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Deep neural networks can be used to diagnose and detect plant diseases,

helping to avoid the plant health-related crop production losses ranging from

20 to 50% annually. However, the data collection and annotation required

to achieve high accuracies can be expensive and sometimes very di�cult to

obtain in specific use-cases. To this end, this work proposes a synthetic data

generation pipeline based on generative adversarial networks (GANs), allowing

users to artificially generate images to augment their small datasets through its

web interface. The image-generation pipeline is tested on a home-collected

dataset of whitefly pests, Bemisia tabaci, on di�erent crop types. The data

augmentation is shown to improve the performance of lightweight object

detection models when the dataset size is increased from 140 to 560 images,

seeing a jump in recall at 0.50 IoU from 54.4 to 93.2%, and an increase in the

average IoU from 34.6 to 70.9%, without the use of GANs. When GANs are

used to increase the number of source object masks and further diversify the

dataset, there is an additional 1.4 and 2.6% increase in recall and average IoU,

respectively. The authenticity of the generated data is also validated by human

reviewers, who reviewed the GANs generated data and scored an average of

56% in distinguishing fake from real insects for low-resolutions sets, and 67%

for high-resolution sets.
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1. Introduction

Agriculture has been a central pillar in the development of humankind in the past

and remains a vital driver for local and global economies. Currently, agriculture faces

growing pressures with the increasing global population, which is expected to reach over

9 billion by 2050 (Leridon, 2020). With the limited availability of land resources, food

security becomes a major issue. On top of that, crop production is severely handicapped

by pests and diseases, reducing production by 20–50% annually, with economic losses

of up 70 billion US dollars (FAO, 2019). The situation is even more dire in developing
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countries, where small family farms are responsible for more

than 80% of agricultural production (Harvey et al., 2014). These

farms often lack the expertise and technology to fight pests and

diseases as effectively as industrial farms, and their losses due to

these factors can surpass 50% (United Nations Environmental

Programme, 2013).

The recent developments in the field of machine learning

can help improve the diagnosis of plant pests and diseases

through traditional visual assessment methods. Convolutional

Neural Networks (CNN) have achieved superior performance

in image classification and object detection tasks (Liu et al.,

2022). Hughes and Salathe (2015) used the PlantVillage dataset

to train a GoogLeNet convolutional network achieving a 99.34%

accuracy by using transfer learning from a model pre-trained

on the ImageNet dataset (Mohanty et al., 2016). Despite the

high accuracy, there are no further experiments to prove the

effectiveness of such classification models out in the field, due

to the plant leaf images being taken in a controlled lab setting.

Türkoğlu and Hanbay (2019) achieve an accuracy of 97.86%

using a ResNet50 CNN and an SVM classifier, compared to only

70.90% for their best shallow-feature model, justifying the need

for deep feature extractors.

In more difficult object detection tasks, Gutierrez et al.

(2019) benchmark different feature extractors and detector

architectures using scouting robots, to detect two tomato

whitefly species in their egg and adult insect stages (four classes

in total), in 54,743 images. Their RCNN model can detect the

two insect stages with a 53% accuracy, but performs poorly on

egg stages, with an accuracy of around 8%. Another similar

study (Fuentes et al., 2017) benchmarks different architectures

and feature extractors on a dataset of tomato plants, examining

nine different classes of pests and diseases. Their dataset

contains 5,000 images and more than 43,000 labeled objects.

They compare the performance of Faster R-CNN with different

feature extractors (VGG and ResNet) to that of SSD-ResNet

and R-FCN-ResNet. The R-FCN-ResNet50 model achieves the

highest accuracy with 86% mAP, and notably, an AP of 0.94

on the whitefly class, albeit on only 49 images with 404 insects.

Selvaraj et al. (2019) use similar architectures to perform disease

detection on banana crops, creating robust models with 18

disease classes in 18,000 field-captured images.

Object detection tasks are more difficult to solve, require

higher computation loads, and need fine-grained annotations

which are more expensive to obtain on specialized datasets.

