
fpls-13-805671 February 1, 2022 Time: 15:31 # 1

MINI REVIEW
published: 07 February 2022

doi: 10.3389/fpls.2022.805671

Edited by:
Mostafa Abdelwahed

Abdelrahman,
Aswan University, Egypt

Reviewed by:
Rupesh Kailasrao Deshmukh,

National Agri-Food Biotechnology
Institute, India

Pradeep Kumar,
Central Arid Zone Research Institute

(ICAR), India

*Correspondence:
Jagesh Kumar Tiwari

jageshtiwari@gmail.com

Specialty section:
This article was submitted to

Crop and Product Physiology,
a section of the journal

Frontiers in Plant Science

Received: 30 October 2021
Accepted: 17 January 2022

Published: 07 February 2022

Citation:
Tiwari JK, Buckseth T, Zinta R,

Bhatia N, Dalamu D, Naik S,
Poonia AK, Kardile HB, Challam C,
Singh RK, Luthra SK, Kumar V and

Kumar M (2022) Germplasm,
Breeding, and Genomics in Potato
Improvement of Biotic and Abiotic

Stresses Tolerance.
Front. Plant Sci. 13:805671.

doi: 10.3389/fpls.2022.805671

Germplasm, Breeding, and Genomics
in Potato Improvement of Biotic and
Abiotic Stresses Tolerance
Jagesh Kumar Tiwari1* , Tanuja Buckseth1, Rasna Zinta1, Nisha Bhatia1,2,
Dalamu Dalamu1, Sharmistha Naik1,3, Anuj K. Poonia2, Hemant B. Kardile4,
Clarissa Challam5, Rajesh K. Singh1, Satish K. Luthra6, Vinod Kumar1 and Manoj Kumar6

1 ICAR-Central Potato Research Institute, Shimla, India, 2 School of Biotechnology, Shoolini University, Solan, India,
3 ICAR-National Research Centre for Grapes, Pune, India, 4 Department of Crop and Soil Science, Oregon State University,
Corvallis, OR, United States, 5 ICAR-Central Potato Research Institute, Regional Station, Shillong, India, 6 ICAR-Central
Potato Research Institute, Regional Station, Meerut, India

Potato is one of the most important food crops in the world. Late blight, viruses,
soil and tuber-borne diseases, insect-pests mainly aphids, whiteflies, and potato
tuber moths are the major biotic stresses affecting potato production. Potato is
an irrigated and highly fertilizer-responsive crop, and therefore, heat, drought, and
nutrient stresses are the key abiotic stresses. The genus Solanum is a reservoir of
genetic diversity, however, a little fraction of total diversity has been utilized in potato
breeding. The conventional breeding has contributed significantly to the development
of potato varieties. In recent years, a tremendous progress has been achieved in the
sequencing technologies from short-reads to long-reads sequence data, genomes of
Solanum species (i.e., pan-genomics), bioinformatics and multi-omics platforms such
as genomics, transcriptomics, proteomics, metabolomics, ionomics, and phenomics.
As such, genome editing has been extensively explored as a next-generation breeding
tool. With the available high-throughput genotyping facilities and tetraploid allele calling
softwares, genomic selection would be a reality in potato in the near future. This mini-
review covers an update on germplasm, breeding, and genomics in potato improvement
for biotic and abiotic stress tolerance.

