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Populus not only has significant economic and ecological values, but also serves as a
model tree that is widely used in the basic research of tree growth, physiology, and
genetics. However, high levels of morphological variation and extensive interspecific
hybridization of Populus pose an obstacle for taxonomy, and also to the understanding
of phylogenetic interspecific relationships and biogeographical history. In this study,
a total of 103 accessions representing almost all the wild species of Populus were
collected and whole-genome re-sequenced to examine the phylogenetic relationships
and biogeography history. On the basis of 12,916,788 nuclear single nucleotide
polymorphisms (SNPs), we reconstructed backbone phylogenies using concatenate
and coalescent methods, we highly disentangled the species relationships of Populus,
and several problematic taxa were treated as species complexes. Furthermore, the
phylogeny of the chloroplast genome showed extensive discordance with the trees from
the nuclear genome data, and due to extensive chloroplast capture and hybridization of
Populus species, plastomes could not accurately evaluate interspecies relationships.
Ancient gene flow between clades and some hybridization events were also identified
by ABBA–BABA analysis. The reconstruction of chronogram and ancestral distributions
suggested that North America was the original region of this genus, and subsequent
long dispersal and migration across land bridges were contributed to the modern
range of Populus. The diversification of Populus mainly occurred in East Asia in recent
15 Ma, possibly promoted by the uplift of the Tibetan Plateau. This study provided
comprehensive evidence on the phylogeny of Populus and proposed a four-subgeneric
classification and a new status, subgenus Abaso. Meanwhile, ancestral distribution
reconstruction with nuclear data advanced the understanding of the biogeographic
history of Populus.
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INTRODUCTION

Populus, collectively known as poplar, aspen, cottonwood, or
“Yang Shu” in Chinese, is widely distributed from subtropical to
boreal forests in the northern hemisphere, primarily in temperate
forests (Ding, 1995; Eckenwalder, 1996). In native ecosystems,
trees of the genus Populus play a major role, recolonizing sites
after disturbances and providing important habitats for wildlife.
Owing to its excellent features, poplars have been planted in
many parts of the world and have become a highly promising
crop option. They are not only widely used in windbreaks,
protective stands to prevent soil erosion, and in row or gallery
plantings to stabilize the banks of streams and canals, but
also show impressive productivity for desirable wood products
(Stettler et al., 1996). Furthermore, poplar is also recognized as
an excellent model tree for the study of genetics, tree growth, and
its underlying physiology for its fast growth rate, easy vegetative
propagation, and relatively small genome (Stettler et al., 1996;
Bradshaw et al., 2000; Cronk, 2005). The first completion of
tree genome sequence of Populus trichocarpa also shed new
light on the exploration of wood development, nutrient and
water movement, crown development, and disease resistance in
trees (Tuskan et al., 2006). Moreover, a clear understanding of
the evolutionary history of Populus will provide an important
foundation for biological studies and genetic breeding programs.

Even though vastly valuable, the genus Populus has
consistently been considered a troublesome taxonomic
group. It is widely accepted that Populus consists of six
sections [Abaso, Turanga, Populus (synonym: Leuce), Leucoides,
Aigeiros, and Tacamahaca], primarily based on morphological
evidence (Eckenwalder, 1996). However, there is still much
debate over species delimitation and classification. Depending on
classification predilections, approximately 22–100 natural species
and hundreds of hybrids and cultivars have been proposed for
this genus (Dickmann and Stuart, 1983; Eckenwalder, 1996;
Fang et al., 1999; Chao et al., 2009; Slavov and Zhelev, 2012).
Flora of China (Fang et al., 1999) recorded 71 species within
Populus in China and reckoned that nearly 100 species exist
throughout the world. On the other hand, Chinese taxonomists
were criticized as “splitters,” who wish to give formal recognition
to any entries that can be recognized in the field and herbaria
and were reluctant to accept within species variation, instead
of “lumpers,” who accept a broader range of variation within
species (Eckenwalder, 1996). Thus, it is particularly important to
detect the interspecies variation and phylogenetic relationships
of Populus using genetic evidence.

Molecular methods have been used to analyze the
phylogenetic relationships of Populus, but the results have
not consistently supported morphological classifications, and
intersectional relationships have been the subject of controversy.
Three non-coding regions of chloroplast trnT-trnF and two ITS
sequences were used to reconstruct the phylogeny of 17 species
represented sect. Tacamahaca, sect. Aigeiros, and sect. Populus;
the results showed that sections Tacamahaca and Aigeiros were
polyphyletic (Hamzeh and Dayanandan, 2004). In another
phylogenetic study, based on four chloroplast fragments (rbcL-a,
psbI-psbK, psbA-trnH, and trnL-trnF), the monophyly of sections

Leucoides and Populus were recovered, but sect. Tacamahaca
were divided into two distinct clades (Yun et al., 2015). Moreover,
a study based on 23 single-copy nuclear DNA and 34 chloroplast
fragments firstly suggested the phylogenetic positions of the
sixth section, sect. Abaso (only include Populus mexicana) (Liu
X. et al., 2017). With the combination of nuclear and chloroplast
DNA fragments, sect. Tacamahaca and sect. Aigeiros have usually
been inferred to be polyphyletic or hybrid origin (Hamzeh and
Dayanandan, 2004; Wang et al., 2014; Yun et al., 2015; Liu X.
et al., 2017). Nevertheless, phylogenetic positions of many species
have not been resolved owing to limited genetic information
from molecular markers and DNA fragments. Chloroplast
genomes can provide much more informative sites to reconstruct
a more solid phylogeny which illustrated the relationship
of maternal lineage. Five major clades have been recovered
within Populus in previous plastome studies (Zhang L. et al.,
2018; Zong et al., 2019). Sect. Populus formed a monophyletic
clade with Populus nigra nested, species of sect. Leucoides,
sect. Tacamahaca, and sect. Aigeiros expressed polyphyletic
relationships. However, topology based on the whole length of
genomes and result from 77 chloroplast protein-coding genes
were inconsistent (Zhang L. et al., 2018; Zong et al., 2019).
For Populus, chloroplast data seldom accurately reflect species
relationships due to the severe effects of chloroplast capture
(Liu X. et al., 2017) and hybridization. Whole-genomic data
extracted from next-generation sequencing has been extensively
used to resolve complicated systematic problems (Xu et al.,
2012, 2014; Zhou et al., 2014; Chen et al., 2016, 2018). With
the support of low coverage whole-genome sequencing, four
main clades from 29 Populus species were recovered with high
bootstrap supports (Wang et al., 2020) Sect. Abaso, sect. Turanga,
and sect. Populus were all well-founded monophylies. The
last clade, which was named ATL clade in Wang et al. (2020),
consisted of three polyphyletic sections, sect. Leucoides, sect.
Aigeiros, and sect. Tacamahaca. These three sections were ever
morphologically identified as subg. Eupopulus (Dode, 1905).
Hitherto, a relatively large number of Eupopulus species were
not involved in previous phylogenetic studies, and molecular
makers also should be improved to provide higher resolution.
In addition, hybridization prevented the sole use of chloroplast
genome to address these issues. Therefore, whole-genome data
and comprehensive sampling should be conducted to decipher
the phylogenetic relationships of Populus.

