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Pest disaster severely reduces crop yield and recognizing them remains a challenging

research topic. Existing methods have not fully considered the pest disaster

characteristics including object distribution and position requirement, leading to

unsatisfactory performance. To address this issue, we propose a robust pest detection

network by two customized core designs: multi-scale super-resolution (MSR) feature

enhancement module and Soft-IoU (SI) mechanism. The MSR (a plug-and-play module)

is employed to improve the detection performance of small-size, multi-scale, and high-

similarity pests. It enhances the feature expression ability by using a super-resolution

component, a feature fusion mechanism, and a feature weighting mechanism. The

SI aims to emphasize the position-based detection requirement by distinguishing the

performance of different predictions with the same Intersection over Union (IoU). In

addition, to prosper the development of agricultural pest detection, we contribute a

large-scale light-trap pest dataset (named LLPD-26), which contains 26-class pests and

18,585 images with high-quality pest detection and classification annotations. Extensive

experimental results over multi-class pests demonstrate that our proposed method

achieves the best performance by 67.4% of mAP on the LLPD-26 while being 15.0

and 2.7% gain than state-of-the-art pest detection AF-RCNN and HGLA respectively.

Ablation studies verify the effectiveness of the proposed components.

Keywords: agricultural pest detection, convolutional neural network, feature enhancement, Soft-IoU, wisdom

agriculture

1. INTRODUCTION

The pest disaster is considered as the main reason for crop yield reduction, thus recognizing pests
is necessary to guarantee crop yield. Manual pest recognition and location are time-consuming and
laborious work. Traditional pest recognition methods prefer to design feature vectors to identify
specific pest species, which lacks the generalization ability (Qing et al., 2012; Wang et al., 2012;
Yaakob and Jain, 2012; Wen et al., 2015; Deng et al., 2018). Differently, deep learning-based
methods using object detection as a ready-to-use approach cause unsatisfied performance due to
the enormous gap between pest detection and generic object detection, which could be summarized
into the differences in object characters and detection requirements.
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The gaps of object characters include small-size, multi-scale,
and high-similarly. Small size is the most distinguished property
of general object detection. Taking the PASCAL VOC dataset
(Everingham et al., 2010) and the LLPD-26 dataset we build as an
example, the average size of pests (annotated by bounding boxes)
is 1.58% of the general object bounding boxes. Existing methods
fail to pay close attention to the small-size pests, which leads
to insufficient recognition accuracy. The multi-scale property
is another difference between pest detection and general object
detection. The object size distribution is wide in pest detection
tasks (e.g., the size of Gryllotalpa Orientalis Burmeister is 32
times larger than that of Nilaparvata Lugens Stal in our LLPD-
26 dataset). Existing pest detection methods usually use feature
fusion of adjacent layers to solve the multi-scale problem, but
this fusion method is not sufficient to fully integrate information
from different feature layers. The high similarity of interclass
is also a crucial challenge (such as Mythimna Separata and
Helicoverpa Armigera). Due to the low discrimination ability of
high-similarly pests, the performance of the existing methods
makes it unsuitable for practical application and remains to be
improved.

Furthermore, position attention is more crucial for pest
detection than the high-value Intersection over Union (IoU)
compared to general object detection. Different prediction
bounding boxes with the same IoU value have diverse
performance, as shown in Figure 1. All the predicted bounding
boxes (red boxes) in Figure 1 have the same IoU value, but it
is clear that the pest detection results are more accurate than
the general object detection because there are lesser irrelevant
pixels of other categories enclosed (as shown in Figure 1D). The
result of Figure 1A is more accurate than the result of Figure 1B
because Figure 1A contains all of the pest pixels. Therefore,
detection bounding boxes with low IoU hardly cause trouble
for pest detection since it excludes other class pixels. Existing
methods usually adopt the hard IoU threshold to determine
positive and negative samples. By doing so, it could cause some
high-quality bounding boxes to be taken as negative samples.

