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Climate change represents one of themost critical threats to biodiversity with far-reaching

consequences for species interactions, the functioning of ecosystems, or the assembly

of biotic communities. Plant phenology research has gained increasing attention as the

timing of periodic events in plants is strongly affected by seasonal and interannual climate

variation. Recent technological development allowed us to gather invaluable data at a

variety of spatial and ecological scales. The feasibility of phenological monitoring today

and in the future depends heavily on developing tools capable of efficiently analyzing

these enormous amounts of data. Deep Neural Networks learn representations from

data with impressive accuracy and lead to significant breakthroughs in, e.g., image

processing. This article is the first systematic literature review aiming to thoroughly

analyze all primary studies on deep learning approaches in plant phenology research.

In a multi-stage process, we selected 24 peer-reviewed studies published in the last

five years (2016–2021). After carefully analyzing these studies, we describe the applied

methods categorized according to the studied phenological stages, vegetation type,

spatial scale, data acquisition- and deep learning methods. Furthermore, we identify

and discuss research trends and highlight promising future directions. We present a

systematic overview of previously applied methods on different tasks that can guide this

emerging complex research field.

Keywords: phenology, phenology monitoring, drones, remote sensing, deep learning, machine learning,

PhenoCams, herbarium specimen

1. INTRODUCTION

Phenology is the study of changes in the timing of seasonal events, such as budburst, flowering,
fructification, and senescence (Lieth, 2013). Plant phenology has received increasing public and
scientific attention due to the growing evidence that the timing of developmental stages is largely
dependent on environmental conditions. Temperate vegetation, in particular, shows extreme
sensitivity to climate variability (Menzel et al., 2006; Schwartz et al., 2006). Phenology is directly
related to climatic conditions and plays an essential role in ecosystem processes, such as carbon-
and nutrient cycling. At the individual plant level, phenology has been shown to influence fitness
and reproductive success (Ehrlén and Münzbergová, 2009) and thus plays a vital role in species
dispersal (Chuine, 2010). Ultimately, changes in phenology can have far-reaching consequences,
from affecting species dispersal and disrupting species interactions to altering the carbon cycle
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and in turn influencing global climate itself (Visser and
Holleman, 2001; Peñuelas and Filella, 2009; Chuine, 2010;
Rafferty and Ives, 2011; Piao et al., 2019). Therefore, modeling,
assessing, and monitoring phenological dynamics are vital
requirements to understand how plants respond to a changing
world and how this influences vegetated ecosystems. While
vegetation undeniably responds to environmental variability,
our current understanding of phenology is limited by the
extreme difficulty of documenting phenological processes usually
occurring on large spatial and temporal scales.

There are different methods of monitoring phenology, e.g., (1)
human visual observations usually conducted on the individual
scale (Lancashire et al., 1991; Meier, 1997; Koch et al., 2007;
Denny et al., 2014; Nordt et al., 2021), (2) near-surface
measurements, which are carried out on a regional to local
scale (Richardson et al., 2009; Brown et al., 2016; Richardson,
2019), and (3) satellite remote sensing which is applied on
regional to global scales (Cleland et al., 2007; White et al.,
2009; Richardson et al., 2013; Zeng et al., 2020). With the
help of sensors and cameras, it has become increasingly easy
to collect large amounts of phenological monitoring data, both
ground-based and through remote sensing technologies. The
implementation of large-scale phenology observation methods
leads to a crucial paradigm shift. Data availability and data
generation are no longer problems. Vast amounts of data are
generated in a relatively short time at a low cost. The feasibility of
phenological monitoring today and in the future depends heavily
on the development of tools capable of efficiently analyzing these
enormous amounts of data (Correia et al., 2020). In addition,
standardized methods and metrics for data acquisition and the
development of plant phenology ontologies in order to provide
standardized vocabulary and semantic frameworks need to be
developed for large-scale integration of heterogeneous plant
phenology data (Stucky et al., 2018).

By constructing computational models with multiple
processing layers and allowing the models to learn
representations of data from multiple levels of abstraction
(LeCun et al., 2015), deep learning (DL) techniques have
gained importance in many research and application domains.
Deep learning methods have been widely used for image
processing in, e.g., computer vision, speech recognition, and
natural language processing (Deng and Yu, 2014; LeCun
et al., 2015). In ecology, deep learning is used for species
identification, behavioral studies, population monitoring, or
ecological modeling (Wäldchen and Mäder, 2018a; Christin
et al., 2019). In earth system science, deep learning finds
application in pattern classification, anomaly detection, and
space- or time-dependent state prediction (Reichstein et al.,
2019). Compared to traditional classification methods, deep
learning models often provide higher processing accuracy when
large samples for model training and testing are available.
This systematic literature review explicitly focuses on studies
involving deep learning for phenology monitoring and presents
an overview of the methods and technologies used. We discuss
possible scientific and technical advances that can further boost
the potential of deep learning for monitoring phenology in
the future.

We organized the remaining sections of this article as
follows: Section 2 gives an overview of the current methods for
monitoring plant phenology. Section 3 introduces our research
questions and the methodology of this systematic review. In
section 4, we present and discuss findings for each research
question. We discuss trends and future directions in section 5.
Section 6 concludes the review.

2. PLANT PHENOLOGY MONITORING
METHODS

Phenological stages can be detected using different methods
corresponding to their spatial scale: (1) individual based
observations, (2) near-surface measurements, and (3) satellite
remote sensing, which are often collected across large temporal
and local scales (Figure 1).

2.1. Individual Based Observations
Observing the date of onset and the duration of particular
pheno-phases is used to quantify the phenology of individual
plants, including both vegetative and reproductive events. Across
different phenology monitoring projects, there is no universal
definition of pheno-phases. A well-known and widely used
recording scheme is the BBCH scale, which is commonly used
in agricultural systems in Europe (Lancashire et al., 1991;
Meier, 1997; Koch et al., 2007). Other recording schemes
are the USA National Phenology Network (USA-NPN) scale
(Denny et al., 2014) and the recently established scale by the
PhenObs network, a phenology research initiative undertaking
coordinated phenology monitoring in a network of botanical
gardens distributed across many bioclimatic regions (Nordt et al.,
2021). Themain pheno-phases that can be found in all mentioned
scales are the day-of-year (DOY) observations, e.g., breaking
of leaves, breaking of buds, initial growth for annual plants,
expansion of leaves, appearance of flowers, appearance of fruits,
senescence (coloring), and leaf abscission (Koch et al., 2007;
Morisette et al., 2009; Denny et al., 2014; Berra andGaulton, 2021;
Nordt et al., 2021).