Populus has a widespread distribution throughout the
northern hemisphere, and its diversification center and
distribution center are in East Asia (Gong, 2004). However,
the origin and diffusion of Populus still remain unclear and
controversial. Two main hypotheses about the area of origin,
China or North America, have been proposed. First, owing
to the highest degree of diversification and the earliest fossils
(Populus latior) in East Asia, Populus was considered to have
originated from East Asia and spread from east to west (Ding,
1995; Gong, 2004). In contrast, another hypothesis is that the
Populus species first appeared in North America and then
dispersed to other continents, primarily because the earliest fossil
records were found in North America (Liu X. et al., 2017). The
earliest leaves fossils in North America that resembled Populus
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were also present in the Paleocene, and the first credible fossils
with a rare twig bearing both leaves and fruits of Populus were
identified in UT, United States and attributed to sect. Abaso
(Collinson, 1992; Eckenwalder, 1996). Fossils of the extinct sister
genus of Populus and Salix, Pseudosalix, were also found at the
same formation (Boucher et al., 2003). The occurrence of them
raised the possibility of a North American origin of Salicaceae.
Alternatively, the phylogenetic position of P. mexicana provides
additional evidence for this hypothesis. This only extant species
of sect. Abaso, which is restricted to Mexico, was supported as
the basal taxon of Populus phylogeny using nuclear markers
(Liu X. et al., 2017; Wang et al., 2020). Both assumptions
merely consulted morphological and fossil evidence, and no
robust phylogenetic studies have been reconstructed to provide
evidence for the origin and evolution of Populus.

Since previous phylogenetic examinations involved limited
sequencing techniques or incomplete sampling, interspecific
relationships of Populus still remain unclear. Thus, its divergence
and biogeographical history were not yet well defined. A well-
resolved phylogeny is the key to understand the evolutionary
history and patterns of species diversification of Populus.
In this study, with extensive and nearly complete sampling,
we respectively reconstructed the backbone phylogeny for
Populus based on variants identified from nuclear genomic data
and complete chloroplast genomes to clarify the phylogenetic
relationships of Populus, especially subg. Eupopulus. These
two phylogenies were then compared to examine the conflicts
between biparental and maternal inheritance. We further
reconstructed the divergence and biogeographical history of
Populus.

MATERIALS AND METHODS

Plant Material
Sampling was conducted primarily following the taxonomy
system of Eckenwalder (Eckenwalder, 1996) and the Flora of
China (Fang et al., 1999). We also referred to other treatises
and databases, including The Woody Plants of Korea1, Salicaceae
of Japan (Hiroyoshi, 2001), the flora of USSR (Nazarov,
1936), Kenya trees, shrubs, and Lianas (Beentje et al., 1994),
the Euro + Med PlantBase2, and The Plant List3. In total,
103 accessions of 54 Populus species were collected, which
represented nearly all of the native species, as well as two
variants and two hybrid species (Supplementary Table 1). The
cultivated species and artificial hybrids were not included. Fresh
leaves of 80 samples were collected from natural adult trees and
dried using silica gel. The voucher herbarium specimens were
deposited in the Museum of Beijing Forestry University (BJFC)
and Herbarium, Institute of Botany, CAS (PE), Beijing, China.
Three tissue samples were obtained from New York Botanical
Garden DNA Bank (New York, NY, United States), and the
images of voucher herbarium specimens were available on the

1https://florakorea.myspecies.info/en
2http://ww2.bgbm.org/EuroPlusMed/
3http://www.theplantlist.org/

web of the New York Botanical Garden4. Two tissue samples
of P. mexicana were transferred from the Florida Museum of
Natural History (Gainesville, FL, United States) and University
of Arizona Campus Arboretum (Tucson, AZ, United States),
respectively. The images of voucher herbarium specimens or live
tree were also available on their website5,6. Six DNA samples were
obtained from the DNA and Tissue Bank at Kew7. In summary,
most of taxa were sampled by 1–2 accessions. Considering the
wide distribution or disputed classification, P. nigra, Populus
pseudoglauca, Populus szechuanica, Populus rockii, P. szechuanica
var. tibetica, Populus cathayana, and Populus koreana were
collected from 3 to 5 accessions, respectively. In addition,
previous sequencing data of 12 samples were included from
Sequence Read Archive (SRA) in the National Center for
Biotechnology Information (NCBI) database and the Genome
Sequence Archive (GSA) in the BIG Data Center, Beijing Institute
of Genomics (BIG), Chinese Academy of Sciences, respectively.
Two Salix species were used as outgroups.

Sequencing and Quality Control
We utilized the CTAB protocol with minor modifications to
extract the whole-genomic DNA from the tissue samples (Doyle,
1987). All of the DNA samples were shipped to Novogene8

(China) for subsequent sequencing. After the DNA quality
assessment, each sample was sheared to construct a pair-end
sequencing library with an insert size of c. 350 bp and sequenced
using an Illumina HiSeq 4000 platform (Illumina, San Diego,
CA, United States).

Low-quality reads of raw sequencing data were removed with
the following criteria: (1) the proportion of N was greater than
10%, and (2) the proportion of low-quality bases (Q ≤ 5) was
greater than 50%. The clean data from sequencing company were
than inspected and filtered by FastQC9 and trimmomatic v.0.36
(Bolger et al., 2014). The bases with a quality <3 at the head and
tail were filtered. A sliding window of size 4 bp was used to filter
the bases with a mean quality <15. At last, reads with a size not
<50 bp were retained.

Nuclear Variants Discovery
A BWA-SAMtools-GATK pipeline was performed to discover
variants. First, Bwa-MEM v0.7.17-r1188 (Li and Durbin, 2009)
with default parameters was used to map pair-end resequencing
reads of each sample to the nuclear genome of P. trichocarpa
(Tuskan et al., 2006). Secondly, mapping reads were converted
to a BAM file and sorted using the SAMtools package v1.6
with the command “-bF 4 -q 20” filtered (Li et al., 2009).
PCR duplication was marked using Picard tools v.2.1.110.
Short variants were called using the Genome Analysis Toolkit
(GATK) v4.1.4 (McKenna et al., 2010) with HaplotypeCaller and

4https://www.nybg.org/
5https://www.floridamuseum.ufl.edu/
6https://apps.cals.arizona.edu/
7https://dnabank.science.kew.org/
8http://www.novogene.com
9www.bioinformatics.babraham.ac.uk/projects/fastqc/
10http://picard.sourceforge.net/
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GenotypeGVCFs tools. Hard filters implemented in GATK were
applied to the raw variants with the parameters as “QD < 10.0
| | FS > 60.0 | | MQ < 40.0 | | MQRankSum <−12.5 | |
ReadPosRankSum <−8.0,” and missing data was filtered using
vcftools v 0.1.17 (Danecek et al., 2011). SNPs were extracted using
the SelectVariants tool implemented in GATK. The final set was
merged with outgroups set implemented in GATK v3.8.0 with
the CombineVariants tool (McKenna et al., 2010). SNPs were
annotated referring to the P. trichocarpa genome using SnpEff
v4.3t11. A principal component analysis (PCA) of Populus was
performed using plink v1.90 (Purcell et al., 2007) based on these
SNPs of the whole genome.

