but GPOD is also a part of the antioxidant
system involved in stress-acclimation resulting in transcriptional
cell modifications (Gechev et al., 2006). Increase of peroxidase
activity reduces ROS accumulation and also has the ability to
consequently regulate the level of lipid peroxidation (Huang
et al., 2019) to some extent.

Lipid peroxidation in parallel occurs in healthy organisms
and is carried out both enzymatically (lipoxygenase activity)
and non-enzymatically (ROS-mediated) (Farmer and Mueller,
2013), and thus, the change in TBARS accumulation in sub-
optimal conditions is of true interest for understanding of trait
implications. The activation of lipid peroxidation mechanism is

characterized by three stages that include initiation, progression,
and termination when ROS levels reach threshold on the
cellular level, thus initiating production of lipid-derived radicals.
Oxidation of lipids in the cell membranes leads to its instability by
decrease of membrane fluidity and increase of membrane leakage
which consequently inactivates different transport mechanisms
such as receptors, ion channels, and enzymes (Gill and Tuteja,
2010). Rohman et al. (2016) reported higher MDA levels in
maize seedlings more susceptible to drought stress while Zhang
et al. (2014) showed that after exposure of maize seedlings to
sudden drought stress, MDA levels were more increased in
comparison with gradual drought stress. Although the increase
in MDA values is usually interpreted in terms of stress damage,
it was found that increase in lipid peroxidation can also shift the
transcriptional profile of a cell (Weber et al., 2004). Furthermore,
recently, it was speculated that the MDA might serve as a
stress-signaling molecules in plants activating dehydration/heat
shock-related genes and genes involved in antioxidant machinery
(Morales and Munné-Bosch, 2019).

Accumulation of osmolytes, such as proline, under drought
stress was reported in various plant species. Proline is a member
of the glutamate family and plays versatile role in maintaining
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TABLE 3 | Summary of detected associations for Trrel for GPOD (AU/g FW) PROT (mg/g FW), TBARS (ng/g FW), proline (nmol/mg FW), H2O2 (nmol/g FW) and CWC (%)

crossing the –log(p) significance threshold of 4.