In summary, this study focuses on reducing the gaps between
general object detection and pest detection in two dimensions
(pest bounding box character and detection target) to improve
the performance of pest detection. In pest bounding box
dimension: (1) Existing pests detection methods and general
object detectors usually utilize FPN (Lin et al., 2017a) to
improve the multi-scale feature extraction ability by top-to-
down adjacent feature fusion method, but the incomplete fusion
limits the performance of detectors. (2) High-similarly objects
are recognized using channel attention (Hu et al., 2018) in the
general detection field, but the single dimension attention is
insufficient for pest detection. (3) The pattern of 5-layer feature
maps is employed to detect objects, in which the top layer
is used to recognize large-size objects and the down layer is
used to recognize small-size objects, but the pest’s size is far
less than general objects (like dog and cat) resulting in the
feature gradually disappearing with the convolution operation.
In the pest detection target dimension, pest detections pay
more attention to position rather than high-value IoU. Existing
methods use a hard IoU threshold to distinguish positive and

negative samples resulting in inadequate detection performance.
To solve the defect of existing pest detectionmethods, we propose
an MSR-RCNN to improve the detection performance of small-
size, multi-scale, and high-similarly pests. The MSR module, the
highlight of MSR-RCNN, is a plug-and-play component and can
improve the performance of familiar detectors. We first use the
super-resolution method to enhance small-size features. Multi-
level features are fused at once by feature full fusion mechanism
to promote the information transition and high-similarly pests
are adequately recognized by feature full weightingmechanism to
enhance feature expression ability. In addition, SI is a new design
to distinguish different predict bounding boxes with the same
IoU value and make networks more suitable for pest detection.
Furthermore, to promote the development of pest detection and
verify the feasibility of our methods, we construct a large-scale
light-trap pest dataset (named LLPD-26) including 18,585 images
and 26 classes. Abundant experiments on the LLPD-26 show that
our methods can effectively detect multi-class pests and attain
start-of-the-art (SOTA) performance.

The main contributions are listed as follows:

• We propose a novel pest detection network (named MSR-
RCNN) to solve the defect that existing methods lack the
targeted improvement of pest objects in three dimensions:
small-size, multi-scale, and high-similarly. The highlight
of our MSR-RCNN is the multi-scale super-resolution
(MSR) feature enhancement module that can improve the
performance of familiar detectors by plug-and-play pattern.
The MSR module consists of the super-resolution component,
the feature full fusion mechanism, and the feature full
weighting mechanism. The three parts focus on improving
the performance of small-size, multi-scale, and high-similarly
pests.

• Since pest detection focus on the position rather than high-
value IoU, we design a SI to differentiate the performance
of different prediction result with the same IoU. The SI
generates high-quality bounding boxes for network training
and employs suitable results to test for pest detection. By using
the Soft-IoU, our MSR-RCNN is more fit for pest detection
tasks. Meanwhile, the performance of the network is improved
without other costs.

• To more accurately monitor and detect multi-class crop pests,
we construct a large-scale light-trap pest dataset (named
LLPD-26) including 18,585 images and 26 classes. The
most-species and largest-number characters of LLPD provide
conditions for accurately detecting pests. In addition, adequate
experiments on the LLPD-26 verify that our MSR-RCNN
outperforms other SOTA methods.

2. RELATED STUDY

2.1. Deep Learning-Based Object
Detection
Pest detection is a specific task of general object detection. In
recent years, Convolutional Neural Network (CNN) is widely
applied in the object detection fields. The deep learning-based
object detection networks divide into one-stage networks and
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FIGURE 1 | The schematic diagram of different prediction bounding boxes with the same Intersection over Union (IoU). (A) The prediction box contains all object

pixels. (B) The prediction box contains almost all object pixels. (C) The prediction box contains pixels of another category (motorbike). (D) Most of the pixels in the

prediction box are other categories (motorcycles).