Complete Chloroplast Genomes
Assembly
Geneious Primer (Kearse et al., 2012) was used to assemble the
chloroplast genome. The paired-end reads were assembled to the
reference chloroplast genome of P. trichocarpa (Tuskan et al.,
2006). The Map tool with default parameters was used to filter
the available reads, which were used for de novo assembling.
Medium-low sensitivity was used. We then used the Fine Tuning
function to bridge the gaps. Complete and partial assemblages
for the organelle genomes were remapped using original reads.
Plann (Huang and Cronk, 2015) was employed to annotate
the chloroplast genome sequence, and all the annotations were
manually corrected using the Geneious Primer.

Phylogeny Inference
A maximum likelihood (ML) phylogenetic tree based on whole-
genomic SNPs was constructed using IQ-TREE v1.6.9 (Nguyen
et al., 2014). The best model was proposed by ModelFinder
(Kalyaanamoorthy et al., 2017) implemented in IQ-TREE. The
phylogeny was inferred simultaneously with 1,000 ultrafast
bootstrap approximation (Hoang et al., 2018) and a 1,000 SH-
aLRT branch test (Guindon et al., 2010).

We also conducted two coalescent approaches to reconstruct
the species tree. The sliding-window method is the most common
practice to build a species tree, and has been utilized in studies
of bacteria, insects, mammals, and plants (Takuno et al., 2012;
Zhang et al., 2016; Liu Y. et al., 2017; Chen et al., 2019).
Thus, concatenated SNPs were filtered as 10-kb non-overlapping
windows across the genomic alignments as “super-genes” for tree
constructions. The gene trees were constructed using RAxML
v8.2.11 (Stamatakis, 2014) based on the GTRGAMMA model.
The fast bootstrap was conducted for 100 times with the option “-
f a.” Finally, the species tree was inferred using ASTRAL v5.15.1
(Zhang C. et al., 2018). In addition to evaluating the gene tree
discordance, an alternative quartet topologies test to show quartet
supports for the tree topologies was conducted using the -t 8
option in ASTRAL. Additionally, we performed an SVDquartets
analysis (Chifman and Kubatko, 2014) in PAUP∗ v4.0a168
(Swofford, 2003) using the concatenated SNPs with 100 bootstrap
replicates and all quartets sampled to infer a species tree.

The plastome sequences with one inverted repeat (IR)
removed were aligned using the MAFFT online version with

11http://snpeff.sourceforge.net/

the default parameter (Katoh et al., 2005). The ML phylogenetic
tree was reconstructed using IQ-TREE v1.6.9 (Nguyen et al.,
2014) based on chloroplast data. The parameter settings were
the same as above.

ABBA–BABA Analysis
At first, an alignment-based method was used to infer the
ancestral state and the nuclear genome of Salix dunnii (He et al.,
2021) was aligned to the P. trichocarpa reference genome (Tuskan
et al., 2006) using minimap2 (Li, 2018). The alignment was
transferred to variant call format (VCF) using SAMtools v1.6
(Li et al., 2009) and BCFtools v1.11 (Danecek and McCarthy,
2017). Then, the ABBA–BABA test was performed using Dsuite
v0.3 (Malinsky et al., 2021) to assess evidence for introgression
of Populus. The Patterson’s D-statistic (Durand et al., 2011)
was calculated using the Dtrios program from Dsuite. In brief,
for the ordered alignment {[(P1, P2), P3], O}, the ABBA site
pattern refers the shared derived alleles of P2 and P3, and BABA
site pattern refers to the shared derived alleles of P1 and P3.
Under the null hypothesis of incomplete lineage sorting (ILS),
the number of ABBA sites and BABA sites is expected to be equal
(D = 0). Alternatively, significant deviation of D from 0 suggests
other events, in particular P3 exchanging genes with P1 or P2
(Durand et al., 2011).

Divergence Time Estimation
The best-preserved fossils of Populus with a rare twig that bore
both leaves and fruits originate from the Eocene Green River
Formation in Utah, Colorado, and Wyoming in the United States,
and these fossils occurred in the early Middle Eocene (∼48 Ma)
(Boucher et al., 2003; Manchester et al., 2006). All of them were
similar to P. mexicana (Manchester et al., 1986) and attributed to
sect. Abaso (Eckenwalder, 1977; Manchester et al., 2006). At the
same formation, another famous fossil is Pseudosalix handleyi,
which also has leaves and fruits attached and represents a lineage
separate from Populus and indicates that Populus (and likely
Salix) represented a unique lineage(s) at this time (Boucher et al.,
2003). Thus, the divergence time between Populus and Salix was
constrained to 48.13 and 48.22 Ma. Another relatively reliable
fossil was recorded in the Middle Miocene, designated Populus
zhenyuanensis (Liang et al., 2016), which is similar to extant
P. szechuanica in leaf shape, size, and surface detail. Therefore,
the divergence age between the P. szechuanica clade (including
P. szechuanica, P. rockii, and Populus xiangchengensis) and the
Populus ciliata clade (including P. ciliata, Populus yatungensis,
P. szechuanica var. tibetica, Populus haoana, P. pseudoglauca, and
Populus mainlingensis) was calibrated to 11.61–15.97 Ma.

Since the monophyly of many species was not recovered in
the plastomes tree, which only represented the maternal lineage,
nuclear genome SNPs data was used to determine the divergence
times. With the exception of two hybrids, Populus wenxianica
(presented as a cultispecies) and redundant accessions, a new
set, including 55 Populus individuals and two outgroups, was
generated to estimated divergence dates. Each species or variety
remained as only one accession, but P. szechuanica and P. koreana
remained as two. At first, a new tree was reconstructed as the
input tree using IQ-TREE v1.6.9 (Nguyen et al., 2014) with
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the same parameter as above. Then, two distinct runs were
conducted with the same approximation likelihood analysis using
MCMCtree of the PAML package (Yang, 2007). The model
of site substitute was set as GTR. A Markov Chain Monte
Carlo (MCMC) run was discarded for the first 40,000,000 burn-
in iterations. Sampling was taken at every 1,000 iterations
with 100,000 times.