While computing power at the edge increases, the ever-

present need for large amounts of data continues to be an

obstacle to the development of high-performance models. Deep

neural networks need a lot of data to achieve accuracy and

robustness, but this comes at the cost of more computing

resources spent on training (Rizk et al., 2019), and more human

resources spent on data collection and labeling. Generative

Adversarial Networks (GANs) have been used to help mitigate

this problem of data hunger in recent years through synthetic

data generation, but they come with their own sets of challenges

such as the computing power needed to generate high-resolution

images and the difficulty of generating fine-features at low-

resolution. The medical field has made use of these architectures

to overcome the data scarcity problem: Motamed et al.

(2021) leverage GANs to generate synthetic data, boosting the

performance of pneumonia and COVID-19 in X-rays, especially

when compared to traditional augmentation techniques, such

as zooming and rotating. These methods are also leveraged in

the agricultural field, where Bi and Hu (2020) use a Wasserstein

generative adversarial network with gradient penalty to avoid

overfitting on a limited dataset, and it is shown to improve plant

disease classification by around 24%.

To this end, this work proposes the use of a novel,

GAN-based pseudo-automated pipeline for data augmentation,

thereby leveraging synthetic data generation in order to

increase dataset sizes, decrease data collection, and improve the

performance of lightweight CNNs for detecting and counting

large numbers of small pests on plant leaves.

This project combines the two tasks of (1) progressively

building a dataset and (2) building a learning model for multiple

objects types which are very small and very numerous in

each image. This is what mainly sets this work apart from

others. In Ramcharan et al. (2019), and most other works that

target disease detection, the objects are disease symptoms which

are large and less numerous in each image, making the task

relatively easy. Researchers in Gutierrez et al. (2019) obtain

good results on the disease-objects in their dataset, and on the

single pest-object, whiteflies. However, this performance might

be unreliable due to the overfitting on the small dataset of 49

images and 404 whiteflies. Our work separates itself by taking on

the challenging task of detecting small objects in large numbers,

and overcomes the overfitting and under-performance problems

faced by limited datasets through synthetic data generation, and

the hybrid use of GANs in combination with human labeling

and expertise to produce authentic images. The work also uses

data collected out in the field instead of a controlled lab setting,

which should make the models more robust and more-readily

deployable in real-world applications. Our work culminated in

building an open-access tool that researchers in the field can

adopt for developing their machine learning models for pest

detection using a minimal set of real images.

The proposed novel augmentation pipeline is shown to

improve the recall of a YOLO-based object detector for a pest-

counting task by more than 38% points, by increasing a small

dataset size four-fold. The data generation interface is flexible

and applicable to a wide array of object detection tasks, especially

improving performance when dealing with small dataset sizes. It

allows users to generate synthetic data from existing images and

objects, and is validated by a thorough human assessment of the

authenticity of the generated data.

This novel image generation tool, which is publicly available

at: https://github.com/ChristopheKar/cpb-gen, can then be used
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to augment small datasets, which can then be used to train

accurate yet lightweight object detection models. Its annotation

and generation interface is shown in Figure 1. The datasets

and models can be developed, trained, and deployed by low-

resource individuals on low-resource devices for a myriad of

object detection tasks, and more specifically, to detect pests on

plant leaves. Early and accurate detection of plant pests will allow

both small and large-scale farmers to timely treat the plants,

improving crop yield and production.

2. Methodology

This section will breakdown the different parts of the

augmentation pipeline, from the datasets used to the different

networks for image generation and object detection.

2.1. Dataset

The dataset is collected from the American University

of Beirut’s greenhouses, from multiple locations. The images

are taken in the field so that the background and lighting

variations correspond to real-world conditions, contributing to

the robustness of the application. The images are captured using

cell-phone cameras at different scales. The dataset contains the

whitefly species Bemicia tabaci on five different crops: tomato,

eggplant, pepper, beans, and cucumber. The dataset contains a

total of 770 images with around 3,400 labeled whitefly objects. A

training set of sizeDbase-train = 560 is chosen as the base dataset

for the work, containing 2,520 whiteflies, along with a validation

set Dbase-valid = 70 and a test set Dbase-test = 140. The

validation and testing sets are fixed throughout all experiments,

whereas the training set size varies to showcase the effect of data

generation and augmentation.