two-stage networks. As one of the most famous networks in
the one-stage, Redmon et al. (2016) utilized the whole image as
the input and directly obtained the prediction result using 24
convolution layers and 2 full connection layers. Subsequently,
some enhanced versions of YOLO were proposed one after
another (Redmon and Farhadi, 2017, 2018; Bochkovskiy et al.,
2020). Lin designed Retinanet to solve the problem of positive
and negative sample imbalance with the Focal Loss, thus
improving the detection accuracy (Lin et al., 2017b). The
FCOS avoided the anchor mechanism with the pattern of point
regression resulting in reducing the number of hyperparameters.
Meanwhile, low-quality predictions were filtered out through
the proposed Center-ness branch (Tian et al., 2019). Two-stage
networks require the selective search (Uijlings et al., 2013) or
region proposal network (RPN) to generate region proposal
first, and then the R-CNN network (Girshick et al., 2014) is
used to refine the proposal box (Girshick, 2015). Faster R-CNN
(Ren et al., 2017) proposed RPN based on the Fast R-CNN and
established the baseline of the two-stage detector. Pang et al.
designed the Cascade R-CNN network to continuously optimize
the detection results by gradually increasing the IoU threshold
(Cai and Vasconcelos, 2018). Libra R-CNN used concat to merge
feature layers, but the essence of the feature fusion method
was reducing the video memory for the non-local mechanism
(Pang et al., 2019). FPN (Lin et al., 2017a) and PANet (Liu
et al., 2018) used feature fusion of adjacent layers to solve
the multi-scale problem, but the incomplete fusion method
did not meet the requirement of pest detection. TridentNet
used dilated convolution (Yu and Koltun, 2015) to improve the
capability of multi-scale feature extraction (Li et al., 2019). The
ThunderNet used Context Enhancement Module (CEM) module
to integrate multi-scale information and adopted the Spatial
Attention Module (SAM) to enhance feature representation (Qin
et al., 2019). OHEM (Shrivastava et al., 2016) and Snip/Sniper
(Singh and Davis, 2018; Singh et al., 2018) improved the
performance of the network by using selective backpropagation.
We use the two-stage framework as the baseline because the
two-stage methods are usually more accurate than the one-stage
methods, especially for small-size object detection.

2.2. Pest Detection Method Based on CNN
Due to the rapid development of CNN-based object detection,
many researchers transplant deep learning-based methods to

agricultural applications (Kamilaris and Prenafeta-Boldú, 2018;
Dhaka et al., 2021; Hasan et al., 2021). In the pest recognition
and detection field, Liu et al. (2016) used a global contrast
region-based approach to construct a rice insect classification
dataset named Pest_ID and used a CNN to identify the insects.
Wang et al. (2017) applied LeNet and AlexNet to classify pest
images. Thenmozhi and Reddy (2019) used transfer learning
to explore the results of AlexNet, ResNet, LeNet, and VGG
on three pest datasets. Yue et al. (2018) proposed a super-
resolution method based on deep learning to solve the difficulty
of insect recognition. Ayan et al. (2020) combined different
CNN networks into a unified pest identification network and
automatically selected the combination weight to carry out
pest identification via the genetic algorithm. Shen et al. (2018)
proposed an improved Faster R-CNN network with the inception
structure to identify common grain pests. Liu et al. (2019)
designed a detection network combining Faster R-CNN and
channel-spatial to detect the light-trap pests. Jiao et al. (2020)
proposed an anchor-free network (AF-RCNN) to identify and
locate pests of 24 types. Liu et al. (2020) used global and local
activation features to detect the 16-class pest dataset. The above
methods ignore the gaps between object detection and pest
detection and use insufficient improvement for pest detection,
which led to an unsatisfied performance. Therefore, we design an
MSR-RCNN to improve the performance of pest detection.

3. MATERIALS AND METHODS

3.1. Data Collection
We use the light-trap device to automatically collect the pest
images in different periods. The data collection devices are from
the Intelligent Machines Institute, Chinese Academy of Sciences,
and distributed in the field environment of Anhui Province.
The dataset includes 18,585 JPEG images with the resolution
of 2,592×1,944 and is annotated by agricultural experts. Each
pest object corresponds to a unique category and bounding
box coordinate, and each image has multiple pests. To ensure
effectiveness, we divide the data into 14,868 images of the train
set and 3,717 images of the test set.

3.2. MSR-RCNN Pest Detection Network
To accurately detect 26-class pests, we design an MSR-RCNN
network including a backbone network (ResNet50), MSR feature
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FIGURE 2 | The overall framework of the MSR-RCNN.