Human observations. The primary method for capturing
plant phenology relies on human observations of plants in
phenological periods. In addition to the professional networks,
such as the European Phenology Network (EPN), the USA
National Phenology Network (USA-NPN) or the the PhenObs
network, a number of world-wide citizen science networks strives
to capture high-quality ground-based phenology observations on
a voluntarily basis (Beaubien and Hamann, 2011; Taylor et al.,
2019). Although these efforts are critical and acquire detailed
plant phenology information at species or individual plant scale,
they can typically only cover small localized areas and are limited
in number.

Below canopy cameras. Besides cameras being installed above
the canopy, capturing an entire landscape, cameras installed
below the canopy are increasingly being used. These cameras
can take accurate measurements on the specific individuals and
record the same phenological stages as the ground-based manual
recordings described above. So far, digital cameras have only been
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FIGURE 1 | Overview of methods monitoring phenology.

used in individual projects, and there is no larger network or
association to collect an extensive image dataset of phenological
stages for several species (Correia et al., 2020).

Herbaria. Researchers recently started to use the vast
collections of plant specimens available from the world’s herbaria
for phenological analyses (Willis et al., 2017; Pearson et al., 2020).
Pressed, preserved plant specimens collected over centuries and
around the globe can serve as snapshots of plant phenology
contributing to a wealth of research relating to the timing of
phenological events (Jones and Daehler, 2018). Although most
herbarium specimens were not collected to detect phenological
stages, phenological data from specimens have proven reliable
and irreplaceable for understanding plant phenology (Davis
et al., 2015). The collection of phenological data from herbarium
specimens is fundamentally based on the presence and absence
of key reproductive or vegetative traits. Most often, the presence
and occasionally the quantity of these traits are then used to
score the specimens as being in a particular pheno-phase and
representative of a particular phenological event (Willis et al.,
2017). A comprehensive overview of how machine learning
and digitized herbarium specimens can advance phenological
research is given by Pearson et al. (2020).

2.2. Near-Surface Measurements
Phenology monitoring has been increasingly realized by remote
sensing on scales comprising single research plots to regional,
continental, and global scales (Cleland et al., 2007; Richardson
et al., 2013), often referred to as land surface phenology (LSP).
Over the last decade, ground and near-surface sensors have been
increasingly used to collect data for LSP assessment purposes in

place of or in complement to traditional plant phenology (Berra
and Gaulton, 2021). This level of observation typically includes
digital cameras, such as PhenoCams and below canopy cameras,
sensing visible-light wavelengths, spectral radiometers detecting
reflected radiance, continuous carbon flux measurements, and
more recently cameras carried by Unmanned Aerial Vehicles
(UAVs) (Berra and Gaulton, 2021). Phenology stages are typically
estimated as the day of the year corresponding to the start of the
season (SOS), end of the season (EOS), the peak of the season
(POS) and the length of the growing season (LOS) (Yang et al.,
2019, 2020; Tian et al., 2020).

PhenoCams. PhenoCams are near-surface digital cameras
located at positions just above the canopy (Richardson et al.,
2007, 2009) (Figure 1). They capture a valuable visual record of
vegetation phenology across different ecosystems on landscape
level, but at a spatial resolution that typically makes it impossible
to discern individual plants (Reed et al., 2009). Digital cameras
networks including PhenoCam, European Phenology Network
(EPN), and Phenological Eyes Network (PEN) are already
covering a wide range of ecosystems in the world (Richardson
et al., 2013). Many of these data are now accessible online.
PhenoCams detect leaf phenological events through the analysis
of color changes over time. By quantifying the red, green, and
blue (RGB) color channels, it is possible to estimate, for instance,
leaf flushing and senescence, using the green and red channels,
respectively (Keenan et al., 2014; Richardson et al., 2018).

Unmanned aerial vehicles (UAVs). Beside fixed installed
cameras, drones are also playing an increasing role in
phenological monitoring (Candiago et al., 2015; Klosterman
et al., 2018; Lee et al., 2018; Park et al., 2019; Budianti et al., 2021;
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Thapa et al., 2021). A drone typically carries either a standard
digital camera or a multispectral camera while flying above the
canopy and capturing aerial images in landscape-scale similar
to satellite images but at much higher resolution. Compared to
conventional aircraft, drones can be operated at a fraction of the
cost, making more frequent observations feasible (Klosterman
and Richardson, 2017). Additionally, using photogrammetry
techniques on drone images facilitates significant advances over
tower-mounted cameras. Orthomosaics or orthoimages simulate
an undistorted perspective of the canopy, with a consistent
spatial resolution over landscapes. Because of this feature,
orthomosaics enable the identification and analysis of more
significant numbers of individual organisms than is typically
possible using tower-mounted camera imagery.

Overall, near-surface systems such as PhenoCams or UAVs
can achieve high temporal resolution of phenological time series.
They provide species-specific and/or site-level measurements
and play an essential role in filling the “gap of observations”
between satellite monitoring and the traditional on-the-ground
phenology monitoring (Sonnentag et al., 2012; Klosterman et al.,
2014).

2.3. Satellites Remote Sensing
Phenological timing and magnitude are frequently derived from
satellite images via indices, such as spectral vegetation indices
(VIs) (e.g., normalized difference vegetation index (NDVI)
(Tucker, 1979), enhanced vegetation index (EVI) (Huete et al.,
2002). Retrieved canopy variables, e.g., leaf area index (LAI)
(Myneni et al., 2002), representing the seasonal dynamics of
vegetation community in a pixel instead of the features of
a specific plant as described above. This aggregation often
disassociates the response signal of the landscape from that of
the individual species, yet is essential for representing landscape-
scale processes (e.g., water, energy, and carbon fluxes) in
biosphere-atmosphere interaction and other models (Reed et al.,
2009). Due to the requirement of repeated observations to study
LSP, most satellite-based phenology studies relied on medium
to coarse spatial resolution satellite sensors, such as MODIS
and Landsat, or on fusing MODIS and Landsat imagery to
improve the temporal and spatial resolution (Younes et al.,
2021). The same phenological events assessed by PhenoCams
or UAVs are typically also analyzed via satellite images, such
as SOS, PGS, and EOS (Zeng et al., 2020). However, the large
scale of these sensors limits the resolution of the data they
provide, e.g., landscape heterogeneity is unresolved given the
relatively coarse pixel resolutions provided by satellites sensors,
potentially confounding phenological signals (Klosterman et al.,
2018; Richardson et al., 2018). Further, mismatches in scale and
specificity of observations between ground based and remote
sensing measurements can bring difficulties in interpreting LSP
metrics (Berra and Gaulton, 2021).

3. METHODS

We performed a systematic literature review (SLR) according to
Kitchenham (2004) and Pautasso (2013). We divided the whole
process of the SLR into three fundamental steps: (1) defining

research questions, (2) conducting a search process for relevant
publications, and (3) extracting relevant data and metadata from
identified publications to answer our research questions.

