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Plant fungal diseases are one of the most important causes of crop yield losses.

Therefore, plant disease identification algorithms have been seen as a useful tool to detect

them at early stages to mitigate their effects. Although deep-learning based algorithms

can achieve high detection accuracies, they require large and manually annotated image

datasets that is not always accessible, specially for rare and new diseases. This study

focuses on the development of a plant disease detection algorithm and strategy requiring

few plant images (Few-shot learning algorithm). We extend previous work by using a

novel challenging dataset containing more than 100,000 images. This dataset includes

images of leaves, panicles and stems of five different crops (barley, corn, rape seed,

rice, and wheat) for a total of 17 different diseases, where each disease is shown at

different disease stages. In this study, we propose a deep metric learning based method

to extract latent space representations from plant diseases with just few images bymeans

of a Siamese network and triplet loss function. This enhances previous methods that

require a support dataset containing a high number of annotated images to perform

metric learning and few-shot classification. The proposed method was compared over

a traditional network that was trained with the cross-entropy loss function. Exhaustive

experiments have been performed for validating and measuring the benefits of metric

learning techniques over classical methods. Results show that the features extracted

by the metric learning based approach present better discriminative and clustering

properties. Davis-Bouldin index and Silhouette score values have shown that triplet

loss network improves the clustering properties with respect to the categorical-cross

entropy loss. Overall, triplet loss approach improves the DB index value by 22.7% and

Silhouette score value by 166.7% compared to the categorical cross-entropy loss model.

Moreover, the F-score parameter obtained from the Siamese network with the triplet

loss performs better than classical approaches when there are few images for training,

obtaining a 6% improvement in the F-score mean value. Siamese networks with triplet
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loss have improved the ability to learn different plant diseases using few images of

each class. These networks based on metric learning techniques improve clustering and

classification results over traditional categorical cross-entropy loss networks for plant

disease identification.

Keywords: plant disease, convolutional neural network, triplet loss, categorical cross-entropy loss, few-shot

learning

1. INTRODUCTION

Plants are vulnerable to attack by organisms that interrupt or
modify their physiological processes, disrupting plant growth,
their development or their vital functions, thus causing plant
disease. Plant diseases have a significant impact in agriculture,
producing crop yield losses, impairing product quality or limiting
availability of food and raw materials. Estimations of global
productivity losses are between 20 and 40% annually, and up
to 16% of the losses are due to plant diseases (Oerke, 2006).
Therefore, plant disease management is essential to reduce crop
losses caused by pathogens. Diseases are mainly controlled
using chemical fungicides, which in most cases are very
efficient (Hirooka and Ishii, 2013). On the other hand, manual
plant disease identification is expensive and time-consuming,
as it involves human experts to ensure a correct diagnosis.
Consequently, automatic plant disease classification algorithms
have become a very important and active field of research in
agriculture (Sandhu and Kaur, 2019; Shruthi et al., 2019).

Over the years classical computer vision techniques have

been widely used for automatic plant disease classification. For
instance, Kim et al. (2009) classified grapefruit peel disease

using color texture feature analysis under laboratory conditions.

Camargo and Smith (2009) developed an image-processing
algorithm to identify visual symptoms of plant disease. Revathi

and Hemalatha (2012) used edge detection technique to classify
cotton leaf diseases. Sannakki et al. (2011) analyzed image color
information to predict disease grade on plant leaves. Johannes
et al. (2017) developed a early symptom wheat disease diagnosis
algorithm for mobile capture devices. Several other algorithms
have been developed for different crops, such as rice (Phadikar
et al., 2012, 2013), corn (Kiratiratanapruk and Sinthupinyo,
2011), or potato (Dacal-Nieto et al., 2009).