Trait Name Chr. Pos. –log(p) Candidate gene name

CWC CWC1@6 6 21457505 4.028 RNA-metabolizing metallo-beta-lactamase

family protein

PRO PROLINE1@1 1 9009032 4.09 beta amylase2

Vegetative storage protein

PROLINE2@3 3 189739999 5.97 Osmotin-like protein OSM34

PROLINE3@3 3 189789986 4.003 NHL25

PROLINE4@4 4 243872645 4.423 Peroxisomal membrane protein PEX16

Probable phosphoinositide phosphatase SAC9

PROLINE5@6 6 152847056 4.639 Coronatine-insensitive protein 1

PROLINE6@8 8 21838456 5.897 Gigantea1

PROLINE7@8 8 120343076 4.955 Protein NETWORKED 2D

PROLINE8@8 8 162493033 4.433 NADPH:quinone oxidoreductase

Protein SHI RELATED SEQUENCE 6

PROLINE9@8 8 165274233 4.298 Delta3,5-delta2,4-dienoyl-CoA isomerase

PROLINE10@9 9 12076699 4.535 Serine carboxypeptidase-like 29

H2O2 H2O21@5 5 74828595 4.169 Polyketide cyclase/dehydrase and lipid

transport superfamily protein

PROT PROT1@2 2 170426412 4.284 Aldo-keto reductase/ oxidoreductase

PROT2@2 2 170444658 4.102

PROT3@7 7 33140990 4.194 UPF0235 protein

GPOD GPOD1@4 4 181787137 4.524 Cyclin-dependent kinase inhibitor 1

GPOD2@8 8 133675700 4.357 peroxidase64

GPOD3@8 8 133675776 5.357

GPOD4@8 8 133819272 4.055 peroxidase2

TBARS TBARS1@2 2 39693383 4.131 3-ketoacyl-CoA thiolase 2 peroxisomal

Bowman-Birk type bran trypsin inhibitor

Probable 2-oxoglutarate-dependent

dioxygenase

TBARS2@3 3 9767531 4.139

TBARS3@3 3 125562863 4.518 Lipid phosphate phosphatase delta

TBARS4@6 6 17174793 4 Calreticulin-2

TBARS5@6 6 90470962 4.319 GATA transcription factor 24

TBARS6@6 6 154170989 4.32 Tubby-like F-box protein 10

TBARS7@6 6 154176318 4.111 Glutathione S-transferase family protein

TBARS8@7 7 138229143 4.571 Metallothionein-like protein 2A

TBARS9@8 8 14999168 4.275 HSP20-like chaperones superfamily protein

PASTICCINO 2

TBARS10@9 9 104341296 4.424 Calcium-dependent lipid-binding (CaLB

domain) plant phosphoribosyltransferase family

protein

TBARS11@9 9 110991638 4.415 Zinc finger protein CONSTANS-LIKE 5

TBARS12@9 9 111784658 4.307 cryptochrome 3

TBARS13@9 9 139304310 4.328 Hexosyltransferase

TBARS14@9 9 139353870 5.616

TBARS15@9 9 139353877 5.016

In bold are the associations crossing the calculated Bonferroni threshold of 5.45. Candidate gene IDs and gene names were selected from BioMart analysis. Details of the detected
associations with candidate gene IDs and their functions are available in Supplementary Table S3.

water status, membrane stability, inhibiting protein oxidation
and ROS scavenging under osmotic stress, thus contributing
to drought-stress tolerance (Hayat et al., 2012). Genotypes

exhibiting higher proline accumulation in water deficit are
considered to be more drought tolerant (Gill and Tuteja, 2010;
Ozturk et al., 2021). Yang et al. (2009) demonstrated that in
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FIGURE 6 | Results of AgriGo gene ontology (GO) enrichment analysis with genes detected by BioMart tool (Supplementary Table S3) for cellular components.

maize seedlings, H2O2 could be involved in mechanisms of signal
transduction that can lead to proline accumulation as well as
regulation of its biosynthesis and degradation. Namely, proline
accumulation induced by H2O2 is formed via combination of
consecutive activation of the two biosynthetic pathways and
inhibition of the proline degradation by H2O2. This was also
confirmed in our study by the moderate positive significant
correlation between proline and H2O2 in WW (Figure 2A)
as well as their respective changes in WW compared to CO
(Figure 2B).Our analysis of fold-changes between CO and WW
indeed confirmed the relationship between the H2O2 build-
up and proline accumulation as the top 10 scorers for H2O2

change in WW showed more than 2-fold increase in proline
accumulation (Figure 2C). However, the top 10 scorers in
TBARS accumulation showed even larger, more than 4-fold
increase in proline accumulation. The division of the inbreds
to two groups with fold change of H2O2 > TBARS (n =

27), and TBARS > H2O2 (n = 82) further confirmed the
observed pattern. This finding is in accordance with the assumed
signaling functions of MDA in the activation of heat shock and
dehydration-related genes (Morales and Munné-Bosch, 2019),
especially since there is a known relationship between heat
shock proteins and proline accumulation in osmotic stress
conditions (Augustine, 2016).

K-Means Clustering, Association Analysis,
and Gene Ontology Enrichment
Corroborate the Interplay Between H2O2

and TBARS in Osmotic Regulation
K-means clustering (Figure 3) showed that the assessed
genotypes can be readily divided into two clusters of reactions to
WW: one with larger change in trait values in WW compared
to CO and another with lower change (Table 2) indicating
the feasibility of division of cultivars to drought sensitive and
drought tolerant (Gill and Tuteja, 2010) at this growth stage.
Due to the lack of link between cluster designations and available
pedigree and admixture data, K-means cluster affiliations
were used as covariate to control FDR, thus compensating for
relatively modest sample size (Aschard et al., 2017). Interestingly,
cluster 2 was mostly populated by inbreds from TBARS >