The main task is counting the number of adult B.

tabaci whiteflies on plant leaves. The B. tabaci whitefly is

considered the second most widespread and economically-

damaging arthropod pests, attacking an estimated range of 36

plant genera throughout 156 countries (Willis, 2017), notably

affecting tomato and cotton crops, but also beans, cucurbits,

peppers, cassavas, and okra (Goolsby et al., 2005). B. tabaci is

distributed worldwide and has been rapidly spreading during

the past 15 years, but is especially damaging in the tropical

and subtropical regions. In addition to its feeding damage, B.

tabaci is also a vector of more than 100 plant viruses, of which

Begomoviruses cause the most damage, leading to crop yield

losses ranging from 20 to 100% (Jones, 2003).

2.2. Data augmentation

Due to the extensive work that is necessary to maintain

a colony of pests of different species on different crop types,

collect enough images, and label each small pest with a

bounding box, data augmentation is a crucial step in the

pipeline toward achieving accurate detection of pests. Due to

the difficulty of generating high-resolution images with fine-

grained features or small objects using GANs, such as insects

in our case, we have resorted to a semi-automated technique

of synthetic data generation, supported by GANs and operated

by humans. Noting the lack of existing augmentation tools, we

have developed an image labeling and generation interface using

Python, OpenCV, and Flask, accessible through a webapp, which

will allow users to produce realistic pest-infested leaf images

starting with a small dataset.

Note: In the abbreviated terms below, the first subscript refers

to the image data: objects, masks, or whole images. The second

subscript refers to the items’ initial or final state.

The augmentation workflow is as follows:

• Create segmentation masks for objects (pests) of interest,

preferably from multiple examples for each class (species),

with Nmi as the number of initial or source object (pest)

masks.

• Optionally augment these object masks using GANs to

increase the final source pool size to Nmf GAN-augmented

object (pest) masks.

• Prepare a small dataset of background (leaf) images, with

or without existing objects (pests), acting as a base/source

dataset to augment, with Nii initial images and Noi initial

objects.

• Label existing objects (pests) by drawing bounding boxes.

• Add new objects to the images by choosing one or multiple

locations for each object type to be generated.

Following this workflow for our use-case, the tool will

produce a final augmented dataset of Nif leaf images with

a total of Nof artificially pasted pests, along with files

that store the annotations and class names. The tool thus

allows users to generate and label synthetic data from

existing images and objects to train and develop detection

models.

The result is a pipeline for generating artificial images of

pest-infested leaves, as shown in Figure 2. The augmentation

stage can be simplified and summarized by a three-step

process: copying the source insect based on its mask, pasting

it on the destination leaf image in a location chosen by

a human reviewer, and blending the source insect with its

destination background to maximize realism. This process will

be referred to as Copy-Paste-Blend (CPB). In order to further

diversify the augmented results, we introduce an additional

step at the beginning of the pipeline: the initial size of the

source mask pool is increased by generating new objects,

thereby generating completely new insect masks not previously

seen in the base dataset and diversifying the end-images. A

Deep Convolutional Generative Adversarial Network (DCGAN)

(Radford et al., 2015) is thus used to generate images of size
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FIGURE 1

Copy-paste-blend tool for synthetic data generation.

FIGURE 2

Copy-paste-blend + DCGAN augmentation pipeline (CPB+GAN).

32x32 representing individual pests of varying sizes. The entire

pipeline will then be referred to as CPB+GAN if it includes

this initial augmentation stage, and CPB-NoGAN if it does not

generate new insect masks. A sample augmentation is shown in

Figure 3.

2.2.1. Generative adversarial network

The DCGAN used for augmenting the pest masks has a

generator made up of three up-sampling blocks each with an

up-sampling layer, a convolution layer with ReLu activation,

and a batch normalization layer, and a final convolution layer
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FIGURE 3

CPB+GAN output comparison.

with a hyperbolic tangent activation, outputting a 32 × 32 RGB

image of a whitefly. The discriminator has three convolutional

blocks using ReLu activation and dropout, as well as batch

normalization on the last two blocks. The final layer is a

fully-connected sigmoid activated layer. The entire network is

optimized using Adam with a learning rate of 0.0002.