Traditional computer vision approaches depend on the
domain knowledge of experts who draft the relevant features
for the classification task. This becomes overly complex as
the number of crops and diseases increases, compromising the
generalizability of the models. This is one of the reasons why
Deep Learning (DL) models have replaced classical computer
vision techniques in image classification (Picon et al., 2019a)
or segmentation (Lin et al., 2019). DL models are frequently
based on Convolutional Neural Networks (CNNs). CNNs
automatically select most descriptive and salient features for the
classification task, and have thousands of adjustable parameters
to address complex classification tasks. Thus, CNNs have also
been introduced for image based plant disease classification. For
example, Sladojevic et al. (2016) created a leaf image classification

algorithm to recognize 13 diseases which was also able to
differentiate plant leaves from their surroundings. Ferentinos
(2018) developed a classification algorithm to distinguish 58
plant species using an open database of more than 85,000 images.
Picon et al. (2019a) and Johannes et al. (2017) extended by
creating an early disease detection algorithm based on a DL
model. Fuentes et al. (2017) presented a DL tomato plant disease
and pest detector. There are various recent excellent reviews of
DL for plant image classification (Saleem et al., 2019; Hasan et al.,
2020; Li et al., 2021).

The importance of plant disease identification algorithms
has led to the creation of open access agronomic datasets,
for use by agronomists and artificial intelligence researchers as
a benchmark to experiment and evaluate new techniques. A
salient example is PlantVillage (Hughes and Salathé, 2015), an
open access repository of over 50,000 expertly curated images
of healthy and infected plant leaves acquired in laboratory
conditions. The PlantVillage images include 14 crop types (e.g.,
cherry, corn, grape, tomato, and pepper) and 26 diseases. Many
DL plant disease classification models have been developed and
evaluated using the PlantVillage dataset (Mohanty et al., 2016;
Rangarajan et al., 2018; Kamal et al., 2019; Too et al., 2019;
Argüeso et al., 2020; Mohameth et al., 2020). However, images
obtained under laboratory conditions have controlled lighting,
smooth backgrounds, and diseases are at an advanced stage of
infection. In the field, illumination conditions are uncontrolled,
backgrounds are changeable and diseases appear at different
stages, including early stages. Early stage disease detection in
these challenging conditions is of outmost importance since
proper treatment could cure the damage to the crop, but at
an early infection stage healthy and diseased plant images are
visually very similar. These reasons explain why algorithms
developed using the PlantVillage dataset with accuracies over
99% (Mohanty et al., 2016), present accuracies as low as 31.4%
when tested on real field images.

In Ghosal et al. (2018), an explainable deep CNN framework
was developed to identify, classify and quantify biotic and
abiotic stresses in soybean. This framework uses an unsupervised
approach to accurately isolate visual symptoms without the need
for detailed expert annotation. They identify and classify eight
biotic and abiotic soybean stresses by learning from over 25,000
images. Thanks to the application of explainability techniques,
they are able to understand the classification decisions made
by extracting the visual features learned by the model based
on their localized activation levels. These characteristics are
then compared with the symptoms identified by humans to
validate the results. Another study (Toda and Okura, 2019)
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also developed a variety of visualization methods using a CNN
to understand the network mechanism for disease diagnosis.
The attention maps generated by the network found the most
significant regions of stressed lesions, matching human decision-
making to determine disease. These two studies demonstrated
the importance of understanding the mechanism of CNNs
for plant stress phenotyping. DeChant et al. (2017) trained
several CNNs to classify small regions of maize images as
containing northern leaf light (NLB) lesions or not using a
sliding window over the images. Predictions from all CNNs
were combined into separate heat maps and then fed into a
final CNN for stressed lesion detection. The generated heat
maps were used as a visualization mechanism to explain
classification decisions.

Another limitation of DL models is the need for large
annotated datasets to adjust their millions of adjustable
parameters. Compiling real field images with disease annotations
is very resource consuming, so many efforts are focused on
learning from few images, a set of techniques known as Few Shot
Learning (FSL). FSL methods for image classification are divided
into three main types: data augmentation, transfer-learning, and
meta-learning. Data augmentation consists in generating new
instances from previous images, for instance using generative
adversarial networks (Hu et al., 2019). In transfer learning a
baseline network is trained with a large number of images
other than the target classes, and then the network is fine-
tuned using few instances of the target classes. Typical learning
architectures are based on siamese networks and metric learning
(distances among classes), as proposed in Argüeso et al. (2020)
for plant disease classification. Finally, in meta-learning the
models are trained in a set of related prediction tasks, as
described by Li and Yang (2021) for plant and pest image

classification. Nazki et al. (2020) generated synthetic images to
train CNN models for tomato plant disease classification based
on generative adversarial networks (GANs). Their model, called
AR-GAN, was based on Cycle-GAN (Zhu et al., 2017) and was
developed to transform healthy tomato leaves into different types
of diseases. They claimed that their technique could improve the
performance of plant disease classification compared to other
classical data augmentation techniques. AR-GAN was trained on
images without complex backgrounds, so this approach might
present difficulties in transforming images from datasets taken
in the real field.