3.1. Research Questions
Our review comprises all published research in the field
of deep learning methods applied to phenology stage
assessment and thereby attempts to answer the following
six research questions:

RQ-1: How is the time of publication, venue, and

geographical study site distributed across primary

studies?—Motivation: This question aims to retrieve a
quantitative overview of the studies and the research locations.
RQ-2: Which type of vegetation was investigated?—
Motivation: Phenology can be studied in different vegetation
types, e.g., grassland, forest, shrubland, cropland. This
question aims to provide an overview of the vegetation types
that have been studied so far.
RQ-3: At what spatial scale were the studies conducted?—
Motivation: Phenology can be recorded at various scales
starting with direct observations on single individuals,
through area-based remote sensing observations from a single
research plot, to regional, continental, and global scales. This
question aims to provide an overview of which spatial scales
studies were carried out on.
RQ-4: What kind of phenological expressions were

studied?—Motivation: The stages for plant phenology
measurements usually include bud break, leaf expansion
and maturation, flowering time, senescence (coloring), and
leaf abscission for direct measurements or the start of the
season and end of the season for land surface phenology
measurements. The question aims to provide an overview of
which phenology expressions were monitored.
RQ-5: Howwere training data generated?—Motivation: This
question aims to study the utilized training data in detail,
particularly the methods used to generate them.
RQ-6: What kind of neural network architecture is used per

analysis task?—Motivation: This question aims to categorize,
compare, and discuss deep learning methods applied in
phenological monitoring.

3.2. Data Sources and Selection Strategy
In order to find relevant publications in the fields of biology,
ecology and plant science, and computer science we searched
the following popular databases: Web of Science, Science Direct,
IEEE Explore, ACM Digital Library, and SpringerLink. We
developed a two-part search string to identify relevant literature.
“phenolog*” was used to restrict search results to phenology-
specific texts, while “deep learning” was added to restrict to the
specific nature of machine learning methods. We searched these
terms in titles, keywords, and abstracts. We considered literature
published from January 2016 until September 2021.

An overview of the search and selection process is given in
Figure 2. After an initial search a total of 304 studies were found.
Due to the overlap among databases and the repeated search with
similar search strings, we identified and excluded 73 duplicate
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FIGURE 2 | Study selection process.

matches. To further filter the relevant studies, we defined and
applied the following inclusion and exclusion criteria:

• (IN): The study is published in a peer-review journal or a
peer-review conference proceeding.

• (IN): The study is written in English.
• (IN): The study combined phenology research with a deep

learning approach.
• (EX): The study used deep learningmethods tomap crop fields

without using phenological features.
• (EX): The study used only shallow-learning methods, e.g.,

random forest or SVM for phenology research.

After a first screening of title and abstract, 146 publications were
rejected, primarily due to not applying deep learning methods
or not truly focussing on phenology analysis. The remaining 85
studies were analyzed in-depth, and we omitted additional 63
papers since they did not fit our IN criteria described above.
In conclusion, the systematic search resulted in 22 studies. To
further broaden the literature base, we added a one-step forward
search starting on the studies identified by the database search
based on Google Scholar citations. We checked whether the
studies were listed in at least one of the five repositories in this
review. Two other relevant studies were found in this search step.
Eventually, the results presented in this SLR are based upon 24
primary studies complying to all defined criteria.

4. RESULTS AND DISCUSSION

4.1. Demography and Geography of
Publications (RQ-1)
There has been a rapidly increasing interest in using deep
learning for phenology research in recent years (Figure 3).
The progressively rising number of published papers shows

that researchers consider this research topic highly relevant.
To get more insights into the geographical distribution of the
study sites, we evaluated the country where each study was
located. The primary studies were conducted in eleven different
countries. Only the authors of one study were located in two
different countries (Cao et al., 2021). Three studies have been
performed in Europe; nine studies have been performed in
North America, two studies in South America, six in Asian
countries, and four in Australia and New Zealand. Sixteen
studies were located in temperate areas, one in boreal forest,
two in mediterranean areas, and two in the tropics. An overview
presenting the demography and geography of the publications
can be found in Supplementary Table S1. Ten of the 24 primary
studies are written solely by researchers with computer science
or engineering background. Ten studies were conducted in
interdisciplinary groups with researchers from both fields. Four
studies were written solely by ecologists. The results show
that due to the steady progress in machine learning and
computer vision techniques, ecologists and computer scientists
are increasingly working together (Soltis et al., 2018, 2020;
Wäldchen and Mäder, 2018b; Pearson et al., 2020). However, in
order to apply new techniques to answer ecological questions, it is
necessary to further strengthen and extend these interdisciplinary
collaborations (Craven et al., 2019).

4.2. Vegetation Type (RQ-2)
The primary studies were conducted across different vegetation
types, i.e., grassland, forest, shrubland, and agricultural land
(cp. Figure 4A). Thereby, croplands (seven studies), commercial
plantations (five studies), and forests (seven studies) were the
most studied vegetation types. Two studies were conducted in
grasslands, of which one study focused savanna-like vegetation
and the other study studied savanna-like vegetation plots, as
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FIGURE 3 | Number of studies per year of publication. In 2021, we only

reviewed publications up to September 2021.

well as managed grasslands. Three studies used herbarium
specimens and, therefore, adding them into the specific
vegetation type category was impossible. Automated phenology
stage classification is primarily being promoted in the agricultural
sector. Also, it has mainly economic reasons because, e.g., the
timing of weed control or harvesting depends on phenology.
Additionally, crops usually grown in monocultures make
croplands and commercial plantations an exciting target for
studying phenology. Focusing on a specific species is more
straightforward in building the training data set and evaluating
the image data.

4.3. Observational Scale (RQ-3)
As discussed in section 2, phenological events can be recorded
at different observational scales, i.e., individual scale, plot scale,
regional scale, and global scale. The vast majority of the primary
studies examine phenological stages on single individuals. Ten
studies explored phenology on a regional level. No single
study operates on a global level. Therefore, deep learning is
primarily intended to simplify the very time-consuming and
cost-intensive direct phenological measurements so far. In the
long term, it will be possible to automatically generate more in-
situ data over a wide geographical range and complement the
manual observations by humans. In addition, it will become
increasingly important to combine phenological monitoring
methods at different observational scales. However, mismatches
in scale and precision of observations between ground based
and remote sensingmeasurements complicates the interpretation
of phenological metrics (Berra and Gaulton, 2021). With the
automation of data acquisition at different scales, it will become
even more important to develop unified metrics and ontologies
(Stucky et al., 2018).