Keywords: biotic, abiotic, breeding, potato, genomics, omics approaches

INTRODUCTION

Potato (Solanum tuberosum L.) is the third most important food crop of the world after rice and
wheat. Potato suffers from various biotic and abiotic stresses, which may cause crop failure and yield
loss depending on their severity. The key factors affecting potato cultivation are (a) biotic stresses
including diseases like late blight, viruses, bacterial wilt, soil and tuber-borne diseases, insect-pests
like aphids, whiteflies, thrips, mites, hoppers, potato tuber moths, and potato cyst nematodes (Singh
et al., 2020); and (b) abiotic stresses like heat, drought, nutrient deficiency, salinity, and cold/frost
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stress (Handayani et al., 2019). Late blight is still the most
serious disease of potato, however, in the current climate
change scenario, viruses are becoming new threats especially for
healthy seed production. Similarly, heat and drought stresses
are major challenges in potato due to rising temperature,
erratic rainfall, and drought conditions (Singh et al., 2020).
Hence, management of these problems is very critical for
developing climate resilient varieties through an accelerated
breeding approach. Although conventional breeding has made
significant progress, it is relatively slow and harnessed the
limited potential of the Solanum gene pool (Hardigan et al.,
2017). Now, the potato genome sequences (Potato Genome
Sequencing Consortium, 2011) and resequence of wild/cultivated
species are available publicly, such as de novo sequencing
of two wild species namely S. commersonii (Aversano et al.,
2015) and S. chacoense “M6” (Leisner et al., 2018); and
resequencing of over 100 Solanum species (Hardigan et al.,
2017; Kyriakidou et al., 2020; Tiwari et al., 2021). The
rapid advancements in sequencing technologies, multi-omics
approaches, genome editing, and genomic selection coupled
with softwares/bioinformatics allow discovery of SNP markers,
genes, and regulatory elements for breeding and also to enhance
understanding of potato biology (Aksoy et al., 2015). This
mini-review highlights the prospects of germplasm, breeding,
and genomics in potato improvement for biotic and abiotic
stresses tolerance.

BIOTIC STRESSES IN POTATO

Late Blight and Viruses
Late blight, caused by the oomycete Phytophthora infestans
(Mont.) de Bary, is the most devastating disease of potato crop
worldwide. In the year 1845, this disease caused a complete loss
of potato crops in the European countries mainly Ireland, and
known as “Irish Famine.” More than 30 viruses are reported
to infect potato crop, of which major viruses are Potato virus
X (PVX), Potato virus Y (PVY), and Potato leaf roll virus
(PLRV) in the world; and Tomato leaf curl New Delhi virus-
potato (ToLCNDV) is a new problem in India. Potato viruses
are transmitted by contact/mechanical (e.g., PVX) and insect
vectors (e.g., PVY/PLRV), and cause mosaic or leaf curl and
mixed symptoms (Singh et al., 2020).

Soil and Tuber-Borne Diseases
Soil and tuber-borne diseases like dry rot (Fusarium oxysporum),
charcoal rot (Macrophomina phaseolina) and bacterial soft rot
(Pectobacterium atrosepticum) are the main problems involved
in the post-harvest, storage, and transport of potato. Black
scurf (Rhizoctonia solani) and common scab (Streptomyces
scabies) deteriorate tuber appearance. Bacterial wilt (Ralstonia
solanacearum) is also a serious disease, while wart caused by
Synchytrium endobioticum is a problem of hilly regions like
Darjeeling hills in India. These diseases are managed by using
healthy seeds, disinfection by boric acid treatment, cultural
practices, and crop rotation (Singh et al., 2020).

Insect-Pests
Insect-pests such as aphids, whiteflies, thrips, white grubs,
cutworms, leaf hopper, potato tuber moths, and mites infest
potato crop. Aphids (Myzus persicae) transmit viruses in two
ways i.e., persistent and circulative (PLRV), and non-persistent
(PVY). Whiteflies (Bemisia tabaci) transmit ToLCNDV-potato
virus. Thrips (Thrips palmi) transmit Groundnut bud necrosis
virus and cause stem necrosis disease. Importantly, potato
cyst nematodes (PCN) (Globodera rostochiensis and G. pallida)
are key problems in temperate regions. Besides, other insect-
pests are potato leaf hopper (Amrasca biguttula biguttula),
white grub (Brahmina coriacea), cutworm (Agrotis segetum),
potato tuber moth (Phthorimaea operculella), and mites
(Polyphagotarsonemus latus) (Singh et al., 2020).

ABIOTIC STRESS IN POTATO

Heat and Drought Stress
Heat stress is a great problem for potato crop, particularly
in early planted crop and after the harvest of the main rabi
crop under sub-tropical Indian conditions. A minimum night
temperature below 20◦C (day 25◦C) is essential for tuber growth
and development (Singh et al., 2015). Potato is mostly an irrigated
crop, except in rain fed hilly regions. Therefore, all growth
stages are sensitive to water availability such as germination,
foliage, and root/stolon/tuber growth. Thus drought i.e., moisture
deficit plays a very crucial role in determining potato yield
(Dahal et al., 2019).