The objective of this study is to demonstrate a FSL approach
based on siamese networks and metric learning trained and
evaluated in the challenging conditions of real field images. For
that purpose a dataset of real field images containing 5 crops
and 17 diseases was used, and experiments were conducted to
evaluate how small a dataset could be used to obtain acceptable
classification results. Our results show that FSLmethods based on
siamese networks outperform classical CNN learning methods
when trained with less than 200 images per class.

2. MATERIALS

The study dataset was compiled in the 2014–2019 period in
three phases and at different farmlands in Germany and Spain,
as described in Johannes et al. (2017), Picon et al. (2019a),
and Picon et al. (2019b). Images were acquired using different
electronic devices (e.g., iPhone4, iPhone5, Samsung Galaxy Note,
and Windows Phone) throughout the growing season to capture
different growth stages of infection.

The dataset is composed of 121,955 images of plant leaves,
stems and panicles that have been taken by cell phone in real

TABLE 1 | Diseases and number of images from the annotated dataset.

Crop Disease Images Crop Disease Images

Wheat Healthy 6,704 Rice Healthy 4,051

Wheat Septoria tritici 18,841 Rice Various diseases 206

Wheat Puccinia striiformis 15,376 Rice Thanatephorus cucumeris 2,438

Wheat Puccinia recondita 16,413 Rice Pyricularia oryzae 2,441

Wheat Septoria nodorum 602

Wheat Drechslera tritici-repentis 9,550 Total rice: 11,295

Wheat Oculimacula yallundae 1,489

Wheat Gibberella zeae 1,207 Corn Healthy 206

Wheat Blumeria graminis 2,866 Corn Helminthosporium turcicum 425

Total wheat: 64,026 Total corn: 631

Barley Healthy 1,624 Rape seed Healthy 6,850

Barley Pyrenophora teres 15,352 Rape seed Phoma lingam 6,924

Barley Ramularia collo-cygni 3,441

Barley Rhynchosporium secalis 11,279 Total rape seed: 13,774

Barley Puccinia hordei 3,323

Total barley: 32,229

TOTAL: 121,955
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FIGURE 1 | Examples from the 17 diseases in the generated dataset, ordered from left to right by crops: wheat (Septoria tritici, Puccinia striiformis, Puccinia

recondita, Gibberella zeae, Oculimacula yallundae, Blumeria graminis, Septoria nodorum, and Drechslera tritici-repentis), barley (Pyrenophora teres, Ramularia

collo-cygni, Rhynchosporium secalis, and Puccinia hordei), rice (Various diseases, Thanatephorus cucumeris, and Pyricularia oryzae), corn (Helminthosporium

turcicum), and rape seed (Phoma lingam).
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field conditions (Picon et al., 2019b). It contains five types of
crops: wheat, barley, rice, corn and rape seed. And in those crops
there are 17 representative diseases, including: Rust, Septoria, Tan
Spot, Eyespot, Scab, Powdry mildew, Net Blotch, Scald, Blast,
Lef blight, or Blackleg. Table 1 provides a detailed composition
of the dataset in terms of number of images per crop and
disease (causing fungi), and Figure 1 shows an example of
each disease.

The automatic classification of the images in the dataset
is complex. Besides the differing illumination and acquisition
conditions, the dataset presents several diseases at early stages
which are very hard to differentiate, for example Puccinia
recondita and Puccinia striiformis in wheat. Some other diseases
present similar symptoms in both early and late stages of
infection, like Septoria tritici and Septoria nodorum in wheat.
Figure 2 shows examples illustrating the similarities between
those diseases. Moreover, in 9,923 images the crop was infected
with various diseases.