FIGURE 3 | The super-resolution feature enhancement component.

enhancement module, RPN, and bounding box regression
and classification networks (RCNN). We use ResNet50 (He
et al., 2016) as the backbone network to extract image
features. The MSR feature enhancement module is utilized
to improve the feature expression ability of the backbone in
three dimensions: small-size, multi-scale, and high-similarly.
With the MSR module, enhanced features are obtained for
pest detection. The RPN (Ren et al., 2017) is used to
obtain the region of interest (ROI) and the ROI Align (He
et al., 2017) is employed to resize the ROI to the unitive
size. Classification branch and bounding box regression are
applied to obtain the final detection results, as shown in
Figure 2.

3.3. MSR Feature Enhancement Module
Since small-size, multi-scale, and high-similarly pest characters
of pests, we design the MSR feature enhancement module to
improve the detection performance using a super-resolution
component, a feature full fusion mechanism, and a feature
full weighting mechanism. The super-resolution component
from the MSR module obtains the six-layer feature map for the
recognition of small size objects. Then, the full feature fusion
mechanism integrates all features at once for the recognition
of multi-scale objects. Since high-similarly pests in the LLPD-
26 dataset are difficult to identify, we design the feature full
weighting mechanism in the MSR module to enhance the
fine-grained expression ability. The red part of
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FIGURE 4 | The feature full fusion mechanism.

FIGURE 5 | The feature full weighting mechanism.

Figure 2 shows the overall framework of the MSR
we devised.

3.3.1. Super-Resolution Feature Enhancement

Component
Feature pyramid network (FPN) (Lin et al., 2017a) uses 5 layer
feature maps to recognize objects, in which the top-level features
include semantic information to detect large-size objects and the
low-level features include texture information to detect small-size
objects. However, the small-size pest features gradually disappear
in the process of convolution operation resulting in misleading
information transfer in the top-to-down feature fusion. Inspired
by zooming in to identify pests in the manual annotation
process, we design the super-resolution feature enhancement
component to improve small-size feature extraction ability by
using deconvolution to obtain fine-grained pest features.

To ensure the full utilization of features, we select the feature
maps after each Resnet50 block (a total of 4) as the input of the
super-resolution component. We use 1 x 1 convolution kernels
for each layer feature to change the number of channels to 256.
Duo to the size of pest objects is small, we deconvolve the feature
map after the first block of the Resnet50 network to enhance
texture information, which refers to the way people zoom in on
images for small-size object recognition. In this way, we have
5-layer feature maps, four layers from the feature extraction

network, and one layer from deconvolution operation. We use
the bilinear interpolation method to add the upper layer features
and apply the lower layer features to carry out adjacent layer
feature fusion. The 3 x 3 convolution kernel is utilized to enhance
the feature representation capability. Max pooling operation is
carried out for top layer feature to enhance semantic information.
After the above process, we have 6-layer feature maps, in which
the top layer feature obtained by max-pooling has sufficient
semantic information, and the bottom layer feature obtained by
deconvolution has rich texture information. Figure 3 shows the
super-resolution feature enhancement component designed in
this study.

3.3.2. Feature Full Fusion
The feature full fusion mechanism is used to improve the
performance of multi-scale pest detection. By fusing the
information of different feature layers, the defects are avoided
in existing methods, which only combine adjacent layers or use
a single feature layer to detect pests (Jiao et al., 2020; Liu et al.,
2020). The inspiration for our design comes from the process
of people looking at images. People often think of an image
as a 2D image because the human eye treats multiple channels
(usually RGB, 3-channel) at once. Similarly, the feature full
fusion mechanism combines the 6-layer features from the super-
resolution component at once. We fuse 6-layer feature maps into
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TABLE 1 | The overall performance comparison.

Method MSR SIoU AP AP50 AP75 mRecall

General object detection

Faster R-CNN (Ren et al., 2017) 35.4 62.3 37.7 50.5

Cascade R-CNN (Cai and Vasconcelos, 2018) 36.0 62.6 38.5 50.2

Libra R-CNN (Pang et al., 2019) 37.4 65.2 40.2 52.8

FCOS (Tian et al., 2019) 33.3 57.4 36.2 55.2

RetinaNet (Lin et al., 2017b) 27.9 48.8 29.4 53.1

Pest detection

AF-RCNN (Jiao et al., 2020) 33.1 58.6 34.6 48.8

HGLA (Liu et al., 2020) 37.0 65.6 38.3 52.0

Ours

MSR-RCNN
√

38.0 66.9 40.0 52.4

MSR-RCNN
√ √

38.4 67.4 40.6 52.0

TABLE 2 | Compare results by category on our LLPD-26 dataset using AP50.