Nutrient Deficiency, Salinity, and
Frost/Cold stress
Nutrients are very essential for plant growth, yield, and quality of
potato. Potato is a heavily fertilized crop especially for nitrogen
(N), and therefore reduction of N fertilizers is necessary to save
the environment and reduce the production cost (Zhang et al.,
2020). Nutrient deficiency drastically affects crop growth and
reduces yield. Besides, salinity is another problem due to soil or
irrigation water, which causes nutrient imbalance and restricts
plant growth. Frost/cold is also another issue of temperate
climates, where temperatures below −2◦C can result in a partial
or complete loss of crop (Ahmed et al., 2020).

GERMPLASM, MAPPING, AND
BREEDING

Potato Genetic Resources
Potato belongs to the genus Solanum (family: Solanaceae),
which contains over 2,000 species, of which nearly 235 are
tuber bearing potato species, where 73% are diploids (2x),
4% triploids (3x), 15% tetraploids (4x), and 8% pentaploids
(5x)/hexaploids (6x) (Hawkes, 1990). The cultivated potato
(S. tuberosum ssp. tuberosum) is a tetraploid (2n = 4x = 48).
Potatoes are classified into four major groups (i) S. tuberosum
group Andigenum of upland Andean genotypes (2x/3x/4x), and
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S. tuberosum group Chilotanum of lowland Chilean landraces
(4x), (ii) S. ajanhuiri (2x), (iii) S. juzepczukii (3x), and (iv)
S. curtilobum (5x) (Spooner et al., 2014). These species belong
to different endosperm balance numbers (EBNs) like 1EBN (2x),
2EBN (2x/4x), and 4EBN (4x/6x), where hybridization within the
same EBN species is successful but not with different EBN species
(Hawkes, 1990). Over 98,000 potato accessions are conserved ex
situ (in vitro), of which 80% are maintained in 30 key collections
worldwide (FAO, 2010). To harness the potential of diverse
species, a wide range of genetic variation has been recorded and
deployed through breeding and ploidy manipulation techniques
for potato improvement.

Linkage and Association Mapping
Gene mapping is important for molecular breeding. The complex
tetrasomic inheritance, acute inbreeding depression, and high
heterozygosity of potato complicate its genetic mapping. Linkage
mapping is the genetic association of traits with segregating
alleles of molecular markers in a defined mapping population.
The first linkage map was reported in 1988 using tomato RFLP
(restriction fragment length polymorphism) markers in diploid
species (S. tuberosum group Phureja/Tuberosum) (Bonierbale
et al., 1988). Then uncounted PCR-based molecular markers
like simple sequence repeat (SSR), amplified fragment length
polymorphism (AFLP), and diversity array technology (DArT)
were applied for mapping. Over 10,000 AFLP markers were used
to create an ultra-high-density (UHD) genetic and physical map
of potato (Van Os et al., 2006), which was used in the potato
genome sequencing. Sharma et al. (2013) constructed a dense
genetic and physical map for a diploid backcross progeny using
2,469 markers (SSR/AFLP/DArT/SNP). Numerous genes/QTLs
have been mapped in potato for various traits like late blight
resistance (Hein et al., 2009) and drought stress (Anithakumari
et al., 2012). On the contrary to linkage mapping, association
mapping identifies genes/QTLs associated with phenotypic
variation in a natural population based on the historical
recombination and linkage disequilibrium (Flint-Garcia et al.,
2003). In potato, diploid/tetraploid clones have been utilized in
association mapping for several agronomic traits (D’hoop et al.,
2014), particularly resistance to late blight (Gebhardt et al., 2004)
and Verticillium wilt (Simko et al., 2004) to name a few.

Marker-Assisted Selection
Over 40 traits are considered to be important in potato breeding.
Conventional breeding is a time consuming process mainly due
to several years of field evaluation and clonal selection. Hence,
identification of tightly linked markers with a target gene for a
trait is considered to be ideal for MAS. MAS allows a significant
decrease in field exposures by selection in the early stage, and
thereby reduces field exposures and breeding cycles. In potato,
a considerable number of linked markers have been developed
and deployed mainly for simply inherited traits like late blight,
viruses, and potato cyst nematode resistance (Ramakrishnan
et al., 2015). However, meager information is available on MAS
for complex traits like yield, nutrient use efficiency, heat, drought,
and cold stress.