This study focuses on single label classification, so images
with multiple diseases were discarded. Then the dataset was
split into a training (80%), a validation (10%), and a test set
(10%). Experiments were conducted with a decreasing number
of images per class during training, and once the models were
trained the results were obtained for the complete test set. For
the experiments, images of different resolution and size have
been considered, as different devices have been used to acquire
the images.

3. METHODS

In this section, the architecture used for the plant disease
classification algorithm is presented. In order to compare the
benefits of metric learning techniques over classical techniques,
this architecture is composed of two parts as shown in Figure 3.

First, images of leaves, stems or panicles of the specified plant
species are used as input to the convolutional neural network
(CNN), which is trained to extract features from the images by
representing them with an embedding vector. A ResNet-50 (He
et al., 2016) neural network has been selected as backbone. To
analyze the quality of the generated latent spaces and to obtain the
class predictions, a k-nearest neighbors classifier is then used as
the shallow classifier, which is fed with the embedding vectors to
learn to distinguish the different classes referring to plant disease
and providing the final output value of the algorithm. The k-nn
classifier is a non-parametric method that only depends on the
quality of the features and does not interfere with any additional
parameters, which has made it a common practice (Wu et al.,
2018; Caron et al., 2021).

The idea of this work is to demonstrate that distance metric
learning techniques achieve a better vector representation of the
images than classical methods when a small dataset is used.
We have focused on cases where the supporting dataset, which
is often used to train the baseline models before applying the
few-shot technique, is not available. Therefore, in this work,
models capable of learning classes from a few samples have been
developed using a metric learning loss function (triplet loss)
and compared with a traditional loss function (cross-entropy
loss). Several experiments have been developed using different
numbers of training images per class (from N = 4 to N = 2,000)
to evaluate how the network learns with few samples, where two
approaches have been compared. On the one hand, a Siamese
network with three sub-networks and the Triplet loss function
was used to test the metric learning techniques. On the other
hand, a traditional single network and the Categorical cross-
entropy loss function were used. In both cases the networks
worked as feature extractors and then a k-NN classifier was added
to learn the feature map representations and convert them into
class predictions.

FIGURE 2 | Examples of similar diseases. On the one hand, from left to right: Puccinia Recondita and Puccinia Striiformis. On the other hand, Septoria tritici and

Septoria nodorum.
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FIGURE 3 | Architecture of the plant disease classification algorithm separated into two blocks. First, a CNN is used to extract features from the input images Xi
getting an embedding vector fi = f (Xi ). Then a k-NN classifier is trained with the fi embeddings to predict the class of each image.

3.1. Baseline CNN
In our method, the ResNet-50 convolution neural network has
been used as the base model and adapted as described in Picon
et al. (2019a) to identify diseases from a leaf centered image. This
network falls into the subgroup of Residual Networks (ResNets)
where the main idea is to skip convolutional layer blocks by
using shortcut connections. ResNet implements, on the one
hand identity blocks that have no convolution layer at shortcut,
and do not change dimensions of the feature map, and on the
other hand, convolution blocks, which add convolution layer at
shortcut, thus increasing the output dimensions with respect to
the input. In both cases, batch normalization is performed after
each convolution, and then, ReLU activation is applied.

The ResNet-50 consists of 50 layers, with more than 23
million of tuning parameters. It is trained on more than a
million images from the ImageNet database (Deng et al., 2009),
from which meaningful feature representations have been learnt.
In our experiments, the last 33 layers have been unfrozen to
adjust the weights to our classification case. After the last layer,
a global average pooling operation has been implemented to
obtain an image representation of 2,048 features, which has
then been reduced to 256 features by adding a neuron layer.
Each experiment with the ResNet-50 backbone has been made
with two different function losses: triplet loss and categorical
cross-entropy loss. Finally, a k-NN classifier has been added
to the baseline CNN to predict the final class values of the
feature embeddings.

3.2. Loss Functions
Neural network models use loss functions to calculate the error
of the model at each iteration. The algorithm then updates the
weights so that the next iteration reduces the previous error, with
the aim of minimizing it by means of Stochastic Gradient descent
algorithm together with back-propagation. In this sense, the loss

function is a fundamental part of a neural network training as
it is the mathematical function that guides the training goal for
the network.