2.3. Object detection

For detecting pests on the leaf images, the single-stage, real-

time YOLO networks are used for the experiment iterations.

We consider the YOLOv3 (Redmon and Farhadi, 2018) model

as well as its lightweight version, YOLOv3-tiny, in addition

to a custom YOLO-based PestNet. YOLOv3 is a performant

object detection model that can produce high-accuracy results

while running at a high frame-rate, providing detections in real-

time (>24 frames-per-second). Real-time detection is important

because it allows users to receive instantaneous results in the

field, and because it means that the network will still be usable

even when ported to low-resource devices. The modified YOLO

network, dubbed PestNet, is based off the DeepSperm network

by Hidayatullah et al. (2020), whose task was to achieve a real-

time bull-sperm cell detection in densely populated microscopic

observation videos. The original DeepSperm network uses 29

convolutional layers, a dropout layer, and a final detection layer

combined with image augmentation to prevent overfitting. It

was modified through the addition six convolutional layers and

a weak dropout layer with p = 0.2, and called PestNet. Whitefly

detection and bull sperm cell detection are similar tasks due to

the small size of the objects and the large numbers in which they

are present in images.

2.4. Tool validation

To evaluate the realism of the generated images and the

tool’s effectiveness, reviewers from two different backgrounds,

agricultural or image processing, were asked to visually assess

real and synthetic datasets and label each image as real or

artificial, but also to count the number of fake occurrences

(generated pests). They provided reasons as to why certain

objects were deemed unauthentic, in order to understand

the shortcomings of the pipeline and the areas that need

improvement.

3. Experimental results

3.1. Experimental setup

All experiments were performed on a Tesla V100 GPU

with 32 GB of VRAM, using a batch size of 64 subdivided

into four mini-batches of size 16, using a resolution of

512 × 512 pixels for all images. The models were trained

for 3,000 batches, equivalent to about 81 full epochs. All

object detection networks were trained using the Darknet

framework (Redmon, 2013–2016), while the generative

networks were trained using Keras and Tensorflow (version

1) (Abadi et al., 2015).

3.2. Baseline performance

The first batch of experiments aims at evaluating object

detection models on the raw non-augmented dataset to

provide a baseline performance which can be referenced
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when comparing the different augmentation techniques

and experiments.

The baseline models are all validated and tested on the same

sets, Dbase-valid = 70 images and Dbase-test = 140 images, as

stated in Section 2.1. The training is done on two subsets of the

base dataset, one of size 560 images (Dbase-train-560) and another

of size 140 images (Dbase-train-140).

These baseline results are shown in Table 1. Counting the

number of insects on the leaves represents the essence of this

pest detection task, and as a result, recall constitutes one of

the most important metrics to evaluate the performance of the

models. Drawing extremely accurate bounding boxes around

the pests is not as essential as detecting all the pests present

on the leaf. The recall metric is thus used at two different

Intersection-over-Union (IoU) thresholds, at 0.50 and 0.75

(R@.50 and R@.75). In other words, the IoU threshold defines

if a detection is counted as correct (positive): if the ratio of

the areas of overlap between the detected bounding box and

the groundtruth bounding box is higher than the threshold

fraction, the detection is counted as true. The Average Precision

(AP) metric also thresholds by IoU, but combines information

from both recall and precision for a more comprehensive

evaluation. Finally, the model size and average training time

per batch of images allow us to get an idea of the resource-

consumption of the model. The YOLOv3 model exhibited the

best performance when trained on Dbase-train-560, followed

closely by PestNet. YOLOv3 only outperforms PestNet by 1.3,

7.3, and 1.9% in R@.50, R@.75, and average IoU, respectively.

On the other hand, the PestNet model size is more than 17

times smaller than YOLOv3, which will make it much easier

to load on low-end devices. YOLOv3-Tiny performs badly

across the board despite being comparably light to PestNet.

