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How to non-destructively and quickly estimate the storage time of citrus fruit is necessary 
and urgent for freshness control in the fruit market. As a feasibility study, we present a 
non-destructive method for storage time prediction of Newhall navel oranges by 
investigating the characteristics of the rind oil glands in this paper. Through the observation 
using a digital microscope, the oil glands were divided into three types and the change 
of their proportions could indicate the rind status as well as the storage time. Images of 
the rind of the oranges were taken in intervals of 10 days for 40 days, and they were used 
to train and test the proposed prediction models based on K-Nearest Neighbors (KNN) 
and deep learning algorithms, respectively. The KNN-based model demonstrated explicit 
features for storage time prediction based on the gland characteristics and reached a 
high accuracy of 93.0%, and the deep learning-based model attained an even higher 
accuracy of 96.0% due to its strong adaptability and robustness. The workflow presented 
can be readily replicated to develop non-destructive methods to predict the storage time 
of other types of citrus fruit with similar oil gland characteristics in different storage 
conditions featuring high efficiency and accuracy.

Keywords: citrus fruit, storage time prediction, oil glands, non-destructive evaluation, deep learning

INTRODUCTION

Citrus is an important agriculture commodity produced in over 140 countries, with the annual 
production of over 146 million tons (Liu et  al., 2012). Due to the increase in cultivation area 
and improvement in management strategies (Díaz et  al., 2017), the production of citrus fruit 
is expected to continuously increase in the future. Fresh citrus fruit usually go through 
commercial handling, transportation, wholesale or retail before finally reaching consumers; 
however, they may experience water loss and develop spoilage during postharvest storage, 
which will lessen their taste (Schirra et  al., 2005; Marcilla et  al., 2006). Currently, freshness 
evaluation is based on specially trained staff that assess the taste and aroma of the fruit 
samples (Guohua et  al., 2012), which is a time-consuming and cost-expensive process featuring 
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low repeatability and objectiveness. As freshness is strongly 
related to storage time under a specific storage condition 
(Mashabela et al., 2019; Tan et al., 2020), accurate and efficient 
methods for storage time prediction can help estimate freshness 
(Nesakumar et al., 2019), which can lead to better management 
in citrus shipping, storage, and retail procedures.

A common research path for fruit storage time prediction 
is to adopt volatile organic compounds (VOCs) gas sensors, 
whose non-destructive nature can be  potentially related to 
practical applications. As every kind of fruit has a unique 
aroma made up of hundreds of VOCs, correspondence can 
usually be  found among the flavor, product quality, storage 
time, and composition of VOCs (Baietto and Wilson, 2015; 
Liu et  al., 2018b). One type of gas sensors adopts metal oxide 
semiconductors to detect the variations of the main components 
of VOCs, which have been used to predict the storage time 
of strawberries (Ghasemi-Varnamkhasti et al., 2019) and peaches 
(Liu et  al., 2018a). To improve the detection sensitivity and 
humidity tolerance, quartz crystal microbalance (QCM) sensors 
are proposed for the estimation of fruit storage time, maturity, 
and shelf life (Nimsuk and Nakamoto, 2008; Adak et al., 2017). 
However, these gas sensors are rarely applied to citrus fruit, 
which might be  caused by the subtle changes in their VOCs 
contents that are difficult to measure and differentiate (Cui 
et  al., 2016). In a recent study, Raman spectroscopy is used 
to relate the intensity of rind carotenoid signals to the storage 
time (Nekvapil et  al., 2018). Despite that it might be  a useful 
solution for citrus freshness control, the signal quality depends 
on the instrument and user capability, making it hard to develop 
a well-accepted standard for practical in-situ applications.