Ancestral Area Reconstruction
To infer the ancestral geographic distributions, the R package
“BioGeoBEARS” (Matzke, 2013) implemented in RASP (Yu et al.,
2015) was used to test the best model. The DEC + J (Dispersal-
Extinction-Cladogenesis) model with the highest AIC_wt value
was selected to reconstruct the ancestral geographic distributions.
The divergence tree reconstructed by MCMCtree was used as
the input tree. According to the distribution of extant Populus
species and extinct fossils, four operational geographic areas
were divided into (A) Europe, North Africa, West-Central Asia
and Xinjiang, China; (B) North Asia, East Asia and the edge of
Himalayas; (C) Kenya; and (D) North America. The boundaries
of the four areas were defined referring to the biogeographical
regionalization of distributions of dicotyledonous plants in the
world (Shen et al., 2018). In addition, the maximum number of
areas was set to four.

RESULTS

Sequence Data Processing
We resequenced 91 accessions, and 676.58 Gb raw data was
generated. Totally, 735.14 Gb clean data of 103 individuals
were obtained for subsequent analysis. After a series of strict
analyses, an average of 56.71% reads was mapped to the genome
P. trichocarpa. The average coverage depth and average mapping
coverage of the genome P. trichocarpa were 10.93× and 78.20%,
respectively (Supplementary Table 1). Finally, 12,916,788 high-
quality SNPs were obtained (Supplementary Table 3).

In total, we assembled 103 complete chloroplast genomes,
which had a common typical quadripartite structure, containing
a large single-copy (LSC) region and a small single-copy (SSC)
region separated by two IRs. The plastid genomes length of these
103 accessions ranged from 155,170 (Populus grandidentata #1)
to 158,474 bp (Populus ilicifolia #1) (Supplementary Table 2).
The plastomes of almost all the species have been identified
with 129 genes, composing 85 coding sequences (CDSs), 8
rRNAs, and 36 tRNAs. Owing to the loss of two rps7 genes,
four species, Populus pruinosa, P. pseudoglauca, P. mainlingensis,
and Populus glauca, contained only 127 genes, respectively
(Supplementary Table 2).

Phylogeny Based on Nuclear Single
Nucleotide Polymorphisms
For the 12,916,788 SNPs data set, 3,110,298 were constant;
1,878,806 were singleton sites, and 7,927,684 were parsimony-
informative sites. The ML tree recovered four main clades of
Populus. P. mexicana, the only extant species of sect. Abaso,

diverged first (Figure 1). Sect. Turanga was monophyletic and
was the sister of another monophyletic clade, sect. Populus.
Species of sect. Leucoides, sect. Aigeiros, and sect. Tacamahaca
together formed a monophyletic clade, which was a sister to
sect. Turanga + sect. Populus clade. These three sections were
ever morphologically identified as subg. Eupopulus (Dode, 1905)
and named ATL clade in Wang et al. (2020). Three species
of sect. Leucoides diverged successively at the base of subg.
Eupopulus (Figures 1, 2A). In addition, we also reconstructed
a concatenate phylogeny using SNPs from Wang et al. (2020)
with the same method as above and recovered the same topology
(Supplementary Figure 2).

Five subclades were recovered within sect. Aigeiros + sect.
Tacamahaca. Subclade I diverged first and contained seven
species and one variety of sect. Tacamahaca, two species and
a hybrid of sect. Aigeiros. Subclade II subsequently diverged
and included two species of sect. Aigeiros and one species of
sect. Tacamahaca. Subclade III included three species of sect.
Tacamahaca. The remaining species of sect. Tacamahaca were
divided into subclades IV and V. Seven species and one variety
were contained in subclade IV, and 11 species composed of
subclade V. The species of each subclade and its distribution are
shown in Figure 1 and Supplementary Table 4.

The species trees inferred from two coalescent methods also
supported the four main clades of Populus and similar five
subclades within sect. Aigeiros + sect. Tacamahaca, but topologies
conflicted with the concatenated genome tree and each other
(Figure 3 and Supplementary Figure 1). The basal position of
sect. Abaso was also recovered based on ASTAL method, but sect.
Populus diverged earlier than sect. Turanga and subg. Eupopulus
(Figure 3). The SVDquartets analysis revealed the first divergence
of subg. Eupopulus, and successive sect. Populus, sect. Abaso
and sect. Turanga (Supplementary Figure 1). Additionally, the
phylogenetic position of some supposed hybrid taxa of subg.
Eupopulus severely conflicted with the concatenated genome tree,
such as P. wenxianica, P. szechuanica var. tibetica, and Populus
pseudomaximowiczii.

Phylogeny Based on Chloroplast
Genomes
The plastome data matrix consisted of 174,083 characters, of
which 166,358 were constant; 1,677 were singleton sites, and
6,048 were parsimony-informative sites. Compared with the
nuclear genome tree, the phylogeny reconstructed by complete
chloroplast genomes presented a quite different topology
(Figure 2B and Supplementary Figure 3). The genus Populus
was divided into five clades (Alrt > 95, UFB ≥ 99), and only
sect. Turanga was monophyletic with full support (Clade A).
Moreover, Sect. Populus clustered together as Clade B, with
P. nigra, Populus × irtyschensis #1 of sect. Aigeiros and Populus
iliensis of sect. Tacamahaca nested. Clade C was composed of
Populus afghanica of sect. Aigeiros, Populus lasiocarpa of sect.
Leucoides and 15 Asian species of sect. Tacamahaca. With the
exception of two species of sect. Populus, Populus tremuloides and
P. grandidentata, all of the other North American species formed
a monophyletic clade, clade D, which was the sister to clade E.
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FIGURE 1 | Phylogenetic relationship of the genus Populus reconstructed by IQ-TREE based on 12,916,788 nuclear SNPs. Unless otherwise indicated, all nodes
had 100% supports of SH-aLRT bootstrap (Alrt) and Ultrafast bootstrap (UFBoot).
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FIGURE 2 | Cytonuclear conflicts among different Populus lineages. The taxa that encountered cytonuclear conflicts are linked by black lines. (A) Phylogenetic
relationship of the genus Populus reconstructed by IQ-TREE based on 12,916,788 nuclear SNPs. (B) Phylogenetic relationship of the genus Populus reconstructed
by IQ-TREE based on complete chloroplast genomes. The values indicate the supports of SH-aLRT bootstrap (Alrt) and Ultrafast bootstrap (UFBoot).

Clade E was composed of P. glauca of sect. Leucoides and the rest
of Asian species of sect. Tacamahaca with P. × irtyschensis #2 of
sect. Aigeiros embedded. Not only do the relationships between
sections differ from morphological classifications and the nuclear
SNPs tree, but many species did not recover as monophyly,
particularly in clade C and E, such as P. lasiocarpa and P. koreana.