Class number
General object detection Pest detection Ours

Faster R-CNN Cascade R-CNN Libra R-CNN RetinaNet AF-RCNN HGLA MSR MSR+SI

1 16.1 19.2 21.7 4.5 12.8 20.1 21.1 20.4

2 58.7 58.9 63.5 54.4 58.7 63.3 66.1 67.2

3 70.2 67.9 70.1 60.9 65.5 71.7 72.8 74.0

4 69.6 69.4 70.9 58.0 66.0 72.8 72.3 72.8

5 84.9 85.2 85.0 80.7 83.5 86.1 86.2 85.8

6 72.1 71.1 74.4 66.0 70.4 76.2 76.4 77.4

7 72.5 71.9 73.4 62.4 70.9 74.0 74.9 74.5

8 62.0 60.6 66.7 57.5 59.4 66.1 65.5 70.5

9 47.5 47.5 50.9 43.0 47.3 51.9 53.6 53.5

10 70.9 70.5 74.2 59.6 68.5 74.2 77.2 78.8

11 79.3 78.2 80.3 73.2 76.1 81.6 81.0 81.7

12 27.7 26.9 26.7 0.10 25.5 32.7 29.5 32.3

13 55.3 58.3 54.6 41.5 53.4 55.4 56.8 59.7

14 66.7 64.5 66.4 57.3 62.0 67.4 67.5 69.9

15 39.8 45.3 47.3 8.10 33.1 45.2 48.0 51.3

16 40.2 45.2 51.7 7.50 33.0 50.7 49.6 51.5

17 57.9 65.1 66.8 15.0 55.4 70.8 70.9 70.6

18 56.1 58.7 60.5 35.9 55.0 58.0 64.9 63.3

19 56.6 58.4 64.9 54.3 57.7 61.9 65.1 69.4

20 83.0 82.7 82.1 78.1 80.6 83.7 83.3 83.8

21 89.5 89.5 89.5 86.9 87.5 90.0 90.0 90.1

22 93.1 92.4 94.4 93.8 91.7 94.4 94.6 94.4

23 59.9 51.7 63.2 54.1 54.1 61.2 66.0 63.9

24 72.8 73.3 74.9 64.1 71.4 74.8 74.0 75.2

25 53.3 49.7 54.8 1.20 14.8 50.0 59.2 56.4

26 64.8 70.4 65.0 49.6 68.2 70.2 73.0 63.1

Mean 62.3 62.8 65.2 48.8 58.6 65.6 66.9 67.4

The parts in bold represent the best performance.

five layers to improve network efficiency. Specifically, for each
of the 6-layer feature maps, we use the bilinear interpolation
method to resize them to five sizes, in which the resolutions are

200×272, 100×136, 50×68, 25×34, and 13×17, respectively. We
stack features of the same size and use a 1×1 convolution to
unify channels to 256. The stacked feature maps are added to the
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FIGURE 6 | Improved performance of our MSR-RCNN on pest data of different sizes.

C1∼C5 feature maps of the original feature maps. It is important
to note that our feature full fusion is substantially different from
the full connection layer, although it is very similar. This is
because our feature full fusion module preserves the translation
invariance of the pixels. This also leaves enough information
for the next feature full weighting module. Figure 4 shows the
feature full fusion mechanism.

3.3.3. Feature Full Weighting
Due to the high-similarly pests in the LLPD-26 (e.g.,
Cnaphalocrocis medinalis and Pyrausta nubilalis, Mamestra
brassicae Linnaeus and Scotogramma trifolii Rottemberg), fine-
grained identification is required to improve the performance
of detection. We design the feature full weighting for feature
reinforcement learning. This could optimize the detection
performance of similar pests from two dimensions (depth and
location). For the feature map (W, H, and C) of each layer, our
weighting method weights channel C and points (x, y) in the
feature map, where W is the width, H is the height, and C is
the channel number of the feature map. We use Formula (1) to
describe our weighting method.