H2O2 group, bearing only seven accessions of the H2O2 >

TBARS group, scattered near zero at both dimensions. This
corroborated our speculation of the involvement of TBARS in

proline accumulation, as inbreds belonging to cluster 2 showed
3.4 times increase in proline content in WW treatment, and
54.2% larger increase in TBARS compared to inbreds in cluster 1.
It is also worth mentioning that the accession (PHW65) with the
most extreme phenotype considering all analyzed traits in cluster
1 belonged to H2O2 > TBARS group, whereas in cluster 2,
inbred PHP60, showing the most extreme phenotype, belonged
to the group TBARS > H2O2. Noteworthy, the three nearest
accessions to the centroid of the cluster 2, as well as the most
extreme phenotype of cluster 2, belong to the Iodent breeding
pool, namely, PHP60, PHP55, PHP02, and PHJ65, while closest
to the centroid of the cluster 1, the inbreds HBA1 and LH145,
belonging to Lancaster and B14 breeding pools, are found. Iodent
group represents a relatively novel germplasm pool, which was
not commercially utilized prior to 1980s (Mikel and Dudley,
2006) and might thus be associated with the genetic variability
underlying the detected signals, especially as the more recent
breeding efforts were inclined toward drought tolerance (Troyer,
2009). The Iodent breeding pool might thus indeed carry the
favorable alleles for osmotic stress tolerance. This was confirmed
in a recent study on 209 diverse inbred lines at seedling stage,
where Iodent pool founder line, PH207, was selected among the
four most drought tolerant accessions (Guo et al., 2020a). It is
worth to emphasize that all except one inbred (PHW65) in the
Figure 4 belong to TBARS > H2O2 group, so the involvement
of lipid peroxidation—hydrogen peroxide crosstalk cannot
be unambiguously pinpointed as a sole contributor to the
proline accumulation. However, inspection of the regression
results in this group of inbreds, with very high coefficient of
determination between difference between H2O2 and TBARS
fold change in water withholding and proline accumulation,
along with other aforementioned patterns, indicates possible
important role of this pathway in osmoprotection of
young plants.

Details on the associations detected in association analysis
(Figure 5; Table 3) are available in Supplementary Table S2

available online, along with most probable gene candidates
identified from full gene list from BioMart (Kinsella et al., 2011)
scan (Supplementary Table S3). The genes identified in BioMart
were used in AgriGo online mining tool (Tian et al., 2017) for
the gene ontology enrichment analysis. The highly significant
negative regulation of intrinsic membrane parts revealed from
genes detected in association analysis in GO enrichment
analysis (Figure 6) was probably caused by the damage to
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the cell membrane causing membrane lipid-bilayer distortion.
The distortion of the lipid-bilayer affects the functions of the
surrounded proteins, causing the alteration of their functionality
(Lee, 2004). The detected enrichment was supported by the
involvement of 40 detected genes in gene network regulating
these components. Other negatively regulated cell components
were peroxisomes. Interestingly, H2O2 is a well-known stress
signaling molecule, with peroxisomes being their main source
(Hossain et al., 2015; Su et al., 2019). It is possible that the
negative regulation of the resource of this important signaling
molecule represents the part of the signaling cascade causing
the differences in proline accumulation between groups observed
in Figures 2B,C. This is further corroborated by the rates of
accumulation of H2O2 in organelles. For example, the peroxide
accumulation in mitochondria does not show large variation
throughout the day, whereas the rates of its formation can be 30
to 100 times higher in chloroplasts and peroxisomes (Hossain
et al., 2015). Furthermore, H2O2 synthesis in peroxisomes is
associated with photorespiration, or, more specifically, oxidation
of glycolate during the photosynthetic carbon oxidation cycle
(Niu and Liao, 2016), impacting the gene expression and
metabolic enzyme activity. The crosstalk in proline synthesis
between lipid peroxidation and H2O2 is further corroborated by
the genes linked to associations TBARS10@9 and TBARS13@9-
TBARS15@9, coding for calcium-dependent lipid-binding (CaLB
domain) plant phosphoribosyltransferase family protein and
hexosyltransferase, both acting as glycosyl transferases in our
study (Supplementary Table S2). On the other hand, the study
by Ben Rejeb et al. (2015) showed that accumulation of the
H2O2 generated by the NADPH oxidases in Arabidospis thaliana
plants increases the proline biosynthesis by positive regulation
of proline biosynthesis genes. Interestingly, the association
detected in our study (PROLINE8@8) was located in the
region harboring the NADPH quinone oxidoreductase linked
to NADPH oxidation, also involved in the detoxication process
of lipid peroxides (Mano et al., 2002), possibly representing
another link between the TBARS and proline accumulation.
Also, the dehydration response genes were detected, such as
OSM34 coding for osmotin, related to association PROLINE2@3.
Osmotines are plant sentinel proteins expressed during the
osmotic stress, providing plant cell themeans to retain osmolarity
by metabolic changes and solutes compartmentalization (Ozturk
et al., 2021), such as proline. There is abundant evidence that
the expression of osmotin genes triggers proline accumulation
in osmotic stress in many species (for review, see Anil
Kumar et al., 2015). Other genes that possibly corroborate
the relationship assumed by Morales and Munné-Bosch (2019)
that the MDA might act as signaling molecules in stress are
heat shock-related genes such as HSP20 linked to association
TBARS9@8 (Figure 5; Table 3). It was found that the heat
shock proteins, acting as chaperones, are readily expressed
in osmotic stress conditions, helping in binding, folding,
displacing, and degrading other proteins (Ozturk et al.,
2021). Furthermore, there is a known crosstalk between heat
shock proteins and proline in heat stress, mediated by nitric
oxide (Alamri et al., 2019), possibly active in osmotic stress
as well.