As the external appearance of the fruit is the most important 
criterion for customers to evaluate the storage time, potential 
correlation between the rind status and storage time is worthy 
exploring. The peel turgor is an essential parameter of rind 
quality and the loss of turgor pressure is probably the main 
factor of rind compaction, as well as the decrease of attraction 
to customers (Alferez et  al., 2010). However, non-destructive 
methods to quantify this process for storage time prediction 
still remain unavailable. On the other hand, secretory cavities 
occur naturally in all species of the family Rutaceae, and in 
the genus Citrus they are often referred to as oil glands. 
They can be  found in the stem, mesophyll of leaves, all 
parts of the flower except the stamens, and the exocarp layer 
of the fruit rind, in the center of which an essential 
oil-accumulating reservoir develops (Turner, 1999; Knight 
et  al., 2001). The essential oil is important in the protection 
of the plants due to their bactericidal and fungicidal nature, 
and their strong odor may also attract some insects to favor 
the dispersion of seeds and pollens (Rodov et  al., 1995; 
Palazzolo et  al., 2013). While it is still contentious whether 
the central cavity forms by lysigeny or schizogeny (Turner 
et al., 1998), the enlargement of oil glands has been anatomically 
observed and investigated in a series of studies (Liang et  al., 
2006), indicating that the initialization of glands is restricted 
to the early stages of fruit development while the enlargement 
is up to fruit maturity (Bennici and Tani, 2004; Hou et  al., 
2019). As a result, the total gland number is quite constant 

for mature fruit. Moreover, according to Bosabalidis and 
Tsekos (1982), glands are attached to the fruit epidermis by 
a stalk-like structure, which tends to become less obvious 
when the fruit develops. For mature citrus fruit, the gland 
stalk is even reduced to only a few cell layers in depth 
below the epidermis, making the oil glands outstanding on 
the appearance of the rind. In one study, gland characteristics 
of citrus fruit, such as gland size and density, have been 
investigated for maturity assessment, reaching a correlation 
coefficient of 0.77 (Hongwiangjan et  al., 2015). Although 
little research has been conducted to reveal the evolution 
of oil glands during postharvest storage, the oil within the 
glands generally decreases during storage due to water loss, 
which is also the key factor of the loss of peel turgor. Ghanem 
et  al. (2012) conducted a dehydration test, whose result 
further demonstrates that the compaction of the citrus peel 
is in accordance with the shrinkage of oil glands due to 
evaporated water. This characteristic might indicate the rind 
status in an easily quantifiable manner, which can be potentially 
adopted to develop non-destructive methods for storage 
time prediction.

This study aims to prospect the relationship, if any, among 
the characteristics of the rind oil glands, rind status, and 
storage time, based on which model-based prediction methods 
can be developed for non-destructive storage time prediction. 
The predicted storage time can be then used as a key parameter 
for freshness evaluation. As a feasibility study, we investigated 
the evolution of the rind oil glands of Newhall navel oranges 
in intervals of 10 days for continuous 40 days using a digital 
microscope, and K-Nearest Neighbors (KNN) and deep learning 
algorithms, respectively, were adopted to analyze the high-
resolution images and develop two types of prediction models. 
The workflow presented can be  readily replicated to develop 
non-destructive methods to predict the storage time of other 
types of citrus fruit with similar oil gland characteristics in 
different storage conditions featuring high efficiency 
and accuracy.

MATERIALS AND METHODS

Sample Fruit
Sample Newhall navel oranges (Citrus synesis) were harvested 
at a commercial orchid in Zigui, Hubei Province, China (111.0°N, 
30.8°E) in December 2019. This type of oranges can usually 
be  stored under room temperature for up to 40 days before 
their external appearance turn observably unfavorable, but 
within 40 days the changes in their appearance are hard to 
distinguish. The fruit were first cleaned on a citrus processing 
line and no waxing was applied, and they were then transported 
to Wuhan, China via air flight on the same day. As we  focus 
mainly on the storage time prediction of healthy oranges in 
this study, we  manually inspected the oranges and selected 
600 ones with a sound surface. These fruits were then stored 
in a ventilated chamber with the environment similar to the 
warehouse (approx.10°C, 65%RH, no natural light) for a storage 
period of 40 days.
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Chemical and Mechanical Measurement
Four hundred and fifty oranges in total were chosen for chemical 
and mechanical measurements in this study, in which the pH 
value, sugar-acid ratio, hardness, and weight were assessed. 
These oranges were evenly divided into five groups at random, 
and one group was adopted for the measurements on day 0 
(denoted as the beginning of the test), 10, 20, 30, and 40, 
respectively.