Introgression Analysis
Totally, the ancestral state identified from S. dunnii (He et al.,
2021) covered about 82.8% of the whole genome SNPs. Taking
S. dunnii as the outgroup for all comparisons, the introgression
analysis between clades showed that sect. Abaso was more
closely related to subg. Eupopulus than to other species of
sectionsTuranga and Populus (Supplementary Figure 5a), which
was similar to the results of Wang et al. (2020). We also
found that P. nigra was more closed related to Populus alba
than to any other species of sect. Populus (Supplementary
Figure 5b). Further ABBA–BABA analysis showed that the

degree of introgression of P. szechuanica var. tibetica, and
P. pamirica was higher than that of other species of subg.
Eupopulus (except P. ciliata), while P. pseudomaximowiczii was
more closely related to P. koreana than any other species of
subg. Eupopulus (except P. rockii, Supplementary Figures 5c,d).
These results suggested an extensive and frequently gene flow
history of Populus. These complicated admixture histories were
also verified by the pervasive discordance between the nuclear
tree and chloroplast tree (Figure 2).

Analysis of Molecular Dating
The divergence times s of genus Populus were estimated nearly
identical by the two MCMCtree runs. The divergence age between
Populus and Salix was constrained to 48.175 ± 0.045 Ma (million
years ago) in the early Eocene. Section Abaso was estimated
to diverge with other Populus species at 46.93 Ma [95% HPD
(highest probability density): 43.80–48.14 Ma; node 1; Table 1
and Figure 4] in the middle Eocene, the next split of Populus
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FIGURE 3 | Phylogeny estimated with alternative quartet topologies (-t 8) in ASTRAL based on 10 kb non-overlapping windows. Unless otherwise indicated, all
nodes had 1.0 posterior probability. Pie charts present the quartet support for the main topology (blue), the first alternative (gray), and the second alternative (orange).
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TABLE 1 | Estimated ages for the major nodes of Populus.

Node order Mean
age/Mya

95% highest posterior density
interval (HPD)/Mya

1 46.93 43.80–48.14

2 39.72 35.13–43.53

3 24.97 17.75–31.46

4 24.44 20.14–29.07

5 21.68 17.91–25.87

6 19.58 16.18–23.54

species was at 39.72 Ma (95% HPD: 35.13–43.53 Ma; node 2;
Table 1 and Figure 4). Two subclades of sect. Populus split at
24.97 Ma (95% HPD: 17.75–31.46 Ma; node 3; Table 1 and
Figure 4) at the late Oligocene, almost at the same time at which
subclade I of sect. Aigeiros + sect. Tacamahaca diverged from the
other subclades (24.44 Ma, 95% HPD: 20.14–29.07 Ma; node 4;
Table 1 and Figure 4). Diversification of the North American
species of sect. Aigeiros + sect. Tacamahaca occurred at the early
Miocene of 21.68 Ma (95% HPD: 17.91–25.87 Ma; node 5; Table 1
and Figure 4) and 19.58 Ma (95% HPD: 16.18–23.54 Ma; node 6;
Table 1 and Figure 4), respectively.

Ancestral Area Reconstruction
The reconstruction of ancestral geographic distributions inferred
that North America was the most probable original area of the
genus Populus [D(0.34)/B(0.22)/BD(0.16), node 1; Figure 5A].
The ancestral area of subg. Eupopulus was also presumed to be
North America [D(0.47)/B(0.32)/BD(0.20), node2; Figure 5A].
The common ancestral area of sect. Aigeiros + sect. Tacamahaca
was reconstructed as North Asia, East Asia, and the edge of
Himalayas [B(0.86), node 3; Figure 5A]. Moreover, 11 migration
events were inferred with DEC + J model, and a pair of migration
events from East Asia toward to North America and then spread
back were also presumed to have occurred sequentially, as the
common ancestral area subclade of III, IV, and V of sect.
Aigeiros + sect. Tacamahaca was inferred to be North America
[D(0.50)/B(0.45), node 5; Figure 5].

DISCUSSION

Phylogenetic Relationships of Populus
With unprecedentedly complete sampling, the genus Populus was
recovered as four clades with high supports based on nuclear
SNPs (Figures 1, 3 and Supplementary Figure 1), while five
clades were divided based on complete chloroplast genomes
(Figure 2B and Supplementary Figure 3). Similar to the results
of Zong et al. (2019), the complete plastome dataset provided
high support for the divergence of five clades (Alrt > 95,
UFB ≥ 99; Figure 2B and Supplementary Figure 3), but a
previous study based on 77 chloroplast protein coding genes
presented a different topology among the five clades and less
supports in the second and the third clades (Zhang L. et al., 2018).
Complete plastomes could more effectively resolve the phylogeny
of poorly diverged Populus taxa compared with those diverged

from protein coding gene sequences. Both biparental and
maternal molecular phylogenies were contrasted with six sections
acknowledged based on morphological characters (Eckenwalder,
1996). According to our results, the plastome phylogeny
was highly inferior at solving interspecific relationships with
few informative sites (5,720 parsimony–informative sites). In
contrast, the nuclear genome could provide millions of variants
(7,927,684 parsimony—informative sites) and be more effective
at dissecting the deep phylogeny of Populus. In addition,
different accessions of some species did not cluster with
each other in the chloroplast genome tree, which reflected
complex hybridizations. Therefore, the phylogenetic issues and
the relationships among species primarily resulted from nuclear
genomic phylogeny as follows.

With respect to nuclear genomic phylogeny, four clades were
well supported, sect. Abaso, sect. Turanga, sect. Populus, and
subg. Eupopulus. Sect. Abaso, the monotypic section distributed
in the south of North America, was identified as a basal
monotypic clade in most analysis, followed by the successive
divergence of the other three clades: sect. Turanga, sect. Populus,
and subg. Eupopulus (Figures 1, 2A, 3). SVDquartets analysis
showed a quite different topology of these four clades. Wang et al.
(2020) have recovered more topologies among these four clades
and discovered more phylogenetic conflicts among different
datasets or analysis methods. Especially, the internodes between
these major clades were relatively short and each topology had
low support values from gene trees [see Figures S4 and S5 from
Wang et al. (2020) and Figure 3 in this study]. Furthermore,
extensive gene flow among clades was also detected using ABBA–
BABA and IBD (identity-by-descent) analysis (Wang et al., 2020).
Species tree inference has also been presented to be inconsonant
in the presence of gene flow (Solís-Lemus and Ané, 2016; Long
and Kubatko, 2018). Thus, both gene flow and incomplete lineage
sorting likely led to the phylogenetic inconsistence, and gene flow
was likely to play the more important role (Wu, 1991; Wang et al.,
2020).