4.4. Phenological Stages (RQ-4)
Different phenological stages were recorded for phenology
studies. The main phenological stages are the breaking of leaf
buds or initial growth, expansion of leaves or SOS, the appearance
of flowers, appearance of fruits, senescence (coloring), leaf
abscission, or EOS (cp. Figure 4B). More than half of the
studies focused either on the expansion of leaves (SOS) or on
the flowering time. Ten studies recorded several phenological

stages during the year. However, most studies record only a
single phenological stage, which leads to the fact that we hardly
have intra-annual time series of the same individual, but only
at a specific phenological time. Autumn pheno-phases, such
as leaf coloration and leaf fall, have received considerably less
attention compared to their spring counterparts, i.e., budburst
and leaf unfolding, but are equally important determinants of
the duration of the growing season and thus have a controlling
influence on, e.g., the carbon-uptake period.

4.5. Training Data (RQ-5)
To classify phenological stages automatically with the deep
learning approach, a large amount of training material is needed.
Across the primary studies, different methods were used to
acquire these training materials (cp. Figure 5). Most studies used
digital repeat photography. Only one study combined different
methods and used digital repeat photography and UAV images
but not for the same landscape.

In total, twelve studies used images from digital repeat
photography and analyzed those with deep learning methods.
More specifically, three studies used handheld cameras where
users manually capture images, while eight of the primary studies
used automated, repeated image capturing systems. In general,
studies were very diverse with respect to the way of installation
and the chosen camera model. Table 1 provides a comparative
overview of all the studies in terms of training data.

Digital photography under canopy.Correia et al. (2020) used
a wildlife camera on three sites in Canada to capture budburst
time in black spruce (Picea mariana) and balsam fir (Abies
balsamifera) forest stand. They installed the cameras before
the growing season, when budburst usually occurs, horizontally
under the tree canopy onto nearby trees with approximately
5m distance from each other. The cameras took RGB images
every 30min during daytime (cp. Figure 6A). Milicevic et al.
(2020) had a similar setting for classifying the stage of flower
development in an olive orchard in southern Croatia. They also
acquired images in an automated manner during springtime at a
distance of 40–50 cm from the tree canopy. Kim et al. (2021b)
used fixed cameras installed under the canopy to identify the
presence of flowers on different forest sites in Seoul’s national
university forests in South Korea. The investigated forest stands
were dominated by broadleaved trees. They did not mention
precisely how they installed the cameras, but their images
show trees horizontally captured under the canopy. In contrast
to the previously mentioned studies, they used the images
only as validation and test dataset. The training dataset was
acquired from web sources, and binary labels had been assigned
indicating whether a depicted tree is in bloom or not. Wang
et al. (2020) proposed an autonomous apple flower mapping
system in which the image data were collected by a mobile
platform automatically. Cameras were installed approximately
perpendicular at 2.2m from the ground to capture the entire
canopy. The vehicle traveled forward at approximately 5 km/h
with the camera facing the trees to capture images every 0.5m
(cp. Figure 6C). All data were collected within one day. In a
second study, Wang et al. (2021) used the same method for
data acquisition, but data were collected not only on one but
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FIGURE 4 | (A) Extent of the investigated vegetation types across primary studies. Studies that used herbarium materials are not included. (B) Overview of main

phenological stages and the number of studies that investigated them. Some studies investigated several phenological stages.

FIGURE 5 | Utilization of different methods for acquiring training data across primary studies.

TABLE 1 | Overview of studies used digital repeat photography for phenological study with DL methodology.

Vegetation

type

Phenology

expression

Image acquisition

Primary study Perspective Scale Trigger # Images

Correia et al. (2020) Forest Bud Under canopy Individual Automated 47,607

Kim et al. (2021b) Forest Flower Under canopy Individual Automated 20,000

Cao et al. (2021) Forest Leaf Above canopy Regional Automated 14,453

Milicevic et al. (2020) Plantation Flower Under canopy Individual Automated 7,000

Ganesh et al. (2019) Plantation Fruit Under canopy Individual Manual –

Wang et al. (2020) Plantation Flower Under canopy Individual Automated –

Wang et al. (2021) Plantation Flower Under canopy Individual Automated 1,126

Pahalawatta et al. (2020) Plantation Flower Off-site Individual Manual 245

Velumani et al. (2020) Cropland Wheat spike Above crop Individual Automated 40,500

Yalcin (2017) Cropland 9 stages Above crop Individual Automated 2400

Han et al. (2021) Cropland 10 stages Above crop Individual Manual 610

Nogueira et al. (2019) Grass-/shrubland SOS Above canopy Regional Automated 432
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FIGURE 6 | Examples of image capturing methods. (A) A wildlife camera was used to capture images for budburst classification in coniferous forests (Correia et al.,

2020). (B) Images were taken manually on a plain background (Pahalawatta et al., 2020). (C) Images of apple flowers were collected by a mobile platform (Wang

et al., 2020). (D) Digitalized herbarium specimens (Lorieul et al., 2019). (E) Close-up shots of certain areas of agriculture were taken automatically (Yalcin, 2017).

(F) Aerial images were taken by high resolution UAVs imagery (Pearse et al., 2021). (G) Sentinel-2 and Worldview-2 satellite images (Wagner, 2021). (H) Camera

installed on an 18m tower using digital timestamps (Nogueira et al., 2019).

throughout 26 days to classify different flower phenology stages
and their distribution on the tree. The flowering stage was also
investigated by Pahalawatta et al. (2020). Theymanually collected
images during the flowering season of grapes. In contrast to all
other studies, pictures were taken on monochrome background
(cp. Figure 6B) and not in natural environment. Ganesh et al.
(2019) tried to determine the time of fruiting automatically. They
used a dataset of orange fruit images, which were taken manually
with a digital camera just ahead of the commercial harvesting
season. There was no further information on how the pictures
were taken, but the authors report that about 60 oranges are
depicted on one image.

Digital photography above canopy. Cao et al. (2021) was one
of the pioneers in using phenocam images for leaf phenology
prediction with the deep learning (DL) approach. They installed

digital cameras in 56 sites in the northeastern United States
and Canada in the deciduous broad-leaved forest. Each digital
camera took one image every 30 min between 11:30 to 13:30. A
second study by Nogueira et al. (2019) used pictures taken from
a tower above the tree canopy (cp. Figure 6H). They collected a
dataset with a near-remote phenological system composed of a
camera set up in an 18m tower in a savanna-like vegetation in
Brazil. The camera was configured to automatically take pictures
every hour over 36 days between August and October 2011. The
study aimed to identify different plant species by their different
greening times.

Digital photography on croplands. Image acquisition
methods applied on cropland differ from those applied on
forests or tree plantations. Yalcin (2017) collected an image
dataset consisting of automatically taken close-up shots of some
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TABLE 2 | Overview of studies that used herbarium materials for phenological study with DL methodology.