When trained on Dbase-train-140, PestNet seems to generalize

better than YOLOv3 and outperforms it by a slight margin,

scoring 2.6, 11.7, and 4.8% higher than it in R@.50, R@.75,

and average IoU, respectively, despite being a smaller model.

The performance of both models dropped by almost 50% on

all metrics when the training set size dropped from 560 to

140 images.

3.3. Data augmentation

To evaluate our data generation pipeline, the different

augmentation variations are tested on the PestNet model

because of its superior balance between accuracy and speed.

PestNet is able to offer accuracy on-par with that of YOLOv3

while being a much smaller and lighter model.

The first variation is the CPB-NoGAN version of the

pipeline, augmenting the starting dataset size with the original

set of pest masks of size Dps = 20. The second variation is

coupling the CPB pipeline with an initial augmentation of source

pest masks using the DCGAN (CPB+GAN) to yield a usable

mask pool of size Dpf = 60.

The augmentation pipeline is applied on the two sets used

for the baseline training: (1) Dbase-train-140 is augmented four-

fold for a final size of 560 images. (2)Dbase-train-560 is augmented

two-fold for a final size of 1,120 images. Each of these sets is

thus augmented twice, once with the original object mask pool of

20 images (CPB-NoGAN), and once with the GAN-augmented

object mask pool of 60 images (CPB-NoGAN). Note that all

datasets are multiples of a fundamental or base dataset size of

Db = 140 images. These iterations are summed up in Table 2,

along with the performance results. It is interesting to examine

the performance gains to each metric brought forth by each part

of the pipeline: the simple increase in the number of images

(CPB), and the increase in the diversity of the inserted objects

(CPB+GAN). The Recall@.50 will mainly measure the number

of detected pests (sensitivity), while the average IoU will mainly

indicate the precision with which the bounding boxes are drawn.

This comparison is shown in Figure 4 shows that augmenting

the dataset size using CPB-NoGAN from 140 to 560 images

brings PestNet’s recall metric close to the baseline model trained

on 560 images (within 1.2%), while the average IoU does not

quite reach the same level as before (still 3.9% away). This may

be due to the limitedmask pool size, which results in the same 20

whiteflies being added to all the images. This restricted diversity

in the augmented images leads to reduced performance when

compared to a model trained on an original dataset equal in

size to the augmented dataset: the original dataset will be more

varied in terms of objects (insects) it contains. This problem is

solved through the use of GANs to augment the starting mask

pool from 20 to 60 masks. The increase in diversity in the final

augmented dataset will lead to better generalization on the test

set, contributing to the precision of the detected bounding box.

The graph in Figure 4 clearly shows how the Average IoUmetric

is more sensitive to the dataset’s diversity than the recall metric:

the performance gain in average IoU from CPB-NoGAN to

CPB+GAN is at 2.2% points, while the increase in recall between

the two pipelines is only at +0.4% points, for the original dataset

size of 560 images.

3.4. Human visual assessment

The image generation pipeline is not only validated by

the performance boost of the detection model, but also by a

visual assessment of the authenticity of the generated images by

humans. The reviewers are 19 students (11 females and 8 males)

in the same age group of 20–25, but come from two different

backgrounds: computer science/vision (13) and agriculture (6).

The technical background comes into play when evaluating

artificial plant and pest images as the reviewers from agricultural

backgrounds are better trained and equipped to recognize

anomalies in the synthetic data. The reviewers assessed a total
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TABLE 1 Baseline YOLO performance (no augmentation).

Network Training size R@.50 R@.75 Avg IoU Model size (MB) Train. time/Batch (s)

YOLOv3 560 0.955 0.603 0.752 245 6.68

YOLOv3-Tiny 560 0.528 0.135 0.472 31 5.00

PestNet 560 0.943 0.562 0.738 14 5.27

YOLOv3 140 0.532 0.214 0.330 245 6.65

YOLOv3-Tiny 140 0.196 0.042 0.101 31 4.98

PestNet 140 0.544 0.239 0.346 14 5.31

Best metrics are shown in bold.