Within subg. Eupopulus, there are no clear differences
in the flowers and inflorescences between sect. Tacamahaca
and sect. Aigeiros, and they have ever been considered to
be accommodated in a single section (Eckenwalder, 1996).
Alternatively, species of sect. Tacamahaca and sect. Aigeiros
could be freely interfertile (Zsuffa, 1975; Eckenwalder, 1984),
which primarily contributed to the conflict between the nuclear
and chloroplast genome trees. These two sections can be
divided into five subclades (Figures 1, 3). With more extensive
sampling, more complex relationships were revealed within sect.
Aigeiros + sect. Tacamahaca clade, even though the results were
not entirely consistent with previous nuclear genome phylogeny
described by Wang et al. (2020). For the subclade I, Populus
simonii (sect. Tacamahaca) presented a close relationship with
P. nigra (sect. Aigeiros); both of these species share the same
characters of a flat petiole and narrowly ovoid and 2-valved
capsules (Fang et al., 1999). However, Wang et al. (2020) showed
that Populus yunnanensis, rather than P. simonii, was more
closely related to P. nigra. In consideration of the fact that both
P. yunnanensis and P. simonii have been cultivated for a long
time, their origins are intricate and difficult to trace. Further
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FIGURE 4 | Chronogram of Populus inferred from the MCMCtree program in PAML. Blue bars indicate the 95% highest posterior density credibility intervals for node
ages. Star indicates the calibration point. Nodes of interests were marked as 1–6. Q, quaternary; HPD, highest posterior density; Ma, million years ago. The
phylogenetic chronogram used temperature curve as modified from Zachos et al. (2001) as background.

studies based on more samples that utilize population genetic
methods are needed to unravel the problem.

According to our results, some taxa were expected to
be treated synonyms for another species. For instance,
P. mainlingensis seemed to be a synonym of P. pseudoglauca,
as they are monophyly in all the data sets (Figures 1–3).
Alternatively, no significant morphological characters can
distinguish these two species, and they are sympatrically
distributed in southeast Tibet. Alternatively, a previous study
also suggested that they are the same species (Chao, 1994).
Likewise, both Populus intramogolica and Populus shanxiensis
were highly similar to P. cathayana in morphology, although
the previous two species were distinguished with the latter one
based on the characters of leaf shape or pilosity, respectively
(Wang and Tung, 1982; Sun, 1986). In our analysis, close
relationships within these three species were recovered in both

nuclear and chloroplast phylogenetic trees. Since the leaves of
P. cathayana vary greatly, and the potential gene flow intensified
the difficulty of resolving the relationship between P. cathayana
and related species, P. intromogolica and P. shanxiensis seem
to be synonyms of P. cathayana. Of course, deep study based
on specimens and population genetics are needed to verify
this hypothesis.

Additionally, some hybrid taxa could be detected by our
concatenated and coalescent phylogenies. P. wenxianica was
endemically distributed in Wenxian County, Gansu Province,
China, rather than North America. Since a number of hybrid
strains from Populus deltoides were cultivated in China for a
long time, and the characters of the shape of leaf blades and
the ovary carpel number differed between P. wenxianica and the
two sect. Aigeriros species (Fang et al., 1999), we hypothesized
that P. wenxianica was a hybrid from P. deltoides and another
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FIGURE 5 | Ancestral areas of the genus Populus. (A) Ancestral area reconstructions of genus Populus using DEC + J model, implemented in RASP. Possible
ancestral ranges and their respective probabilities are shown at each node. The four areas of endemism considered are as follows: (A) Europe, North Africa,
West-Central Asia, and Xinjiang, China; (B) North Asia, East Asia, and the edge of Himalayas; (C) Kenya; and (D) North America. (B) Possible migration routes of the
genus Populus. Solid arrows indicate inferred migration routes for the genus Populus.

unknown parental ancestor. The leaf and capsule morphologies
of P. pseudomaximowiczii were similar to those of P. rockii, but
their distribution was discontinuous and cut off by the Taihang
Mountains (Fang et al., 1999). But P. koreana is sympatric with
P. pseudomaximowiczii in the Wuling Mountain, which increased
the likelihood that hybridization took place. Given the conflict
for the phylogenetic position of P. pseudomaximowiczii between
concatenate and coalescent phylogenies, we hypothesized that
P. pseudomaximowiczii is a hybrid taxon, and P. rockii could
be the female parent, as supported by the chloroplast tree and
ABBA–BABA test (Supplementary Figure 5c), and P. koreana
could be another parent. Significantly, P. szechuanica var.
tibetica did not cluster with P. szechuanica. We collected two
individuals cultivated at Lhasa City and a native tree from
Cuona County, Xizang Autonomous Region, China. They were
found to be close to the Himalaya lineage in both biparental
and maternal phylogenies, but the two cultivated samples were
close to P. pamirica with respect to the chloroplast genome
tree (Figure 2). P. szechuanica var. tibetica was first published
with the specimen collected from a cultivated tree in Ladakh,
and described as having smooth bark and nearly glabrous
leaves (Schneider, 1916). P. szechuanica var. tibetica was once
considered to be a variety of P. pamirica (Zhao and Liu, 2001)
or a synonym of P. ciliata (Skvortsov, 2009). The conflicts among
the nuclear concatenated, coalescent, and chloroplast trees and
ABBA–BABA test demonstrated not only close relationship
between P. szechuanica var. tibetica and P. ciliata, but potential
hybridization between P. szechuanica var. tibetica and P. pamirica
(Figure 2 and Supplementary Figure 5d).

Furthermore, the phylogenetic relationships of some species
were still questionable and were treated as species complexes.

P. szechuanica #1, collected from the type locality, was a sister
to P. rockii, whereas P. szechuanica #2, #3, and #4 presented a
close relationship with P. xiangchengensis, which was parapatric
with P. szechuanica (Figures 1, 2A). These three taxa could
be distinguished based on their angle branchlets, pilosity of
branchlets, petiole, leaf veins, catkin rachis, and capsule (Fang
et al., 1999). However, they were confused in the sympatric area.
Thus, we considered these three species to be the P. szechuanica
complex. The relationships within Populus suaveolens lineage
were also confused and conflicted with morphological taxonomy,
not only in the nuclear SNPs tree but also in the plastomes
tree (Figure 2). It may be caused by extensive gene flow and
perplexing classification within these four sympatric species.
Further study should be conducted using more samples based on
population genetics to further elucidate the relationships within
these species complex.