PROGRESS IN GENOMICS-LED POTATO
IMPROVEMENT

Potato Genome
Sequencing/Resequencing
In 2011, the Potato Genome Sequencing Consortium (PGSC),—
formed by 26 international institutes belonging to 14 countries—
successfully deciphered the potato genome (840 Mb) containing
39,031 protein-coding genes using a homozygous doubled
monoploid (DM 1-3 516 R44) of S. tuberosum group Phureja
(2n = 2x = 24) (Potato Genome Sequencing Consortium, 2011)1.
Later Sharma et al. (2013) improved the DM potato assembly with
a more accurate arrangement of scaffolds and pseudomolecules.
Recently, a chromosome-scale long-read reference assembly
has been constructed (Pham et al., 2020). By now over 100
potato species have been sequenced/re-sequenced mostly using
Illumina platforms like wild S. commersonii (Aversano et al.,
2015), tuber-bearing Solanum species (Hardigan et al., 2017),
S. chacoense “M6” (Leisner et al., 2018), S. pinnatisectum-derived
somatic hybrid (Tiwari et al., 2021), and cultivated potato taxa
using Illumina and long-read (PacBio) technologies (Kyriakidou
et al., 2020; Table 1). The rapid advancement in sequencing
and bioinformatics has spurred innovation in discovery of
new genes/markers/haplotypes to enable better understanding of
potato biology (Zhou et al., 2020). Figure 1 illustrates different
approaches used in potato germplasm, breeding, and genomics-
led improvement for biotic and abiotic stresses tolerance.

Multi-Omics Approaches
Functional genomics allows the mining of genes for trait of
interest through transcriptome analysis like RNA sequencing and
microarray. Besides structural genomics, other omics approaches
are transcriptomics (genes), proteomics (proteins), metabolomics
(metabolites), phenomics (high-throughput phenotyping), and
ionomics (mineral ions). The aims of multi-omics approaches
are to acquire comprehensive and integrated understanding
of biological processes (system biology) to identify various
biological players/genes/regulatory elements underlying the traits
like heat and drought stress (Aksoy et al., 2015). Numerous
studies have been performed on transcriptomics in potato such
as heat (Tang et al., 2020), drought (Moon et al., 2018; Chen
et al., 2019), salinity (Li et al., 2020), and nitrogen deficiency
(Tiwari et al., 2020a,b) but limited work has been carried out
on proteomics, metabolomics, and ionomics (Hong et al., 2016;
Boguszewska-Mańkowska et al., 2020). A few recent research
works on multi-omics on biotic/abiotic stresses are mentioned in
Table 1.

Genome-Wide Genetic Diversity and
Association Studies Using
High-Throughput Genotyping
High-Throughput Genotyping (HTG) is an essential requirement
for genome-wide research on genetic diversity and association
studies. First, genotyping-by-Sequencing (GBS) is a now popular

1http://solanaceae.plantbiology.msu.edu/pgsc_download.shtml
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TABLE 1 | A few recent examples of application sequencing and multi-omics technologies in potato for biotic and abiotic stress resistance/tolerance.

Application System Traits/objectives References

Genome
sequencing

Illumina HiSeq (and PacBio in some
species)

Genome sequencing and structural variation in many
Solanum species

Hardigan et al., 2017; Kyriakidou
et al., 2020

S. checoense “M6” genome Leisner et al., 2018

S. commersonii genome Aversano et al., 2015

Genome-wide
genetic diversity
and GWAS

22K SNP array Construction of core collection Pandey et al., 2021

20 K SNP array Population structure, LD and SNP/haplotypes Vos et al., 2017

12K SNP array Population structure of CIP accessions Ellis et al., 2018

8.3 K SNP array Population structure and LD Berdugo-Cely et al., 2017

RenSeq/GenSeq Late blight and nematode resistance Strachan et al., 2019

20K SNP array Wart disease resistance Prodhomme et al., 2020

12 K SNP array Common scab resistance Yuan et al., 2020

8.3K SNP array Late blight resistance Mosquera et al., 2016

Genomic selection 8.3k SNP array Late blight resistance Stich and Inghelandt, 2018

8.3k SNP array Late blight and common scab resistance Enciso-Rodriguez et al., 2018