Study Phenology expression Scale # Specimen # Species

Lorieul et al. (2019) Bud, flower, fruit, sporangia, cones Individual 163,233 7,782

Davis et al. (2020) Bud, flower, fruit Individual >3,000 6

Goëau et al. (2020) Bud, flower, fruit Individual 21 1

TABLE 3 | Overview of studies that used UAVs imagery for phenological study with DL methodology.

Study Vegetation type Phenology expression Scale Sensor

Pearse et al. (2021) Forest Flower Individual RGB

Nogueira et al. (2019) Grass-/shrubland SOS Regional RGB

Yang et al. (2019) Cropland 6 growth stages Regional RGB, multispectral

Yang et al. (2020) Cropland 8 growth stages + Harvest time Regional RGB, multispectral

TABLE 4 | Overview of studies that used satellite imagery for phenological study with DL methodology.

Study Vegetation type Phenology expression Scale Sensor

Tian et al. (2020) Mangrove SOS, senescence Regional Landsat-5, 8

Cai et al. (2018) Cropland SOS Regional Landsat-5, 7, 8

Li et al. (2020) Cropland SOS, EOS Regional Sentinel-2, Landsat-8

Xin et al. (2020) Forest, Grassland SOS, EOS Regional MODIS

Kim et al. (2021a) Forest SOS Regional Sentinel-2

Wagner (2021) Forest Flower Regional Sentinel-2

regions of agricultural fields every 30min by 1,200 smart ground
stations all over Turkey (cp. Figure 6E). They classified nine
different phenology stages. Velumani et al. (2020) selected four
different sites in the north and southeast of France to install
47 stationary sensor arrays. These sensor arrays consist of a
telescopic pole installed vertically, equipped with an RGB camera
1 m above the top of the crop and additional meteorological
sensors. The RGB cameras took one image per day at solar noon
over three years. The goal of their study was to automatically
decide whether spikes are present. Han et al. (2021) used
handheld digital cameras to take images manually and classify
ten different growth stages automatically. They took images
during daytime from July to November 2018. All images were
taken at the height of 1.5m from four vertical and three
horizontal directions.

The analyzed studies show that cameras mounted directly
in the canopy can provide images that can make individual-
based phenological observations in forests and plantations. So
far, there is no extensive network of these installations spanning
entire regions. However, we can expect such imaging schemes
to increase in the future. As digital cameras become cheaper
each year, and machine learning (ML) methods make it easier to
analyze this amount of imagery, these types of installations will
provide important phenological data alongside canopy cameras
in the future, supplementing more expensive manual surveys by
experts or citizens scientists. They will also become, in particular,
more important in areas where it is difficult to access and
regularly sample.

Herbarium specimen. Three of the primary studies used
herbarium specimens in combination with deep learning to
classify phenology stages (cp. Table 2). Lorieul et al. (2019) used
four digitized specimen datasets from American herbaria (in
total, 163,233 herbarium specimens belonging to 7,782 species)
for automated annotation of phenology stages on herbarium
specimens (cp. Figure 6D). They first tested the ability of deep
learning techniques to recognize fertile material on the specimen.
Second, they determine whether it is a flower or a fruit. A third
experiment dealt with the automated assessment of nine different
predefined phenology stages. Davis et al. (2020) used more than
3000 herbarium specimens from six common wildflower species
of the eastern US to count reproductive structures such as
buds, fruits, and flowers. Goëau et al. (2020) used 21 herbarium
specimens of Streptanthus tortuosus from the Brassicaceae family
to automate the detection, segmentation, and classification of
four reproductive structures (flower buds, flowers, immature
fruits, and mature fruits). All three studies demonstrated success
in automating the collection of large amounts of phenology-
relevant data from herbarium specimens with DL technologies.

UAV imagery. In total, four primary studies used drone
images (cp. Table 3). In two studies, the aim of the investigations
was to test the potential to utilize phenology to enhance species
identification in RGB aerial imagery. One study estimated the
rice grain yield in specific phenological stages. Only in one study
specific phenological stages were detected. In Nogueira et al.
(2019) images were taken between October 2015 and February
2017, one timestamp (total 15 images). These timestamps
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were mosaicked into a single orthoimage for spatio-temporal
vegetation pixel classification. The goal of the study was to
identify species by their different greening times. Pearse et al.
(2021) also acquired a large orthoimage. They collected aerial
imagery over Tauranga, New Zealand in summer and autumn.
Here, the presence of pohutukawa (Metrosideros excelsa) was
detected by its red flower (cp. Figure 6F). Yang et al. (2019) and
Yang et al. (2020) used a fixed-wing UAV with one RGB camera
and one multispectral camera to take images from different rice
crop fields. In Yang et al. (2019) rice grain yield was estimated
at the ripening stage using deep learning technology. In the
second study Yang et al. (2020) propose an approach which
identifies eight principal growth stages of rice according to the
BBCH scale (Lancashire et al., 1991) and the harvest time directly
from RGB images with DL. The extraction of phenological
information from drone imagery using DL technology has rarely
been performed. There is still a need for more research in this
area, as drones have been used more and more for ecological
purposes in recent years (Dalla Corte et al., 2020; Corcoran et al.,
2021; Mohan et al., 2021).

Satellite imagery. Six primary studies used satellite imagery
in combination with deep learning (CP. Table 4). Tian et al.
(2020) used Landsat multispectral imagery to analyze the
phenology of the invasive species Spartina alterniflora to predict
its occurrence in the Beibu Gulf, located in the northwestern
South China Sea. Here, two key phenological periods (green and
senescence) of Spartina alterniflora were identified by analyzing
the NDVI index. Extracted phenology features were then used
in combination with deep learning to detect S. alterniflora. Cai
et al. (2018) used Landsat multispectral images to calculate
different phenology-related vegetation indices on croplands with
the aim to identify different crop species using DL technologies.
Also, Li et al. (2020) tried to classify different crop types based
on different phenological developmental times using Sentinel-2
and Landsat-8 satellite in combination with different vegetation
indices. Kim et al. (2021a) used satellite images from Sentinel-
2 to identify deforested areas in North Korea using the NDVI
index in combination with DL. Wagner (2021) used satellite
imagery to predict the occurrence of in the Pleroma spp. in
the entire Brazilian Atlantic Forest (cp. Figure 6G). Here the
magenta-to-deep-purple blossoms of the trees are used for the
classification tasks. Only Xin et al. (2020) used satellite data in
combination with DL technologies to retrieve phenology metrics.
They detected SOS and EOS of deciduous broadleaf, evergreen
broadleaf, drought-deciduous broadleaf, and graminoid forests
in the USA. The primary aim of most studies using satellite
data was not to classify phenological stages but to classify
the presence of plant species according to species-specific
phenological characteristics. Only one study retrieved phenology
metrics with DL. The extraction of phenological information
from satellite images withDL technology is still underrepresented
and shows an open research field.