Image classification neural networks such as ResNet50
are normally used with a cross-entropy loss function which
leads to appropriate classification. However, when few samples
are available, this loss tends to generate unreliable latent
representations (Argüeso et al., 2020). However, metric learning
losses aim to learn feature embeddings from images by applying
distance metrics to ensure intra-class compactness and inter-
class separability. These embeddings keep the most significant
features related to the corresponding class of each image, and
the loss function tries to increase the distance between samples
of different classes while keeping samples of the same class
close together.

In this paper, traditional categorical cross-entropy loss and
distance metric-based triplet loss have been used and compared.

3.2.1. Categorical Cross-Entropy Loss
Categorical cross-entropy is a common loss function used to
solvemulti-class classification tasks. The block diagram used with
the Categorical cross-entropy loss is shown in Figure 4. This
loss function is designed to quantify the difference between two
probability distributions. This loss function calculates the loss of
an example by applying the following equation:

Lc = −
∑

i

yi · log ŷi. (1)

where yi is the i-th real value and ŷi the predicted value by the
algorithm. The minus sign ensures that the loss is reduced as the
distributions approach each other.

This loss function, together with the architecture defined in
Section 3.1 and adapted to identify diseases from a leaf centered
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FIGURE 4 | Architecture of the CNN based on the Categorical cross-entropy loss. The network is trained with the input images Xi , and the output is an embedding

vector fi of size 256. Then a k-NN classifier is trained with the fi embeddings to predict the class of each image, which is trained in the same way for the triple and

categorical models.

image as it was described in Picon et al. (2019a) will serve as
baseline model to compare with the metric learning approach
described below.

3.2.2. Triplet Loss
Triplet loss function can be used to make the embedding
representation more easily separable between classes in a
Euclidean vector space. The triplet loss function is used to
adjust the network parameters in order to minimize the distance
between feature embeddings of the same class, and to maximize
the distance between embeddings of different classes at the
same time. For this purpose, a Siamese network with three sub-
networks is used, where all sub-networks share the same weights
and are joined by the triplet loss function (Figure 5). During
training, three images of different plants are chosen, which are
an anchor (xa), a positive sample (xp), and a negative sample
(xn), and each of them is introduced into one of the three
sub-networks. In all cases, the anchor and the positive sample
belong to the same class while the negative sample belongs to a
different class. Image embedding vectors representing the most
important features associated with the image class are created
as output. The networks compute the distance between the
three embedding vectors using the triplet loss function, which is
calculated as a Euclidean distance function (Equation 2). Then
the parameters of the networks are adjusted to minimize the
distance between the embeddings of the anchor and the positive
sample, while maximizing the distance between the anchor and
the negative sample.

Lt(xa, xp, xn) = max(‖fa − fp‖
2 − ‖fa − fn‖

2 + α, 0). (2)

where ‖ · ‖2 represents the Euclidean distance and α is a margin
between positive and negative pairs, which is used to avoid
wasting effort on extending the distance of a negative pair that
is distant enough and to focus on more difficult pairs.

3.3. k-NN Classifier
In order to quantify the classification performance for both
approaches, a k-nn classifier has been used as a shallow classifier
after the feature extraction applied by the neural network.
The classifier has been trained using the embedding vectors
of the training set for each of the experiments with different
neighbor values (K). The obtained knn models were used over
the embedding vectors from the validation set to select the best

K-value. This best K-value over the validation set was used to
quantify the performance of the model in the testing set for class
discrimination showing as output one of the 17 plant diseases
being analyzed.

In the k-nn classification, the output value is selected by a
plural vote of its neighbors. Thus, the output is assigned to the
most common class among its k nearest neighbors, where k is a
constant value defined by the user, and fromwhich the prediction
changes. Therefore, it is important to find the optimal k-value.
The nearest neighbors can be found using different distance
metrics; in this project the Euclidean distance has been applied.

3.4. Few-Shot Learning
To demonstrate that neural networks can achieve good results
for image classification approaches when a large dataset is not
available, several experiments were conducted using different
numbers of training images per class, which were randomly
selected and ranged from N = 4 to N = 2, 000. The image
features were obtained using a pre-trained network and fine-
tuning some layers from the back of the backbone to adjust the
weights to the dataset.