Transcriptomics Illumina Late blight, bacterial wilt, Cao et al., 2020

HiSeqTM2500 and PVY resistance

Illumina HiSeq2500 Common scab resistance Fofana et al., 2020

Ion torrent Colorado potato beetle resistance Bastarache et al., 2020

Illumina Potato cyst nematode Kochetov et al., 2020

NextSeq500 resistance

Illumina HiSeq × Ten Salt stress Li et al., 2020

Illumina NextSeq Drought stress Moon et al., 2018

Illumina HiSeq 4000 Drought stress Chen et al., 2019

Illumina HiSeq-2000 Heat stress Tang et al., 2020

Illumina Nitrogen stress Tiwari et al., 2020b;
Zhang et al., 2020

NextSeq500 Nitrogen stress

Illumina HiSeq 4000

Proteomics iTRAQ Late blight resistance Xiao et al., 2020

iTRAQ Bacterial wilt resistance Wang et al., 2021

Metabolomics LC-MS/MS Potato virus A resistance Rajamaki et al., 2020

GC-MS Salt stress Hamooh et al., 2021

LC-ESI-Q-TOF-MS/MS Nitrogen stress Jozefowicz et al., 2017

Transcriptomics
and metabolomics

Illumina HiSeq 4000, LC-MS Heat stress Liu et al., 2021

Proteomics and
metabolomics

2-DE Cold stress Li et al., 2021

LC-ESI-MS/MS

Phenomics (HTP) X-ray computed tomography (CT) Heat and drought stress Harsselaar et al., 2021

RGB camera and LED light system Drought stress Musse et al., 2021

Unmanned aerial vehicle Plant height and canopy cover Colwell et al., 2021

Genome editing CRISPR/Cas13a PVY resistance Makhotenko et al., 2019; Zhan
et al., 2019

CRISPR/Cas9

LD, linkage disequilibrium; CIP, International Potato Center; GWAS, Genome-Wide Association Studies; htp, high-throughput phenotyping.

method of HTG in crops including potato (Uitdewilligen et al.,
2013; Bastien et al., 2018). GBS has been applied effectively
in genome-wide studies in potato on genetic diversity and
population structure (Pandey et al., 2021), QTL mapping
(Schönhals et al., 2017), and SNP discovery (Caruana et al., 2019).
Secondly, the SNP array-based HTG system has already been

developed and applied in potato for population structure and
SNP discovery using 20K SNP array (Vos et al., 2015, 2017),
22K SNP array for starch phosphorylation (Khlestkin et al.,
2019), and 12K SNP array (Illumina) for genetic diversity
in the genbank of the International Potato Centre, Peru
(Ellis et al., 2018). Moreover, 8.3K SNP potato array has
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FIGURE 1 | A schematic presentation of different approaches used for genetic enhancement and improvement of potato under various biotic and abiotic stresses
applying breeding and modern genomics approaches like genome sequencing, functional genomics, genomics-assisted breeding through high-throughput
genotyping by SNP markers, omics (transcriptomics, proteomics, metabolomics, and ionomics), high-throughput phenotyping, genome editing, and genomic
selection.

been demonstrated in studies on Synchytrium endobioticum
resistance (Obidiegwu et al., 2015), genetic diversity (Berdugo-
Cely et al., 2017), and physical mapping of yield and quality traits
(Schönhals et al., 2017).

Genome-Wide Association Studies (GWAS) or linkage
disequilibrium (LD) mapping is a family-based mapping
approach to identify linked markers with the trait of interest in
a diverse population structure. GWAS is more useful in a diverse
germplasm which offers new perspectives toward the discovery of
new genes and alleles especially for complex traits. The software
STRUCTURE is very popular among scientific communities, and
GWASpoly has been developed for tetraploid potato (Rosyara
et al., 2016). GWAS has been applied in potato for QTLs/genes
via LD mapping using 20K SNP array (Vos et al., 2017), wart
resistance using 20K SNP array (Prodhomme et al., 2020) and
common scab resistance using 12K SNP array (Yuan et al., 2020).
Likewise, 8.3K SNP array has been used in LD mapping for
phenotype, yield, and quality traits (Sharma et al., 2018), late
blight resistance (Mosquera et al., 2016), and genetic diversity
in 809 andigenum Colombian accessions (Berdugo-Cely et al.,
2017). Applications of SNP array in potato for biotic and abiotic
stress traits are summarized in Table 1.