4.6. Deep Learning Methodology (RQ-6)
Machine learning methods are often categorized depending on
the type of task the trained model shall solve. Thereby, one
categorization is based on the output a model predicts and

therefore distinguishes: (1) classification tasks aiming to predict
categorical class labels, e.g., the phenological stage of a plant,
from (2) regression tasks aiming to predict continuous values,
e.g., the amount of biomass depicted on an image (Goodfellow
et al., 2016). Another categorization is based on the model’s
input type and the performed analysis thereof. Among the
primary studies, only image data have been used as input to
the trained models and the applied deep learning techniques
are used to solve computer vision tasks. These techniques are
categorized into: (1) image classification approaches that predict
a categorical label based on the entire contents of an image,
(2) object detection approaches that first predict the location of
sought objects, e.g., flowers or leaves, within an image and then
subsequently classify a categorical label for only the contents of
this region, and (3) object segmentation approaches that predict
a categorical class label for each pixel within an image, e.g.,
foreground and background, and thereby allow prediction of
fine-grained, pixel-precise masks separating the sought objects
from the background (Goodfellow et al., 2016). We observed
some inconsistencies in the usage of this terminology across
the primary studies and scientists with different backgrounds.
For example, several studies perform a classification from a
machine learning perspective but refer to it as detection. Below,
we categorize all primary studies based on the machine learning
task they solve into four groups: image classification, object
detection, object segmentation, and regression. Figure 7 provides
an overview of all DLmethods used for different types of landuse,
image origin, and type of phenology expression under study.
Classification and segmentation methods are most frequently
applied to all types of studies.

Classification approaches. Convolutional neural networks
(CNN) are the most common approach to computer vision
tasks since they allow to effectively deal with high input
dimensionality of images while preserving the spatial relationship
of features depicted in these images (Gu et al., 2018). A
CNN is a deep neural network inspired by the organization
of the natural visual cortex and designed to automatically and
adaptively learn spatial hierarchies of features, i.e., a cascade
of patterns where lower level features are used to compose
higher level patterns. A CNN model is typically composed of
three core layer types: convolution, pooling, and fully connected
layers. The first two, convolution and pooling layers, perform
feature extraction, and the fully connected layer typically maps
the extracted features to the network’s output and thereby
performs the actual classification. Numerous CNN architectures
for classification tasks have been proposed in the last decade, with
examples of seminal architectures being: AlexNet, VGG, ResNet,
Inception, and more recently EfficientNet (Raghu and Schmidt,
2020). These CNNs differ from each other in terms of their
layers, their parameterization and other individual concepts, e.g.,
residual connections, inception blocks, and batch normalization.
Ten primary studies used deep learning methods to perform
classification tasks (cp. Table 5), such as the presence of certain
indicator species, the presence of flowers, open vs. closed flowers,
and differentiating phenological stages. Five primary studies
systematically compared the performance of deep learning
methods with traditional shallow learning methods or vegetation
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FIGURE 7 | Overview of all DL methods used for different types of (A) landuse, (B) image origin, and (C) type of phenology expression under study.

TABLE 5 | Overview of deep learning methods in classification tasks.

Classification Network Compared Performance as

Primary study task architecture methods accuracy

Han et al. (2021) 10 stages AlexNet (fusing 4 perspectives) GCC, color features+SVM 91.2, 73.1, 81.7

Yalcin (2017) 9 stages AlexNet Texture feature + Naive-Bayes 87.1, 82.4

Yang et al. (2020) 8 stages + harvest time Cust. two-branch CNN

processing images and

temperature

Vegetation indices, VGG16,

InceptionV3, ResNet50V2,

InceptionResNetV2

83.9, 68.8, 83.2, 81.3, 83.8, 81.3

Lorieul et al. (2019) Fertile material ResNet50 – 96.3

Lorieul et al. (2019) Flower ResNet50 – 84.3

Lorieul et al. (2019) Fruit ResNet50 – 80.5

Lorieul et al. (2019) 9 stages ResNet50 – 43.4

Wang et al. (2021) 8 flower stages + distribution VGG16 YOLOv5 –

Kim et al. (2021b) Flower NASNet VGG16, ResNet50, ResNet101,

MobileNet

99.9, 99.0, 99.2, 99.4, 98.6

Milicevic et al. (2020) Open - closed flower buds Cust. CNN VGG19, InceptionResNetV2,

Xception, ResNet50,

97.2, 69.5, 65.5, 67,0, 64,0

Velumani et al. (2020) Wheat spikes ResNet50 – 98.5

Wagner (2021) Species presence VGG16 – 99.6

Pearse et al. (2021) Species presence ResNet50 Texture feature+XG Boost 97.4, 86.7

The bold values indicate the best performing method and their respective performance.

indices. All found that deep learning methods consistently
outperformed traditional methods. Han et al. (2021) present
the only study where a CNN was composed of four branches
to process images from different perspectives separately. They
concatenate the four feature vectors retrieved from the four
individual perspectives and use an eventually fully connected
layer to gain an overall classification score. Among other
alternatives, i.e., early fusion and score level fusion, late fusion is
often yielding the best performance (Rzanny et al., 2019; Seeland
and Mäder, 2021). Yang et al. (2020) proposed a multi-modal
analysis of images and accompanying temperature readings and
fused the individual features closed to the network’s output

to classify phenological stages on croplands. Wagner (2021) is
the only study that used satellite data for a classification task.
For this investigation blossoming Pleroma trees were mapped
using Sentinel-2. The tiles were split in images of 1.28 km
length per side. Each image was classified whether it contained
the blossoming Pleroma trees or not. The authors chose the
classification method over the semantic segmentation method
(more details below) for two main reasons. First, it enabled
the manual production of a training sample relatively quickly.
Second, binary classification is more straightforward and less
computationally intensive, hence drastically reducing the time of
processing and subsequent analysis (Wagner, 2021).
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TABLE 6 | Overview of deep learning methods in segmentation tasks.

Primary study Segmentation task Network architecture Performance

Wang et al. (2020) Flower segmentation Cust. FCN 84.4 (F)

Davis et al. (2020) Counting buds, flowers, fruits Mask R-CNN 92.0 (A)

Goëau et al. (2020) Counting buds, flowers, fruits Mask R-CNN 77.9 (A)

Ganesh et al. (2019) Fruit segmentation Mask R-CNN 88.7 (F)

Pahalawatta et al. (2020) Open/close flower Mask R-CNN 84.3 (A)

Kim et al. (2021a) Landuse U-Net 75.0 (A)

Li et al. (2020) Species presence Temp. group attention netw. 99.9 (A)

Tian et al. (2020) Species presence SAE 96.1 (A)

Cai et al. (2018) Species presence DNN 95.0 (A)

Nogueira et al. (2019) Species presence Cust. CNN 99.8 (A)

Primary studies report performance as accuracy (A) and F-score (F).