TABLE 2 PestNet test performances for di�erent CPB configurations.

Pipeline Original dataset size Augmented dataset size Pest masks pool Recall @.50 Average IoU

CPB-NoGAN 140 (Ds*1) 560 (Ds*4) 20 0.932 0.709

CPB+GAN 140 (Ds*1) 560 (Ds*4) 60 0.946 0.735

CPB-NoGAN 560 (Ds*4) 1120 (Ds*8) 20 0.977 0.806

CPB+GAN 560 (Ds*4) 1120 (Ds*8) 60 0.981 0.828

FIGURE 4

Performance gains of PestNet with CPB for Recall@.50 and

Average IoU.

of three artificially-generated sets of 60 images each. The first

two sets were generated using the CPB-NoGAN pipeline, from

20 original whitefly objects, at a lower-resolution of 512 × 512

pixels, and a higher-resolution of 1,024× 1,024 pixels. The third

set was generated using the CPB+GANpipeline, from 20 original

whitefly objects augmented to 60, at the resolution of 512× 512

pixels for the images. The 512 × 512 resolution corresponds

to the models’ resolution for a fair comparison, but at this size

the anomalies in the synthetic data are more difficult to detect

for humans.

Overall, the reviewers were able to distinguish fake objects

with an average accuracy of 56% at low resolution, and 67%

at high resolution, as shown in Figure 5. When asked to count

the numbers of fake occurrences in an image, the accuracy was

26% with an RMSE of 8.2 for low resolution, and an accuracy

of 42% with an RMSE of 7.3 for high resolution, as shown

in Figure 6. Clearly, the task is easier at higher resolution,

but the authenticity of the generated data can be validated by

low overall performance of the reviewers on these two sets. It

is interesting to note the difference in performance between

the vision-background students and the agriculture-background

students: the top reviewer is a researcher in agriculture and can

distinguish real from fake images with an accuracy of 79 and

91% for low and high resolution, respectively, and can count the

number of fake occurrences with an accuracy of 42 and 72%.

Compared to the average reviewer, This is an increase of around

x1.4 for binary classification of real/fake, and x1.6 for counting.

3.5. Discussion

We have shown results for baseline YOLO performances,

and the effect of different data augmentation pipelines on these

performances. The baseline YOLO performances justify the use

of PestNet, since it is a lightweight object detection model,

capable of almost matching YOLOv3’s performances while still

being a much smaller model, which makes it more likely to be

implemented in applications on low-cost devices. The merits

of PestNet are further justified by the failure of YOLOv3-Tiny,

another lightweight model, to produce similar results. The main

focus of this work is improving these baseline performances,

through the use of the data augmentation pipeline, dubbed
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FIGURE 5

Visual assessment of generated datasets: real/fake classification

accuracy (%).

FIGURE 6

Visual assessment of generated datasets: RMSE on number of

fake occurrences.

CPB. This pipeline allows us to increase the dataset sizes by

reproducing the objects of interest (whitefly pests) on different

plant leaves, making the model more robust by diversifying the

examples it sees. As a result, augmenting the training set from

140 to 560 images using CPB-NoGAN yields a jump by 38.8%

points for R@.50, almost matching the performances of a model

trained on 560 original images. This highlights the need for such

pipelines in scenarios where the data is limited. While CPB-

NoGAN boosts both the recall and average IoU metrics, the

CPB+GAN pipeline allows us to generate new pests, increasing

the diversity of the objects of interest, and further boosting

the resulting average IoU, which measures the precision in the

bounding box detection. Therefore, starting from 140 images

and applying the CPB+GAN augmentation, we can match the

performance of a model trained of 560 images from the start.

The augmentation pipeline has therefore fulfilled its function

in decreasing the effect of data scarcity. Finally, the human

reviewers serve to assess and help explain both the benefits and

shortcomings of this pipeline. At the model’s resolution, the

reviewers can distinguish real from fake images with an accuracy

of 56%, which means that the generated are realistic enough. At

higher resolutions, this accuracy goes up to 67%, which means

the images are still somewhat realistic, but are now easier to spot

and may not be as effective in portraying real-world scenarios.