In addition, the Triplet and Categorical cross-entropy loss
functions were applied separately to create the few shot learning
models in order to compare the embedding vectors obtained with
the application of each error function. The triplet loss, which is
used for distance metric learning, is considered to better learn the
embedding representation by keeping objects of the same class
close and increasing the distance for objects of different classes.

In all experiments, data augmentation techniques were
applied to the training images. Rotations (probability= 0.5,±90◦

rotation range), translations (probability = 0.5, ±10%), scaling
(probability = 0.7, scale ranges from 50 to 150%) and gamma
transformation (probability= 0.5, gamma limits from 80 to 120)
were selected. The experiments were conducted over 150 epochs
and a learning rate of α = 10−4 was selected with the Adam
optimizer. The number of training images per class was randomly
selected and ranged from N = 4 to N = 2,000, and all the
experiments were run identically for the triplet loss-based model
as for the categorical cross-entropy-based model.

3.5. Evaluation
The models we have created refer to a multiclass classification
problem. Three metrics widely adopted by the scientific
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FIGURE 5 | Architecture of the Siamese network based on the Triplet loss. The Siamese network is composed of three sub-networks that share the same weights.

The images introduced by these networks must always maintain the same relationship: two of them must belong to the same class, which are the anchor and positive

images, and the last one must belong to a different class, which is the negative image. In this way, the Siamese network is trained to minimize the distance between

the embeddings of the same class (anchor and positive sample), while maximizing the distance between the embeddings of different classes (anchor and negative

sample. The output of the network is an embedding vector fi of size 256. Then a k-NN classifier is trained with the fi embeddings to predict the class of each image,

which is trained in the same way for the triple and categorical models.

community are used formulticlass classification problems such as
the recall (Ri), precision (Pi), and F-score (F1, i) will be employed.
These metrics are calculated as follows:

Ri =
Nii∑
j Nij

, Pi =
Nii∑
i Nij

, F1, i = 2
Pi · Ri

Pi + Ri
(3)

where i refers to the real class (true label), j to the predicted
class from the algorithm and Nii and Nij correspond to the
total number of images well-predicted or mixed between them
respectively. These predictions are also used to represent the
confusion matrix.

Besides that, the results obtained from the feature extractors
will also be analyzed. First, a t-distributed Stochastic Neighbor
Embedding (t-SNE) method (Van der Maaten and Hinton, 2008)
is used to visualize the high-dimensional image features in a two-
dimensional graph, which will allow the different clusters to be
recognized. On the other hand, Davis-Bouldin index (Davies and
Bouldin, 1979) and Silhouette score (Rousseeuw, 1987) clustering
metrics are represented. DB index applies quantities and features
inherent to the dataset to validate the clustering results, although
a good value does not imply the best information retrieval. Lower
values of the DB index mean better results. The Silhouette score
measures the similarity of an object to its own cluster compared

to other clusters. It ranges from −1 to +1, where a high value
indicates a better result.

4. RESULTS

4.1. Training
All experiments were conducted on the training set, consisting
of 80% of the full dataset, 10% was used for validation and all
results were obtained from the test set, consisting of the other
10%. The distribution was done keeping the percentages of each
class and considering the days of taking the images, so that all
the images taken on the same day were included in the same
set. The ResNet50 neural network pre-trained on the Imagenet
dataset was used as the backbone, where the last layers were
unfrozen allowing their weights to be modified (as described in
Section 3.1). Different experiments were performed using two
different loss functions and taking different number of images
per class to create few shot learning models. The images were
randomly selected and ranged from N = 4 images per class
to N = 2,000. In all experiments, the same number of images
was used for each of the disease classes as for the healthy class.
In fact, although the collection of images of healthy plants is
easier than that of diseased plants, the worst use case was defined
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and therefore an equal number of healthy images was selected
as for the other classes. One experiment was run with each of
the selected N-values and with each of the two explained loss
functions to compare both networks in the few-shot experiments.