TABLE 7 | Overview of deep learning methods for regression problems.

Primary study Regression task Network architecture Comapared methods Performance as RMSE

Xin et al. (2020) SOS, EOS Four-layer NN RF, rule based methods 22.9, 21.5, 27.30 days

Cao et al. (2021) Leaf phenology ResNet50, ResNet101 AlexNet, VGG 4.4, 4.4, 7.6, 6.5 days

Yang et al. (2019) Yield estimation Cust. two-branch CNN processing

RGB and multispectral images

Vegetation indices 0.6 , 0.9 ton/ha

Primary studies report performance as root mean square error (RMSE). The bold values indicate the best performing method and their respective performance.

Object detection approaches. While image classification
operates on the entire image and aims to assign one or multiple
labels (aka classes), object detection first aims at locating objects
of interest within an image and then assigning labels to each
identified object encircled by a bounding box. Object detection
approaches fall into two categories: (1) two-stage approaches,
such as R-CNN, and (2) one-stage approaches, such as YOLO
and RetinaNet, with the former being more precise and the
latter beingmore computationally efficient. Only a single primary
study used an object detection method. Correia et al. (2020)
used a RetinaNet to identify and localize multiple open buds per
image from time-lapse digital photography in black spruce and
balsam fir dominated forests. RetinaNet was chosen due to its
outstanding detection performance with dense and small-scale
objects (Lin et al., 2017), which is a goodmatch for the small buds
analyzed in this study.

Image segmentation approaches. Segmentation reaches the
deepest possible level of detail in every single image pixel.
Image segmentation is the process of classifying each pixel in
the image as belonging to a specific category. This is why
the output of the segmentation approach is not a set of class
labels or bounding boxes, but a classification for each pixel
of an image (Raghu and Schmidt, 2020). Although there are
several image segmentation methods, two types of segmentation
are predominant in the domain of deep learning. These are
semantic segmentation and instance segmentation. Semantic
segmentation performs pixel-level labeling with a set of object
categories (e.g., land use categories or land cover in remote
sensing data) for all image pixels (Goodfellow et al., 2016).
Thus it is generally a more complex task compared to image

classification, which predicts a single or multiple labels for
an entire image. Instance segmentation extends the scope of
segmentation further by detecting and delineating each object
of interest in the image (e.g., partitioning individual flowers or
fruits). Prominent semantic segmentation architectures are fully
convolutional networks (FCN), and the more advanced U-Net
consisting of a fully convolutional pipeline initially encoding
the image via convolution operations before upsampling the
desired mask via up-convolution operations. Mask R-CNN is
popular deep learning instance segmentation technique that
performs pixel-level segmentation on detected objects. The
Mask R-CNN algorithm can accommodate multiple classes
and overlapping objects. Ten primary studies focused on
segmentation tasks related to phenology analysis (cp. Table 6).
Semantic segmentation was mainly used for analyzing remote
sensing data from satellites (Cai et al., 2018; Li et al., 2020; Tian
et al., 2020; Kim et al., 2021a). The principal advantage of using
CNNs in remote sensing is their accuracy, which is similar to
human-level classification and detection accuracy and enables
rapid application over vast areas and through time (Brodrick
et al., 2019). All remote sensing studies analyzed multispectral
data with different time stamps to segment species or land
use categories based on species-specific phenological features.
Instance segmentation, on the other hand, has been used, e.g., for
the analysis of herbarium specimens (Davis et al., 2020; Goëau
et al., 2020) to count phenological characteristics such as fruits
or flowers. Mask-RCNN was used in all studies applying instance
segmentation.

Regression problems. CNN models are mainly used for two-
dimensional arrays like image data. However, we can also apply
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FIGURE 8 | Diagram describing articles according to the defined categories.

CNN with regression data analysis. A regression layer can be
included at the end of the network to predict continuous data,
such as yield or days in the year. Three primary studies used deep
learning techniques to solve a regression problem (cp. Table 7).
Xin et al. (2020) retrieved phenological metrics from a time series
of satellite data using a four-layer neural network. Their study
was the only to directly predict the phenological events SOS
and EOS from satellite images. Their results show that machine
learning outperforms rule-based methods, although the authors
noted that a random forest algorithm achieves better results
than the neural network. Cao et al. (2021) developed a method
to predict leaf phenology of deciduous broadleaf forests from
individual PhenoCam images using deep learning approaches.
They tested four convolutional network architectures (AlexNet-
R, VGG-R, ResNet50-R, and ResNet101-R) for their ability to
predict vegetation growing dates based on PhenoCam images
at 56 different sites. In terms of model performance, ResNet
achieved the best accuracy with an RMSE of 4.4 days. Yang
et al. (2019) extracted 256 features from RGB images depicting
the scene as well as 128 features from multispectral images
depicting the same scene. The outputs of these two branches
were concatenated into a feature vector and then fed into
three consecutive fully connected layers to estimate yield at
different phenological stages with a deep regressive approach.
Deep learning with different training and testing strategies
outperformed the traditional vegetation indices in all their
experiments.

In summary, the use of deep neural networks to analyze
phenology imagery proofed very beneficial across a variety
of studies. Researchers experimented with their capability in
substituting tedious and error-prone manual tasks, as well as

improving traditional analyses performed with shallow learning
networks, conventional statistical methods, or via vegetational
indices. In general, the reviewed primary studies showed patterns
in how they applied DL methods, what type of training images
they utilized, the type of studied phenology expression and
the studied vegetation type. Figure 8 visualizes these patterns
as a diagram. In particular, the following observations can be
extracted from this diagram:

• The majority of DL approaches study segmentation and
classification tasks.

• There has only been proposed one detection approach.
• Most of the used training images were acquired by near surface

digital cameras.
• The most studied part of the phenology cycle was the spring

aspect.
• Multiple phenological stages were especially studied on

croplands, while in forest and plantation mostly one or two
phenological stages were studied.