Cytonuclear Discordance in Populus
We reconstructed backbone phylogenetic trees based on nuclear
genomic SNPs and complete chloroplast genomes, separately.
They presented considerable conflicts and relatively short
internodes between major clades (Figure 2). The incongruence
between biparental and matrilineal phylogenetic trees commonly
contributes to incomplete lineage sorting (ILS), convergent
evolution or introgression (Degnan and Rosenberg, 2009;
Cristina Acosta and Premoli, 2010; Pelser et al., 2010). There
into, lineage sorting would not be expected to exhibit the strong
geographical partitioning observed at the chloroplast genome
tree (Figure 2B; Liu X. et al., 2017). Thus, cytonuclear conflicts of
Populus were primarily caused by hybridization, or specifically,
chloroplast capture and gene flow (recent hybridization).
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Chloroplast capture, which introgressed a chloroplast genome
from one plant or ongoing backcrossing of F1s with the
parental populations, has frequently been thought to explain
the inconsistencies between nuclear gene trees and cytoplasmic
trees (Rieseberg and Soltis, 1991; Tsitrone et al., 2003; Cristina
Acosta and Premoli, 2010). Sect. Abaso (P. mexicana) formed
the basal clade in nuclear phylogeny but was close to Populus
heterophylla in plastome phylogeny (Figure 2). Significant gene
flow among them have been identified using ABBA–BABA tests
(Wang et al., 2020). However, no IBD blocks were shared between
these two clades, which implied an early gene flow event, and
these IBD blocks were expunged by subsequent recombination.
All this evidence pointed to a common hypothetical scenario
that P. mexicana had suffered a significant chloroplast capture
from the P. heterophylla-like ancestor (Liu X. et al., 2017; Wang
et al., 2020). The high level of cytonuclear conflict also occurred
in P. nigra, as P. nigra, P. iliensis, and P. × irtyschensis #1
nested among the members of section Populus in clade B of
plastome tree (Figure 2B). Previous studies based on chloroplast
genome data and morphological traits proposed a hypothesis that
P. nigra was an introgression of the P. alba lineage and another
unknown paternal lineage (Smith and Sytsma, 1990; Hamzeh and
Dayanandan, 2004; Zong et al., 2019). Our ABBA–BABA analysis
supported this scenario (Supplementary Figure 5b). Cytonuclear
conflicts between deep clades were also likely caused by ancient
chloroplast genome capture. Because sect. Turanga and sect.
Populus maintained similar topologies in two phylogenies, the
predecessors of these two sections should not have suffered
chloroplast genome capture events. As shown in Figure 2,
cytonuclear conflicts primarily occurred in subg. Eupopulus.
With the exception of P. nigra, P. iliensis and one sample of
P.× irtyschensis, subg. Eupopulus was divided into three clades in
the chloroplast genome tree, clade C, D, and E (Supplementary
Figure 3). As described above, the ancient chloroplast of these
three exceptive taxa was captured from P. alba of sect. Populus. In
the plastome tree, clade D, and E formed a monophyly and was a
sister to the ancestors of sect. Turanga and sect. Populus, while
clade C was a sister to sect. Populus. This topology suggested
that the ancestors of clade C might suffered a chloroplast genome
capture event from the ancestors of sect. Populus.

Alternatively, the interspecific gene flow is an evolutionary
process that is responsible for generating gene tree discordance
and therefore, hindering the estimation of species tree (Leaché
et al., 2014). Recent hybridization can cause gene tree conflicts
not only between species but also within species. IBD and ABBA–
BABA analyses detected obvious gene flow between species
within each clade in a previous study (Wang et al., 2020).
In addition, species within sect. Aigeiros + sect. Tacamahaca
that have overlapping ranges in China and North America
are sexually compatible and hybridize freely (Eckenwalder,
1984; Mona et al., 2006; Schroeder and Fladung, 2010).
The maternal phylogenetic relationships of intraspecies and
interspecies of these two sections still remained puzzling,
with different accessions of the same species not clustering
together (Figure 2B). In addition, the topology of these species
remained exceedingly incompatible within subg. Eupopulus
(Figure 2). For example, two samples of Populus trinervis

were found to be separated from each other in the chloroplast
genome tree (Figure 2B), which suggested its maternal origin
(chloroplast) would come from at least two maternal lineages.
Obvious hybridization has also been found and indicates that
P. × irtyschensis was the F1-dominent hybrid between P. nigra
and Populus laurifolia (Jiang et al., 2016). Our chloroplast
genome tree also supported this hybridization event (Figure 2B
and Supplementary Figure 3).

Biogeographical History
Ancestral area reconstruction with DEC + J model based on
nuclear SNPs phylogeny indicated that Populus originated in
the New World (Figure 5). Both morphological and fossil
evidence also support the hypothesis of North American origin
(Manchester et al., 1986, 2006; Collinson, 1992; Eckenwalder,
1996). The first confirmed fossil of Populus in the early Middle
Eocene, were attributed to sect. Abaso and occurred in North
America (Collinson, 1992; Eckenwalder, 1996; Manchester et al.,
2006). Though earlier leaves fossils of Populus were reported
both in East Asia and North America, the fossils of these leaves
could not be entirely identified as Populus (Guo, 1983; Collinson,
1992; Manchester et al., 2006). In addition, P. mexicana, the
only extent species of sect. Abaso, which recovered as the
base clade in species tree (Figures 1, 3), was also endemic
in North America.

Land bridges also played a major role in the dispersal of
Populus. The ancestors of sect. Populus, sect. Turanga, and subg.
Eupopulus were presumed to have arrived in the Old World
through the North Atlantic Land Bridge (NALB) and rapidly
diverged within 5 Ma in the late Eocene (Figures 4, 5). After
arriving the Old World, there has been a single migration
from Eurasia to Africa that occurred in P. ilicifolia of sect.
Turanga. The persistent warm and humid climate in the Eocene
(McInerney and Wing, 2011) may have promoted the spread and
the divergence of Populus. A dramatic decrease in temperature
with 17 million years of cooling occurred at the Eocene–
Oligocene boundary (∼33.7 Ma) (Zachos et al., 2001), which
may have been the cause of extinction of many species of
sect. Abaso and sect. Leucoides (Collinson, 1992; Budantsev,
2005). The extant P. mexicana that survived in Mexico and
three sect. Leucoides species discontinuously distributed in
southwest China and southeast America could have caused
by the temperature drop and subsequent climate fluctuation.
This persistent cooling and increasing aridification driven by
the Eocene–Oligocene transition (Zachos and Kump, 2005;
Dupont-Nivet et al., 2007; Abels et al., 2011; Passchier et al.,
2013; Kalyaanamoorthy et al., 2017) seems to have led to the
divergence between P. heterophylla and other species of subg.
Eupopulus (Figures 4, 5). moreover, an interesting dispersal
from East Asia to North America and a subsequent back and
forth spread occurred from the late Oligocene to the early
Miocene (node 3, 4, and 5; Figure 5). During this period,
the Bering Land Bridge (BLB) was certainly available as a
route (Tiffney, 2000; Tiffney and Manchester, 2001; Milne
and Abbott, 2002). Another curiously intercontinental diffusion
of sect. Populus occurred during the Miocene, a date range
too young for the NALB yet very consistent with vicariance
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across the BLB, possibly as a result of climate cooling in
Beringia before (Wolfe, 1980; Tiffney and Manchester, 2001;
Gladenkov et al., 2002).

Though the main clades split early, most divergence of
Populus occurred after 15 Ma (Figure 4), and mainly in East
Asia. Southwest China also retained the most abundant Populus
species. Similarly, most of the related species with distribution
centers in the Tibetan plateau diverged after recent ∼15 Ma
(Qiu et al., 2011). The uplift of the Himalayan-Tibetan plateau
with significant geographical effects (Harris, 2006; Riesselman
et al., 2007; Su et al., 2019) and drove the occurrence of
new niches. The changes in climate and terrestrial ecosystems
led to the retreat of a number of plants and provided strong
opportunity for pioneers.