The measurement of the pH value was conducted on 30 
sample oranges each time. A small fruit sample was cut from 
each orange and then squeezed with double-layer gauze at 
room temperature, and an automated pH meter (SevenExcellence, 
METTLER TOLEDO) was used to assess the pH value of the 
juice. This measurement was replicated three times and the 
average was recorded. The sugar-acid ratio was obtained using 
a refractometer (ATGO PAL-BX/ACID1) following the same 
process on another 30 oranges. The remaining 30 oranges were 
first adopted for weight measurement, and the puncture test 
was then carried out on their equatorial region using a portable 
fruit hardness tester (Gy2) for hardness measurement.

Microscope Image Acquisition
A high-resolution digital microscope (VHX-6000) was adopted 
to observe the rind oil glands of 150 oranges during postharvest 
storage. Due to its capacity to obtain the depth information 
with high accuracy, it can well capture the evolutionary 
characteristics of the rind oil glands. Image acquisition was 
conducted in a chamber with no natural light. Since the light 
was only provided by the microscope itself, the same light 
condition was ensured all through the observation. According 
to, oil glands are generally uniformly distributed at the equatorial 
region of the rind of citrus fruit, and we  therefore took one 
image every 10 days under 50× magnification randomly at the 
equatorial region for each orange, resulting in 150 images 
collected each time.

Model-Based Prediction Methods
Two prediction models based on KNN and deep learning 
algorithms, respectively, were developed for the prediction of 
the storage time, as shown in Figure  1. The KNN-based 
prediction model explicitly demonstrated the classification 
criteria and provided insights to relate the evolution of the 
oil glands to the rind status and storage time. The deep learning-
based prediction model was capable of learning the features 
by itself, which was anticipated to achieve better performance 
in prediction accuracy and robustness.

KNN-Based Prediction Model
K-Nearest Neighbors is one of the most commonly used 
unsupervised-learning method in machine learning for 
classification, which can be adopted for storage time prediction 
as the images were categorized into five classes based on the 
collection date. The algorithm first calculates the distance 
(Manhattan or Euclidean distance) between the unknown sample 
and K-nearest known samples, and it then classifies the unknown 
sample based on the distance and classes of the K-nearest 

samples (Chen et al., 2017). In this work, the oil glands captured 
in each image were identified into three types based on their 
evolutionary characteristics, which will be  discussed in detail 
in Section “Evolution of rind oil glands,” and the features to 
perform storage time prediction were the proportions of different 
glands. For the images obtained each time, 130 were randomly 
selected as the training set and the remaining 20 were used 
as the test set.

Deep Learning-Based Prediction Model
Convolution Neural Network (CNN) achieves superior 
performance in computer vision tasks such as classification 
(Chen et  al., 2021), object detection (Kang and Chen, 2020a), 
and segmentation (Kang and Chen, 2020b). Here, we  applied 
a 50-layer CNN model Residual-Network (ResNet-50) to directly 
predict the storage time of the oranges based on the images 
obtained, which was also treated as a classification task. ResNet-50 
applied the residual convolution module, in which a shortcut 
connection was introduced between the input and output, to 
improve the accuracy and trainability of the network. The 
model was then trained to predict the storage time of the 
oranges into one of the five classes using the same training 
set of the KNN-based model. The Multiple Level Perception 
(MLP) layers of the ResNet-50 model were redesigned to fit 
our designed output. The global-pooling layer of the block of 
the original ResNet-50 outputted a feature map with the size 
of 1 × 1 × 2048, and the generated feature map was reshaped 
into a feature vector (2048 × 1). After that, two fully-connected 
layers, of which the sizes were 256 and 6, respectively, were 
used to generate the prediction of the storage time. Batch-
norm and drop-out were adopted after each fully connected 
layer to improve the performance of the network model.