Genomic Selection
Genomic selection (GS) or genome-wide selection or genomics-
assisted breeding is a strategy to predict breeding model at

whole-genome level for both simple and complex inherited traits.
Therefore, partitioning of genetic variance and genome wide
prediction with allele doses is very important in tetraploid potato
(Endelman et al., 2018). GS allows the integration of phenotyping
and HTG data of a training population (both genotyped and
phenotyped) with a targeted breeding population (genotyped
only) for the prediction of genomic models to select superior
clones based on the genomic estimated breeding value (GEBV).
GS accelerates the breeding cycle with an increase in genetic gain
per unit time. Unlike animals and cereals, the application of GS
is very limited in tetraploid potato (Caruana et al., 2019) and
has been demonstrated recently for late blight and common scab
resistance (Enciso-Rodriguez et al., 2018; Stich and Inghelandt,
2018). The advancement in sequencing, softwares, HTG, HTP,
and marker-trait association can reduce the breeding cycle from
over 10 to as few as 4 years to increase the genetic gain in potato
(Slater et al., 2014; Table 1).

High-Throughput Phenotyping
Conventional phenotyping is often slow, has limited phenotyping
capability, and mostly relies upon destructive sampling. Hence,
modern High-Throughput Phenotyping (HTP) or phenomics
is an automated precision phenotyping system allowing
identification of key traits associated with phenotypic variation
under different growth conditions. HTP is usually based on
automation, sensors, high resolution imaging cameras (RGB,
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multi/hyperspectral and thermal sensors), unmanned aerial
vehicle (UAV) and robotics to record real-time images and
hardwares/softwares to analyze data from field or controlled
growth chamber2. HTP enables measurement of phenotype, yield
and its contributing traits, and physiological processes under
stress such as photosynthesis, nutrient uptake and transport
with precision and accuracy in a large set of genotypes with
non-destructive sampling, for example the LemnaTec Scanalyzer
3D platform (LemnaTech GmbH, Germany). HTP has been
applied in potato for phenology study in field (Prashar and
Jones, 2014), heat and drought (Harsselaar et al., 2021), drought
(Musse et al., 2021), and canopy cover using UAV (Colwell et al.,
2021). Examples of HTP in heat and drought stress in potato are
mentioned in Table 1.

Genome Editing
Genome editing is a powerful technology to create new variation
in the genome with desirable gene combinations. Earlier
sequence-specific nucleases (SSNs) methods like Zinc Finger
Nucleases (ZFNs) and Transcription Activator-Like Effector
Nucleases (TALENs) were used. Now, Clustered Regularly
Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-
associated protein 9 (Cas9) is the most widely used genome
editing tool, which is an RNA-guided approach to target
DNA/RNA sequences. CRISPR/Cas9 has revolutionized the plant
research for multiple traits due to its ease in use, multiplexing
capability, cost-effectiveness, and high efficiency. Although, in
potato highly heterozygous and tetrasomic inheritance have
complicated its deployment (Butler et al., 2015; Andersson
et al., 2017) but found effective for PVY resistance using
CRISPR/Cas9 (Makhotenko et al., 2019) and CRISPR/Cas13a
(Zhan et al., 2019). Additionally, CRISPR/Cas9 has been
demonstrated in potato for various other traits like cold-
induced sweetening, glycoalkaloid content, homozygous mutants
generation, acetochalactate synthase 1 and granule bound starch
synthase genes (Nadakuduti et al., 2018; Dangol et al., 2019;
Table 1).

CONCLUDING REMARKS

Biotic and abiotic stresses are major limiting factors of yield
reduction in potato. Management of these stresses are more

2 http:/www.plantaccelerator.org.au/

challenging under the climate change scenario due to emergence
of new strains of pathogens and insect-pests, and erratic nature of
environmental factors. Potato improvement through genomics-
aided methods is essential to shorten the breeding cycle to
develop new varieties. Earlier, conventional breeding, bi-parental
linkage mapping, and MAS have been successfully demonstrated
in potato. The potato genome sequencing and resequencing of
Solanum species allow discovery of genes, markers and other
regulatory elements to provide better understanding of the
crop. Now, with the unprecedented advancement in sequencing
technologies, genomes of Solanum species (pan-genomics),
multi-omics for system biology approach (transcriptomics,
proteomics, metabolomics, and ionomics), HTG by GBS and
SNP array, HTP for precision phenotyping, GWAS and genomic
selection would play crucial roles in genomics-led improvement
of potato in the near future. There is an immense potential of
genome editing for rapid breeding of climate resilient varieties
resistant/tolerant to biotic and abiotic stresses. Nonetheless,
the availability of an efficient CRISPR/Cas system, target gene
selection, plant transformation, and off target mutants would be
some challenges in tetraploid crop. Overall, designs of potato
that apply genomics, particularly genome editing and genomic
selection, and other omics are inevitable in the future.
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