W(X) = απL(X)g(X)+ (1− α)πC(X)X (1)

Where πL(·) represents the local weighting function, πC(·)
represents the channel weighting function, X represents the
feature map, W(X) represents the weighted feature map, and α

is the scale factor. Formula (2) and Formula (3) give the specific
forms of πL(·) and πC(·), respectively.

πL(xi) =
∑

∀j∈X
θL(xj)

TφL(xi) (2)

πC(X) = ReLu(θC(avg(X)))+ ReLu(φC(max(X))) (3)

Among them, xj represents the point on the feature map
excluding the point Xi, θ(·) and φ(·) represent the learnable
function for feature X, avg(·) andmax(·) represent global average
pooling and global maximum pooling, respectively. To guarantee
the end-to-end pattern, we use a convolution operation to carry
out the feature full weighting, as shown in Figure 5.

3.4. Soft-IoU
In general object detection (such as PASCAL VOC), IoU50 is
used as the threshold to determine positive and negative samples.
However, for pest detection, different bounding boxes with the
same IoU value have different performances. Therefore, we
design a SI with the position suppression method to optimize the
training and test processes. Specifically, the calculation method
of SI is shown in Formula (4):

SI(A,B) = β · ⌈1−
E(Acenter ,Bcenter)

max(Adiagonal,Bdiagonal)
⌉ ·

A ∩ B

A ∪ B
(4)

Where E(·) represents the Euclidean distance, Acenter and Bcenter
represent the center point of bounding box A and B, respectively,
Adiagonal and Bdiagonal represent the diagonal distance of
bounding box A and B, respectively, Max(·) represents the
maximum function, and β is the scaling factor. To ensure the
stability, we adjust the IoU no more than 0.1 times the original
IoU. Due to the high-quality positive samples contributing to
training the network finely, β is selected as 0.9. In the test phase,
β = 1.1 because we expect the bounding box as shown in
Figure 1A to output the results as a positive sample.
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FIGURE 7 | The training loss and mAP50. (A) The comparison of training loss. (B) The comparison of test accuracy.

FIGURE 8 | Ablation of β in the Soft-IoU (SI).

4. EXPERIMENTS

4.1. Experiment Settings
We use the backpropagation and Stochastic Gradient Descent
(SGD) to train our MSR-RCNN (LeCun et al., 1989). For the
training of MSR-RCNN, each SGD mini-batch is constructed
from a single pest image that contains 256 samples. Negative
samples and positive samples are randomly selected in a ratio
of 1 : 1 in each mini-batch. Gaussian distribution with a mean
of 0 and a SD of 0.01 is used to initialize the parameters of
the classification regression layer. In each SGD iteration, we use
RPN to generate 1,000 potential regions to be sent to R-CNN for
learning. We train a total of 12 epochs with a momentum of 0.9,
among which the first 8 epochs have a learning rate of 0.0025,
and the last 4 epochs are 0.00025. Our experiment is deployed on
a Dell 750 server with NVIDIA Titan RTX GPU (24G memory)
using the Mmdetection2.0.0 (Chen et al., 2019) framework and
Python 3.8. Unless otherwise stated, all comparison models in
this study use the default parameters. Since the SmoothL1 Loss
function is differentiable at zero, we use it to train the R-CNN
network for more stable performance. Because the L1 Loss is a

TABLE 3 | MSR-RCNN network performance comparison results using different

backbones.

Resnet50 Resnet101 Resnext50 Resnext101

AP50 66.9 66.1 66.3 66.7

AP75 40.0 39.4 40.3 39.6

AP 38.0 37.4 38.0 37.8

The parts in bold represent the best performance.

non-differentiable function at zero, we apply it in RPN network
training to improve the robustness.