RESULTS

Chemical and Mechanical Analysis
The pH value, sugar-acid ratio, weight, and hardness of these 
oranges in different storage periods were obtained through 
chemical and mechanical experiments. It can be  observed from 
Figure  2A that the average pH value of the oranges increased 
with increasing storage time, which was mainly due to the 
degradation of the ascorbic acid (Touati et  al., 2016). For the 
oranges freshly collected on Day 0, their juice had a relatively 
high acidic level with an average pH value of 3.6. While the 
juice was still slightly acidic on Day 40, the average pH value 
obtained was 20.0% higher than that of the first day. The result 
of the sugar-acid ratio is presented in Figure  2B, showing a 
generally decreasing trend during the storage period. For Day 
0 and 10, the average sugar-acid ratios of the oranges were 
18.7 and 18.3, respectively, indicating a satisfactorily sweet taste. 
The sugar and acid contents deteriorated due to respiration 
during storage, and the experimental data indicates a higher 
decreasing speed of sugar concentration than that of the acid 
during storage, resulting in a decrease in the sugar-acid ratio. 
However, these indexes were associated with significant variances, 
based on which accurate prediction of the storage time was 
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difficult to perform. Moreover, their destructive nature also 
constrains their potential applications. According to Figure  2C, 
the weights of the oranges decreased with increasing storage 
time, which can be  related to respiration and loss of water, but 
the variances of the results were even more significant. Figure 2D 
shows the result of the hardness test. A generally linear negative 
correlation was found between the hardness and storage time, 
which was mainly induced by the loss of water as well (Rivera 
et  al., 2021). As the variances of the experimental data were 
relatively small, the hardness might be  useful to distinguish the 
oranges into different storage periods. However, devices to 
non-destructively measure the hardness of citrus fruit are not 
commercially available at the moment. As a result, although 
the pH value, sugar-acid ratio, weight, and hardness demonstrated 
the decreased fruit quality with increasing storage time, they 
are not ideal indexes for non-destructive storage time prediction.

Evolution of Rind Oil Glands
The evolution of the rind oil glands during postharvest storage 
was analyzed based on the obtained microscope images. For 

the freshly-collected oranges shown in Figure  3A, oil glands 
were the most prominent characteristics on the orange rind 
under 50×-magnification observation. Due to the accumulation 
of essential oil, most of the oil glands presented a convex 
surface with a light contrast in color comparing with other 
parts of the rind, and these convex surfaces can be  further 
confirmed with the depth information. Moreover, there were 
also several oil glands with a flat surface, which might be  due 
to the slow accumulation of essential oil during fruit development 
or slight dissipation when the fruit was mature. According to, 
the essential oil content in citrus fruit increases promptly before 
the mature stage and then drops slowly as a result of the 
elimination of oil. For the oranges preserved for 40 days, as 
shown in Figure  3B, most of the oil glands experienced a 
significant decline in the oil content, making their surfaces 
concave appearing on the rind.

To quantify the characteristics of the oil glands at different 
storage periods, we classified them into three types in a relatively 
simple way. Type I oil glands referred to those filled with essential 
oil and have convex surfaces observed from the rind, and Type 

FIGURE 1 | Flowchart of the development of the K-Nearest Neighbors (KNN) and deep learning-based prediction models for the storage time of the Newhall 
oranges.
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II glands were characterized by a flat surface when they experienced 
the decrease in oil content. For the oranges stored for a relatively 
long time, little essential oil was left and the gland surfaces 
were obviously concave and in a darker color, and they were 
therefore classified as Type III glands. Figure  4A shows the 
images of the rind from Day 0 to Day 40, and it can be  found 
that although Type I glands dominated the rind at the beginning, 
they gradually turned into Type II and Type III glands with 
increasing storage time. On Day 40, most of the glands were 
characterized as Type III glands, which can hardly be  observed 
in freshly harvested oranges. Figure  4B compares the cross-
section of the rinds on Day 0, 20, and 40, which further confirms 
that the elimination of oil was the key factor that turned the 
glands flat or even concave. Moreover, the rind itself also 
experienced the loss of water during postharvest storage and 
became thinner, which would decrease the rind turgor and result 
in the rind compaction (Rivera et  al., 2021). As this process is 
in conjunction with the evolution of the oil glands, the gland 
characteristics can be  used as an indicator of the rind status 
that can be  easily quantified, which will be  discussed in detail 
in “Modeling and Analysis.” Compared with other indexes to 
indicate the rind status such as the rind turgor and water potential, 
the proposed new indicator can be  obtained immediately using 

images in a non-destructive manner, which can be  conveniently 
adopted in real-world applications for storage time prediction.

MODELING AND ANALYSIS

Evaluation Metrics
We used accuracy to evaluate the performance of the KNN 
and deep learning-based prediction models, respectively. Accuracy 
is formulated as

 
Accuracy

n
I f X Y

i

n

i i= ( ) =( )
=
å1

1  
(1)

where n is the total number of samples in the test set, f Xi( ) 
is the predicted classes of the ith sample by the model, Yi  is 
the ground truth label of the ith sample, and I is the function 
to determine whether f Xi( ) equals Yi .