5. RESEARCH TRENDS AND FUTURE
DIRECTION

5.1. Automating Ground Based Observation
Increasing the number of ground-based observations is
extremely important, especially in countries that lack traditional
phenological observing networks. Most existing networks, aside
from those in Europe, selected locations in North America, and
a few other countries, have a relatively short historical record
and often a limited number of stable, consistent monitoring
locations. Building a global systematic, long-term monitoring
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network with unified standards of phenology measures and
definitions is essential (Tang et al., 2016). The analysed primary
studies in this review show that automated digital repeated
photography combined with deep learning technologies for
automated image-based phenology stage identification allows
phenology monitoring similar to human-based observation.
Such installations represent an extraordinary opportunity for
phenology projects, like the US National Phenology Network
or the European Phenology Network, and countries currently
lacking a phenological monitoring network. With standardized
recording systems and evaluation methods, ground-based
phenological data can be recorded over larger areas in the
future. Such data are essential for better understanding and
predicting future environmental processes. In addition, ground-
based camera systems and automated image analysis can
provide high temporal resolution for calibrating satellite-based
monitoring initiatives.

It is crucial to test the potentials and limits of different
recording methods under different environmental conditions
in this research area. In order to be able to evaluate the
images created automatically, the recording situation is of great
importance. So far, the focus has been on comparing different
DL architectures and less on the image acquisition methods.
Similar to experiments for automatic plant identification (Unger
et al., 2016; Carranza-Rojas et al., 2017; Rzanny et al., 2017,
2019) experiments should also be carried out on different
recording conditions for automated ground-based phenology
stage monitoring. In addition, most studies so far have only
focused on one phenological stage. It is essential to carry out
phenological monitoring throughout the year. Therefore, in
the future, models that allow monitoring different phenological
stages throughout the year should be built and tested.

5.2. Analyzing Images From PhenoCam
Networks With Deep Learning
The PhenoCam network provides free, publicly accessible digital
imagery at the continental level. To date, most studies use
indirect methods to identify phenology variation based on the
time series of PhenoCam images. The indirect methods track
changes in images by deriving handcrafted features such as
green or red chromatic coordinates from PhenoCam images
and then apply algorithms to derive the timing of phenological
events, such as SOS and EOS. The use of these handcrafted
features ignores high-level information in digital images. More
importantly, these studies generally required at least two images
or even the time series to obtain information related to leaf
phenology. The study by Cao et al. (2021) was the first to directly
monitor phenological events using deep learning technology
and Phenocam Images. They tested deep learning models on
predicting leaf growing dates after SOS in a year from a given
PhenoCam image. Compared with traditional methods that
predict leaf phenology with the mentioned handcrafted features
from time-series data, they argued that the use of deep learning
methods allows inferring daily leaf phenology from individual
PhenoCam images and can potentially improve image processing
accuracy and reduce laboratory costs. We expect many more

studies to appear in the future evaluationg PhenoCam images
beyond the vegetation color indices calculated so far.

5.3. Analysing Citizen Science Image Data
With Deep Learning
An alternative set of resources that yet has to be harnessed
for phenology studies comprises repositories of citizen science
images. Citizen ccientists submit several thousand plant images
daily collected with Apps like iNaturalist (Nugent, 2018),
Pl@ntNet (Goëau et al., 2014) or Flora Incognita (Mäder
et al., 2021). These images have a timestamp and location
information and can thus provide important information about,
e.g., flowering periods, similar to herbarium material. In a first
study (Barve et al., 2020) introduced a method using Yucca
flowering phenology as a case study for analyzing flowering
phenology from iNaturalist images. In this study, however, the
phenological annotation of the images was done manually which
is very time-consuming and requires expert knowledge. A first,
recently published study shows deep learning technologies can
be successfully used to extract phenological information from
citizen science images. A CNN classified a two-stage phenology
(flowering and non-flowering) with 95.9% accuracy and a four-
stage phenology (vegetative, budding, flowering, and fruiting)
with 86.4% accuracy based on Alliaria petiolata (Reeb et al.,
2022). As also the studies on the herbarium specimens showed,
such annotations can also be done automatically with deep
learning algorithms. Large image databases such as GBIF (www.
gbif.org) and DigBio (www.idigbio.org) provide an excellent
database for developing classifiers that not only automatically
identify species (Carranza-Rojas et al., 2017; Wäldchen and
Mäder, 2018a) but also phenological stages. If citizen scientists
simply upload images of specific plants depicting different
phenological stages, the obvious synergies between the large
amounts of data generated by citizen science projects and the
data-demanding analytical power of artificial intelligence could
effectively be exploited (Correia et al., 2020).

5.4. Deep Learning for Phenology Modeling
Researchers have developed statistical and process-based models
for forecasting the occurrence of vegetation phenological events.
The idea of these modeling approaches is to use external climate
data as input to predict the timing of key phenology metrics
(Zhao et al., 2013; Hufkens et al., 2018). So far, phenology in the
land surface models or dynamic global vegetation models (e.g.,
Biome-BGC (BioGeochemical Cycles) model, Lund-Potsdam-
Jena model) generally adopt simple rule-based functions to
account for the impacts of meteorological drivers, which can
lead to large uncertainties in the modeled terrestrial ecosystem
processes (Zhou et al., 2021). With the increase in automatically
generated data (e.g., digital repeated photography in PhenoCam
networks or satellite images), the amount of data available is
constantly growing. It is time to explore new approaches on
processing big data for phenology modeling. Only recently a
study was published where a one-dimensional convolutional
neural network regression (1D-CNNR) model was developed
to model global vegetation phenology using meteorological
variables and satellite images as inputs. This research by
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(Zhou et al., 2021) demonstrates that the 1D-CNNR model has
the potential for large-scale modeling of vegetation phenology.
Future research should integrate deep learning techniques even
more into phenology modeling. Hybrid modeling approaches,
that couple physical process models with the versatility of data-
driven deep learning models, are a most promising future
research direction (Reichstein et al., 2019).

6. CONCLUSIONS

Our review provides a comprehensive overview on the status and
development of a recently emerging research field: the utilization
of deep learning methods in plant phenology research. We
describe and briefly summarize the extensive range of methods
applied on different spatial and temporal scales concerning
data collection and analysis. Altogether, we identified 24 studies
meeting our criteria, most of them published in 2020/21. This
review indicates that analysing phenology data with deep
learning techniques is still in its infancy, compared to other
fields such as, e.g., image-based automated species identification,
where DL is already indispensable. Given the great potential
for improving land surface- or dynamic vegetation models, it
is time to develop standardized approaches for different scales
and types of input data. So far, for the individual scale, the main
focus of the studies was on recognizing phenological stages
from images, while only very few monitored these stages over
an entire year. However, for satellite and UAV-derived data, the
focus was on identifying and localizing plant species based on
species-specific phenological characteristics. A wide range of
different DL methods was applied in the examined studies, with
classification and segmentations being most often employed.
Our finding highlights the great potential of DL to take plant
phenology research to the next level, and we strongly encourage
researchers to realize the enormous potential of DL methods in
this research field.
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