4.2. Experiment Results
4.2.1. Performance on Our LLPD-26
We compare the performance of our method with Faster R-
CNN (Ren et al., 2017), Cascade R-CNN (Cai and Vasconcelos,
2018), Libra R-CNN (Pang et al., 2019), FCOS (Tian et al.,
2019), Retinanet (Lin et al., 2017b), AF-RCNN (Jiao et al., 2020),
and HGLA (Liu et al., 2020), as shown in Table 1. Among
them, AF-RCNN and HGLA are the existing deep learning-
based pest detection methods, MSR represents the MSR feature
enhancement module proposed by us, SI represents the SI, AP50
represents the Average Precision (AP) with the IoU threshold of
50%, AP represents themean APwith the IoU threshold at 50, 75,
and 95%. The FPN (Lin et al., 2017a) is used in all comparison
methods. Our MSR module is slightly inferior to Libra R-
CNN in AP75 performance due to the high-quality training
box provided by the balanced sampling approach of Libra R-
CNN. In addition, since pest detection is more focused on point
location performance than bounding box IoU performance,AP50
is more valuable than AP75. With the SI training method, the
MSR-RCNN outperforms other methods.

To compare the performance of the proposed method in
detail, the AP50 results of each category are given in Table 2. We
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TABLE 4 | The performance of MSR with various detection methods.

Method MSR AP AP50 AP75 mRecall

Faster R-CNN (Ren et al., 2017) 34.8 61.8 36.1 51.5

Faster R-CNN + FPN (Lin et al., 2017a) 35.4 62.3 37.7 50.5

Faster R-CNN + MSR
√

37.6 66.3 39.5 51.9

Cascade R-CNN + FPN (Cai and Vasconcelos,

2018)

36.0 62.6 38.5 50.2

Cascade R-CNN + MSR
√

37.8 65.8 40.2 52.1

FCOS + FPN (Tian et al., 2019) 33.1 57.0 35.9 55.3

FCOS + MSR
√

33.8 58.8 36.0 54.8

RetinaNet + FPN (Lin et al., 2017b) 27.9 48.8 29.4 53.1

RetinaNet + MSR
√

30.8 53.1 33.3 52.7

The parts in bold represent the best performance.

TABLE 5 | Detection performance comparison on general object detection datasets.

Benchmark Method Backbone AP AP50 AP75 APs APm

PASCAL VOC
Faster R-CNN*

Resnet50
- 81.0 - - -

MSR-RCNN - 81.8 - - -

COCO
Faster R-CNN*

Resnet50
37.4 58.1 40.4 21.2 41.0

MSR-RCNN 37.5 59.8 40.0 21.7 41.4

Where * represents the method of reproduction using MMdetection.

FIGURE 9 | The performance comparison between MSR-RCNN and Faster

R-CNN on different datasets.

emphasize the best results for each class with bold to show the
best performance. It can be found that our network outperforms
other methods.

4.2.2. Ablation Experiments

4.2.2.1. Category Performance Improvement Comparison
Figure 6 shows the performance improvement of our MSR-
RCNN compared with Faster R-CNN. Among them, the blue bar
chart represents the size of the pest, and the line chart describes
the performance improvement of the method for Faster R-
CNN. Our methods (MSR and SI) mainly improve the detection
performance of small-size objects. For medium-size pests, the
performance of Soft-IoU is improved significantly.

4.2.2.2. The Training Loss and AP
To explain the improvement of our network in more detail,
we present the training loss diagram of MSR-RCNN, Faster
R-CNN, FCOS, and HGLA, as shown in Figure 7. Faster R-
CNN represents two-stage methods, FCOS represents one-
stage methods, and HGLA represents pest detection methods.
Referring to the parameter setting of MMdetection, the batch size
of FCOS is 4 samples, thus the loss iter only has half the other
methods. It is clear that compared with other networks, ourMSR-
RCNN has more excellent data fitting ability and is capable of
more complex work. In addition, our MSR-RCNN convergence
rate is the fastest.

4.2.2.3. The Beta Value
For the β in Formula (4), an ablation study is performed and
the results are shown in Figure 8. When the β is less than 0.9,
the detector performance is affected because a large number of
positive samples change into negative samples, resulting in the
imbalance between positive and negative samples. When the β is
greater than 0.9, the training performance of the model is misled
due to the addition of too many low-quality detection boxes.