KNN-Based Modeling
According to Section “Evolution of Rind Oil Glands,” the total 
number of the oil glands remained the same for the oranges 

A B

C D

FIGURE 2 | Results of the measurement of the (A) pH value, (B) sugar-acid ratio, (C) weight, and (D) hardness.
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during postharvest storage, while the oil content decreased 
with increasing storage time. As a result, the proportion of 
Type I  glands would gradually decrease, and the proportion 
of Type II glands would first increase and then decrease as 
the glands would further turn into Type III glands. While the 
individual difference of the gland number is obvious, the 
proportions of three types of glands for each orange at different 
storage period were quite consistent. Here, we  adopted the 
proportions of three types of glands in the images as the 
features for KNN-based classification, as shown in 
Figure  5A. Figure  5B shows the distribution of the training 
set, in which the data from the same storage time gathered 
spatially, demonstrating the efficacy of the selected features.

Euclidean distance was adopted for the criteria of classification, 
and the total distance D of the test sample and its K-nearest 
neighbors was therefore formulated as

 
D x y

m

k

i
m i m i= -( )

= =
å å

1 1

3
2

, ,
 

(2)

where xm i,  is the proportions of different glands of the test 
sample, and ym i,  is the proportions of different glands of a 
neighbor sample from the training set. The test sample was 
then classified into the category, where the majority of its 
K-nearest neighbors belonged to.

We conducted the computation using the scikit-learn machine 
learning library (version 0.19.0) in Python. In order to achieve 
better model performance, the parameters of the model were 
debugged based on the approach presented in Qiu et al. (2008). 
Different numbers of neighbors were tested for comparison 
and the results are presented in Table  1. The highest accuracy 
achieved is 93.0% with five nearest neighbors, with the parameters 
of the model set as n_neighbors = 5, weights = uniform, leaf_
size = 30, metric=“minkowski,” and n_jobs = 1. These parameters 
were then adopted to predict the storage time of the test 
samples, and the comparison between the predicted and actual 
storage time is presented in Figure  5C. There are only seven 
out of 100 test samples misclassified, and the errors are all 
within 10 days, demonstrating the feasibility to use oil gland 
characteristics and a KNN-based model to predict the storage 
time of the Newhall navel oranges.

Deep Learning-Based Modeling
The deep learning-based model can directly predict the storage 
time of the oranges based on the microscopy images. The 
implementation code of the original ResNet-50 model was from 
open-source code in Github, which was programmed by using 
the slim library in TensorFlow 1.15. To achieve better accuracy 
on storage time prediction, the MLP layers of the model was 
redesigned to fit outputs. We  trained ResNet-50 by using the 

A B

FIGURE 3 | Microscope observation of the oil glands. (A) The characteristics of the oil glands on the 0th day, in which the oil glands were filled up essential oil and 
had a convex surface. (B) The characteristics of the oil glands on the 40th day, in which the essential oil was limited and the gland surface was concave.
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Adam-optimizer, and the pre-trained weights of the convolutional 
layers of the ResNet-50 model were frozen. As a result, only the 
weights in the MLP layers were trained. During the training 
process, the network was trained with 50 epochs and the learning 
rate was 0.001. Image augmentation methods including flip, rotation, 
clip, and color adjustment in HSV color space were introduced. 
The results of storage time prediction are presented in Table  2. 
The overall accuracy of the trained ResNet-50 model on storage 
time prediction is 96.0%, with only four mismatched out of 100 
test samples and the errors all within 10 days, as shown in Figure 6.

DISCUSSION

Research on citrus storage time prediction is limited as the 
changes of their VOCs contents are difficult to differentiate via 
gas sensors (Cui et al., 2016). In one study, a freshness coefficient 
of citrus fruit was proposed based on the Raman intensity of 
rind carotenoids, which would decrease with increasing storage 
time (Nekvapil et  al., 2018). However, this coefficient has high 
variances which might influence the prediction accuracy, and 

the intensity of Raman signals also relies on the specific equipment 
adopted. These issues constrain the application of practical methods 
to predict the storage time of citrus fruit. This paper reveals the 
evolutionary characteristics of the Newhall navel oranges during 
postharvest storage, and a feasibility study is presented to relate 
these characteristics to the rind status and storage time. One 
obvious advantage of the proposed method is the high objectiveness 
as the captured gland characteristics are not likely to be influenced 
by different equipment for image acquisition. The non-destructive 
nature is also appealing to the citrus fruit market, and in situ 
applications can be  developed if a portable microscope is used.