The augmentation pipeline is then well-suited for training at

a resolution 512 × 512, but should probably be improved

before being used with higher-resolution models. However, it is

important to note that most datasets do not include images at

resolutions of 1,024 × 1,024, and that using lower resolutions

can help withmodel portability and computational loads on low-

end devices. The reviewers pointed out that potential areas of

improvements include refining the blending process to reduce

pest outline and color issues. Overall, these results justify the use

of the PestNet model for this pest detection task, as well as the

CPB+GANpipeline for generating synthetic datasets. Compared

to the literature, this work differs from the literature in its

use of non-traditional augmentations, leveraging GANs and a

semi-automated process to artificially generate new objects of

interests in new configurations on different backgrounds. It also

differs in its use of lightweight architectures rather than larger

and slower models like the popular ResNet + Faster-RCNN for

object detection, keeping portability and embeddability. Finally,

it also stands out in the difficulty of the task at hand: detecting

small numerous pests on a plant leaf is harder than detecting

diseases whose symptoms take up a large portion of the leaves,

or larger pests that are more prominent in the images, and

present in fewer numbers. One shortcoming, which can also be

addressed to other works in the literature, is the difficulty of

comparing the detection performances of different models, due

to the inherent differences in the studied crops, diseases, and

pests, and the unavailability of public datasets that target similar

object detection tasks.

4. Conclusion

In this work, we developed a synthetic data generation

pipeline and online tool leveraging GANs, that can be used

to augment small datasets in order to achieve accurate object

detection with lightweight models. The publicly accessible tool

allows even inexperienced users to create large datasets starting

from a few real images. Developing simple tools contributes

to enhanced food security by allowing all stakeholders in

agriculture, whether big or small-time farmers, to optimize their

pest management strategies and reduce the yield loss incurred by

pest attacks.

The validity of the pipeline and accompanying tool was

tested on an pest detection task for different sizes of a B.

tabaci whiteflies dataset, collected at the American University

of Beirut’s greenhouses. Data generation allowed us to augment

a dataset of 140–560 images, increasing the performance of a

lightweight object detection model, PestNet, by 38.8% points

in R@.50, and by 36.3% points in average IoU. When GANs

are incorporated as a method to augment the starting object

masks (pests) inserted into images, the recall and average IoU

are further increased by 1.4 and 2.6% points, respectively. The
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GAN variation of the pipeline especially aids in improving

the precision of the detected bounding box by boosting the

generalization of the model on the test set due to the increased

variety in the introduced augmentations. Thus, starting from

only 140 images and using data augmentation, we were able to

match the performance of a model trained on 560 images.

The tool’s validity is also tested through visual assessment

of its image outputs, conducted by 19 student reviewers from

agricultural or machine-learning backgrounds. This review

serves to evaluate the authenticity of the augmented images

and to identify its weaknesses for further improvement. When

presented with a dataset with 512 × 512 RGB images, reviewers

were only able to classify the images are real or generated

with an average binary accuracy of 56%, with the best reviewer

achieving 79% accuracy (agricultural background). On the more

challenging task of counting the number of fake objects in

each image, the binary accuracy was only 26%, with an average

RMSE of 8.2. The pipeline is then well-suited for realistic data

generation, but could still be improved.

The lightweight model and the small dataset size we use are

both indications that this work may be beneficial for real-world

applications on low-end devices. However, some shortcomings

of this study include the difficulty of comparison with the

literature for similar tasks due to the unavailability of data, and

focus on the detection of only one pest type, the whitefly. Future

work could then target the expansion of the existing dataset to

include more pests, to strengthen model robustness, range of

applications, and validation strength. The CPB pipeline could be

improved as well by refining the blending process to reduce pest

outline and color issues, marked as being the top indicators of a

fake pest by reviewers. Finally, additional work could target the

augmentation pipeline and tool to include additional features

such as model training and deployment, further bridging the gap

betweenmodel development and the end-users, which are small-

time farmers interested in improving their crop health with early

pest detection.
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