4.2.2.4. The Backbone of Our MSR Pest Detection Network
We choose ResNet50 as the backbone of the MSR-RCNN After a
detailed comparison of the common backbone network. Table 3
shows the performance comparison of our MSR-RCNN in
different backbone networks. Why the result of ResNet50 is
better than ResNet101? This reason is that the object size is
generally small in our dataset. Therefore, with the deepening
of the network layer, the features of small-size objects gradually
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FIGURE 10 | Visualization results.

disappear in the continuous convolution operation. The top-
to-down feature fusion method transmits blurry semantic
information resulting in decreasing performance. To be fair,
ResNet50 is used as the backbone extraction network for all
comparative experiments in this study, unless otherwise stated.

4.2.2.5. MSR Module With Various Networks
We compare the performance of our MSR module with Faster
R-CNN, Cascade R-CNN, FCOS, and RetinaNet, as shown
in Table 4. The Faster R-CNN use the C4 feature map to
detect pest. Due to the design of FPN (Lin et al., 2017a), all
methods after 2017 use the multi-layer features detection pattern.
Without bells and whistles, the MSR module effectively improves
the pest detection performance under various networks. The
experimental results show that the MSR module can improve
the feature extraction capability and replace FPN in the pest
detection field.

4.2.3. Generalization Capacity
We compare the performance on general object detection
datasets (PASCAL VOC and COCO), as shown in Table 5.

Where ∗ represents the results that we reproduced with
MMDetection under the same parameter settings. Due

to the Soft-IoU being designed for pest detection, we
only present the performance of MSR-RCNN with the
MSR module. Since MSR-RCNN is a small-size detection

network for pest detection, we do not evaluate the
performance of APl. The training set of PASCAL VOC
0712 is used to train networks and the test set of PASCAL
VOC 2007 is used to verify the results. The experimental
results show that our method can significantly improve
the performance of IoU50 and small-size objects. This
is highly consistent with the original intention of our
MSR module.

In addition, Figure 9 shows the performance comparison
between our method and Faster R-CNN on different datasets,
where the blue bar chart represents the normalized relative
average size of the objects in several datasets, the yellow bar
chart shows the normalized relative AP improved by our MSR-
RCNN method compared to Faster R-CNN. With the increase
of the object average size, the improvement of the performance
becomes more and more obvious.
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4.3. Qualitative Results
To visually observe the accuracy, we visualize the detection
results of Faster R-CNN, AF-RCNN, HGLA, and MSR-RCNN
(ours), as shown in Figure 10. Among them, the first column
shows the dense distribution pest images, the second and
fourth columns show the sparse distribution pest images, and
the third column shows the image detection results when the
camera has water mist caused by temperature change. The
visualization shows that HGLA has many overlapped bounding
boxes, AF-RCNN and Faster R-CNN mainly exhibit missed
bounding boxes and false results (Figure 10 columns 1 and
2). For columns 3 in Figure 10 (low-quality images caused by
equipment reasons), all of the detection results are degraded, but
ourMSR-RCNN is the least weakened. This is owed to our feature
super-resolution module. Although the MSR-RCNN wrongly
identifies the rice planthopper in the fourth column images
(class 1 is identified as class 14), other methods did not find
the existence of minimum-sized pests (Figure 10 columns 4).
The visualization results show that our MSR-RCNN outperforms
other methods.

5. CONCLUSION

This study aims to bridge the gap between generic object
detection and pest detection, in which the challenges lie in
object characters and IoU adaptation. Therefore, we propose
an MSR-RCNN that is targeted at detecting agricultural pests
of 26 categories. Specifically, we build a large-scale light-trap
pest dataset LLPD-26. For tackling the detection difficulty
on small-size, multi-scale, and high-similarly pests, the MSR-
RCNN adopts a MSR model that includes a super-resolution
component, a feature fusion mechanism, and a feature weighting
mechanism. In addition, motivated by the higher importance
of pest positions, we propose a SI strategy to improve the
adaptability of the network. The experimental results show that
the proposed method can effectively detect multiple classes of

pests. Ablation experiments verify the MSR model can improve

the performance of other detectors in the plug-and-play form.
Future study will focus on few-shot pest detection research and
real-world application deployment.
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