The KNN and deep learning-based prediction models both 
achieved high prediction accuracy with the test samples, with 
the errors all within 10 days. The KNN-based model presented 
explicit criteria for classification, which also provided insights 
for the evolution of the oil glands during postharvest storage. 
To explore potential classification criteria of the deep learning-
based model, we  visualized the weighted sum of the feature 
maps in the last convolution layer by multiplying the feature 
maps with the corresponding weights in the MLP layers. That 
is, the feature maps with higher weights in the MLP layers 

A

B

FIGURE 4 | (A) The images captured in different storage periods. An increasing number of Type I oil glands turned into Type II and III glands with increasing storage 
time, and most of the glands were Type III glands on day 40. (B) The cross-section of the rinds on day 0, 20, and 40, on which different types of oil glands can 
be observed.
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FIGURE 6 | The results of the predicted storage time of the deep learning-
based model, which are compared with the actual storage time.

would be  highlighted. Then, to investigate the weights of 
different features that the classification network relied on for 
storage time prediction, we upsampled the weighted sum feature 

maps and multiplied them with the input image. As shown 
in Figure  7, although the oil glands gathered densely in some 

A

B C

FIGURE 5 | The results of the KNN-based prediction model. (A) The procedure to obtain the proportions of different glands from an image. (B) The training set of 
the KNN-based prediction model, in which the proportions of three types of oil glands in each picture are the features to perform freshness prediction. 
(C) Comparison between the predicted and actual storage time.

TABLE 1 | Accuracy of the KNN-based prediction model using different number 
of neighbors.

Number of neighbors Accuracy (%)

1 92.0
3 92.0
5 93.0
7 91.0
9 92.0

TABLE 2 | Accuracy of the deep learning-based prediction model.

Storage time (days) Accuracy (%)

0 100
10 100
20 90
30 100
40 96
Overall 96
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part of the images and distributed rather loosely in other 
parts, the highlighted areas by the network included a large 
amount of glands, indicating that the glands have higher weights 
in classification. This demonstrates that gland characteristics 
are also important for the deep learning-based model.

One issue for the presented work is that we  focused only on 
Newhall navel oranges stored at a specific storage condition, and 
the evolution of the oil glands might be  different for different 
citrus species and storage conditions. However, this study aims 
to evaluate the feasibility to correlate the evolutionary characteristics 
of the rind oil glands with the rind status, through which the 
storage time can be predicted non-destructively, and specific storage 
time prediction models for different citrus species and storage 
conditions are therefore out of the scope. The comparison between 
the predicted and actual storage time based on the sample images 
achieved high prediction accuracy, demonstrating the potential 
of the proposed method. Although this method might not apply 
to citrus species whose oil glands are difficult to observe or with 
a concave surface when freshly harvested, the workflow presented 
can be  readily replicated to develop new storage time prediction 
models for other citrus species with similar oil gland characteristics 
to Newhall navel oranges under different storage conditions. 
We  will also include more citrus species and storage conditions 
in our future work to further evaluate the proposed method.

CONCLUSION

In this paper, the feasibility of performing storage time prediction 
of Newhall navel oranges based on the evolutionary characteristics 
of the rind oil glands has been evaluated, and two prediction 

models based on KNN and deep learning algorithms, respectively, 
have been proposed. The observation through microscope 
images demonstrated that the surfaces of the rind oil glands 
would turn from convex to concave due to the elimination 
of essential oil during postharvest storage, which is in conjunction 
with the process of the decrease of rind turgor and can be related 
to the rind status. The KNN-based model adopted the proportions 
of different types of oil glands as the features for classification, 
reaching a high prediction accuracy of 93.0%. The deep learning-
based model directly predicted the storage time according to 
the images, and a higher accuracy of 96.0% was also achieved. 
Moreover, the prediction errors of both models were all within 
10 days. The workflow presented can be  readily replicated to 
develop storage time prediction tools for various citrus fruit 
with similar gland characteristics to Newhall navel oranges 
under different storage conditions.
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