TAXONOMIC TREATMENT

Phylogenetic results from this and an earlier study (Wang
et al., 2020) clearly indicated four clades among species
among six sections. The paraphyletic three sections (i.e.,
sects. Aigeiros, Leucoides, and Tacamahaca) could be
resolved by sinking all these taxa into a single subgenus,
“Eupopulus,” which was proposed by Dode (1905) for their
resinous winter buds. As all the four clades are well-
supported by both morphological and molecular evidence,
and diverged prior to ca. 35 Ma, we here propose a
new subgenus of Populus, and try to establish a four-
subgeneric classification.

Populus L., Sp. Pl. 1034. 1753, nom. cons. – Type: Populus
alba L. (designated by Britton & A.Br., Ill. Fl. N. U. S. ed.
2. 1: 587. 1913).

Diagnosis. – Trees dioecious; bark smooth, rough or furrowed;
monopodial or sympodial branching; pith often 5-angled at
cross section; buds with several unequal scales, resinous or
not. Leaves alternate, deciduous; petiole terete or flattened,
leaf blade linear to rhombic ovate, dentate or serrate; often
dimorphic on long and short shoots. Inflorescences axillary or
terminal, catkins, pendulous; bracts apically toothed or laciniate,
membranous, caducous; disc cupular or saucer-shaped; stamens
4-many, filaments free; anthers longitudinally dehiscent; ovary 2–
4(5)-carpellate, 1-loculed, stigmas 2–4. Capsule 2–4 (or 5)-valved,
ovoid or spherical. Seeds few to numerous, minute, with a long
dense tuft of silky hairs.

Distribution & Diversity. – Ca. 40–50 species; worldwide,
mostly in northern hemisphere: Asia, Europe, North America,
and Africa (Kenya).

Key to Subgenera of Populus
1. Anthers elongate, apiculate at apex; leaves variably

shaped, usually linear from juvenile branchlet, and
get broader when mature; disc of female flowers
caducous.. . .. . .. . .. . .. . .. . .2

1. Anthers short and broad, truncate or emarginate at
apex; leaves usually broadly ovate; disc of female flowers
persistent.. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .3

2. Growth sympodial, without terminal buds; mature
leaves serrated at margin; carpels usually 2, rarely 3.
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .subg. Abaso

2. Growth monopodial; mature leaves with few coarse teeth;
carpels usually 3, rarely 2. . . .. . .. . .. . .. . .. . .subg.Turanga

3. Winter buds very viscid; leaf margin serrated;
bracts fringed but not ciliate; carpels 2–4(5).
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .subg. Eupopulus

3. Winter buds tomentose but not resinous; leaf
margin lobed, incised, or with sinuous teeth;
bracts with long, straight marginal hairs; carpels 2.
. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .. . .subg. Populus

1. Populus subg. Abaso (Eckenw.) C. Shang, Y.C. Wang &
Z.X. Zhang, stat. nov.
Basionym: Populus sect. Abaso Eckenw. in J. Arnold
Arbor. 58(3): 194. 1977 – Type: Populus mexicana Wesm.
ex DC. Prodr. 16(2): 328. 1968.
Diagnosis. – Winter buds slightly viscid; petiole subterete;
leaves of juvenile plants linear, leaves of adults broader;
bracts linear, laciniate at the apex; disc cup-shaped,
membranous, laciniate, deciduous after flowering;
capsules 2-(seldom 3-) valved.
Distribution & Diversity. – Only 1 species, Populus
mexicana, endemic to North America.

2. Populus subg. Turanga (Bunge) Dode, Bull. Soc. Hist.
Nat. Autun 18: 172. 1905 ≡ Populus sect. Turanga
Bunge in Mém. Acad. Imp. Sci. St.-Pétersbourg 7: 498.
1851 – Type: Populus diversifolia Schrenk (= Populus
euphratica Oliver).
Diagnosis. – Branches sympodial, without terminal buds;
buds not resinous; petiole subterete; leaves variably
shaped, margin entire or with few teeth; bracts spatulate,
membranous; disc membranous, lobed or parted, with
sharp teeth, caducous; anthers long, apex apiculate; ovary
long ovoid; capsules elongate, (2 or) 3-valved, stipitate.
Distribution & Diversity. – 3 species, central and west Asia,
north Africa, and Kenya.

3. Populus subg. Eupopulus Dode, Bull. Soc. Hist. Nat.
Autun 18: 192. 1905 – Type: Populus balsamifera L.
(designated here).
= Populus subg. Leucoides (Spach) N. Chao & J. Liu in
J. Sichuan For. Sci. 19 (4): 12. 1998; N. Chao et al. in J.
Wuhan Bot. Res. 27 (1): 26. 2009.
Diagnosis. – Branches monopodial; buds very viscid, with
a strongly balsamic odor; petiole terete or flattened, often
sulcate; bracts not fringed; stamens 10–60; anthers long
elliptic to globose; disc usually entire, persistent; style
short or absent; stigma 2–4-lobed; capsules 2–4 (or 5)-
valved.
Distribution & Diversity. – 25–35 species, Asia, Europe,
and North America.

4. Populus subg. Populus – Type: Populus alba L.
(designated by Green, Prop. Brit. Bot.: 192. 1929).
= Populus subg. Lecue (Duby) Dode, Bull. Soc. Hist. Nat.
Autun 18: 176. 1905
Diagnosis. – Buds tomentose or glabrous; petioles
flattened or subterete; leaf blade lobed, incised, or with
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sinuous teeth, abaxially usually tomentose when young;
bracts laciniate, long ciliate; disc sinuate. Stamens 6–12(–
20); stigma 2–4-lobed; capsules long ellipsoid or long
ovoid, usually 2-valved.

Distribution & Diversity. – Ca. 10 species, Asia, Europe,
and North America.

CONCLUSION

In this study, we collected almost all the wild species of Populus
and reconstructed robust phylogenies from nuclear genome and
chloroplast genome data. The deep phylogenetic relationships of
Populus species were well resolved based on nuclear genomic
phylogeny. According to the phylogeny, a new status, subg. Abaso
was proposed, and a new classification system of four subgenera
was established. Conflicts among clades and the inconsistency
of phylogenetic positions of some hybrid species were also
detected by concatenated and coalescent methods. In contrast,
chloroplast genomic phylogeny was composed of five clades and
inadequately settled the relationships among species of Populus.
The cytonuclear discordance within Populus was extensive
primarily owing to chloroplast capture and gene flow and was
supported by the ABBA–BABA analysis. A New World origin
of Populus and several migration events through land bridges
were suggested by the phylogeny, divergence time analyses, and
biogeographic implications. Based on comprehensive sampling,
this study inferred the clear evolutionary history of Populus, and
some confused taxa were proposed as species complexes, such as
P. szechuanica complex and P. suaveolens complex. Further study
based on population genetics method and more samples should
be conducted to clarify relationships of close species.
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