Most interestingly, the correlation analysis (Table 2) showed
the lower correlation between TBARS and H2O2 in TBARS
> H2O2 group compared to correlation observed in H2O2

> TBARS, possibly implying the enzymatic rather than ROS-
mediated origin of TBARS (Farmer and Mueller, 2013). This
was accompanied by the increase in correlation strength between
TBARS and proline in TBARS > H2O2 group implying the
activation of additional proline synthesis mechanisms. The H2O2

and lipid peroxidation homeostasis might thus play a critical
role in proline synthesis. In a study by Terzi et al. (2014),
it was shown that H2O2 treatment in maize affects levels of
proline and MDA in leaves in osmotic stress conditions. The
process might be mediated through activation of polysaccharide
catabolic processes, as proline synthesis is an energy-consuming
task. The differentially regulated polysaccharide catabolism
(Supplementary Figure S3) covered the gene related to detected
association PROLINE1@1 (Table 3) coding for beta-amylase2,
and the beta amylases are known for their role in providing
energy for proline synthesis in drought stress (Zanella et al.,
2016). Finally, it was found that 24 of 168 genes analyzed in
AgriGo tool were involved in significant enrichment of regulation
of DNA-dependent transcription, causing the transcriptional
reprogram of cells.

In conclusion, the reactions of inbred lines assessed in this
study allowed detection of a potentially significant regulatory
signaling mechanism for response to water withholding at young
plant growth stage. Namely, the results of this mass-screening
indicate that in response to water withholding, the group of
inbreds in which accumulation of products of lipid peroxidation
(TBARS) surpassed the accumulation of H2O2, a well-known
signaling molecule, in average increased their proline content by
nearly a double. Furthermore, the analysis of inbred responses to
water withholding per se corroborated by the K-means cluster
analysis showed lower variability in all assessed biochemical
traits in H2O2 > TBARS group accompanied by nearly no
change in proline content. For example, the representatives of
the two K-means clusters showed radical differences in proline
accumulation, where inbred PHP60 (cluster 2, TBARS > H2O2)
was able to increase proline content nearly 12-folds in WW,
whereas inbred PHW65 (cluster 1, H2O2 > TBARS) produced
barely detectable response to osmotic changes detectable by the
used methods. The association mapping combined with gene
ontology enrichment analysis showed significant phenotypic
effects of the linkage regions harboring genes involved in
osmotic-stress signaling and osmolyte accumulation, as well
as negative regulation of peroxisomes, corroborating the
phenotypic analysis. However, the contrasting responses to water
withholding of the two groups of inbreds in this study do not
necessarily reflect to the final (agronomic) performance of the
genotypes, so three important aspects have to be elucidated in
further research to establish the implications of these findings:
(i) the dynamic analysis in genotypes with contrasting responses
(e.g., top 10 and bottom 10 TBARS scorers) needs to capture the
switching of this mechanism, and the difference in dynamics of
proline accumulation between the groups; (ii) the transcriptome
of known regulatory genes, and the implications of this cascade
through the developmental cycle haves to be studied, and
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(iii) the field trials in relevant environments need to provide
the connection between the contrasting performance at early
growth and agronomic performance in terms of yield quantity
and quality.
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