For the experiments the images were resized to 224 × 224
pixels, and data augmentation techniques were applied to the
training images. Rotations (probability = 0.5), translations,
scaling (probability = 0.7) and gamma transformation
(probability = 0.5, gamma limits from 80 to 120) were selected.
The experiments were conducted over 150 epochs and a learning
rate of 10−4 was used with the Adam optimizer. The number of
training images per class was systematically selected throughout
the experiments and ranged from N = 4 to N = 2,000. All the
experiments were run identically for the triplet loss-based model
as for the categorical cross-entropy-based models. The output
of the network was an embedding vector of 256 features. These
vectors represent the ability of each loss function to cluster the
different classes and hence the feature extraction capability of
the network. In addition, a k-NN classifier is then applied to the
feature extractor to predict the class related to each embedding
so that classification results can also be evaluated.

4.2. Classification Results
F-score, Recall and Precision parameters have been measured to
analyze plant disease classification results. Figure 6 shows the
average of the aforementioned metrics for each model created
ranging from N = 4 images per class to N = 2,000. The
embedding vectors obtained from the feature extractor have been
fed into the k-NN classifier, which has been trained and then
tested with the testing set. As shown in the first graph, the F-
score parameter achieved with the triplet loss outperforms the
categorical cross-entropy model up toN = 200 samples per class.
This difference evens out for higher N-values, as the models
use more images to train, but at the same time, the difference
between them is larger when very few images are used to train
(from N = 4 to N = 30). Thus, comparing the mean F-score
values obtained from the F-score results for the different samples
per image (F1triplet = 67.4% vs. F1cat = 63.6%), we find that

the F-score parameter increases by 6% when training with the
proposed Siamese architecture and the triplet loss.

To show the most problematic classes, the F-score parameter
has been calculated for each class using the model of N = 30
images per class. Figure 7 shows that the F-score parameter is
higher for almost all classes by using the triplet loss function. On
the other hand, we can analyze that Septoria nodorum (LEPTNO)
and Septoria tritici (SEPTTR) are the classes with the lowest
value, below 50% for both Triplet and Categorical cross-entropy
losses. For the case of Triplet loss, the confusion matrix has
also been calculated to find the predictions of the algorithm for
each class (Figure 8). As in the previous case, it can be observed
that the class with the worst prediction is Parastagonospora

FIGURE 7 | F-score parameter calculated for each class for the case of N =

30 images per class. This parameter shows a higher performance for almost

all classes when using the triplet loss function.

FIGURE 6 | Mean value of F-score (Left), Recall (Middle), and Precision (Right) parameters for all classes as a function of the number of images per class used in

training. The results show that the model based on triplet loss outperforms the model based on categorical cross-entropy for experiments from N = 4 to N = 200

samples per class.
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FIGURE 8 | Confusion matrix of N = 30 images per class model with triplet loss. The confusion matrix provides an accurate view of how correctly the model predicts

the classes or how the classes are misclassified. The values of the diagonal represented in blue correspond to the number of correctly predicted images for each

class. The values of the matrix outside the diagonal represented in orange correspond to incorrect predictions, where each cell relates the true class to the class

predicted by the algorithm. In addition, below the confusion matrix, the precision values of each class are plotted horizontally in blue. Also, to the right of the confusion

matrix, the recall values of each class are shown vertically in blue.

nodorum (LEPTNO), which is confused with Zymoseptoria tritici
(SEPTTR). However, there is no other solution for that as there
are not enough images available for LEPTNO and as mentioned
above they are two very conflicting classes. From the point of
view of plant physiology, both diseases are characterized by
the presence of yellowish spots, which quickly turn into gray-
brown lesions surrounded by a yellowish once the damage turns
brown. In advances stages, the spots may contain small black
dots (known as black pycnidia), which are the most characteristic
sign of advanced septoria diseases, as shown in Figure 2. One
difference is that LEPTNO the pycnidia are smaller, even very
difficult to see without the aid of a magnifying glass, and in
SEPTTR the pycnidia are visible to the naked eye. SEPTTR
is also confused with some other classes, such as Drechslera
tritici-repentis (PYRNTR), Puccinia striiformis (PUCCST), or
Puccinia recondite (PUCCRT), which implies that all of them
have poor outcomes. In addition, the latter two are also very
confusing to each other, since as mentioned above, the different
symptoms between them are very subtle. In the early stages
of these diseases, individual yellow to orange-brown pustules
appear on the leaves. In PUCCRT the pustules tend to be

randomly scattered whereas in PUCCST they form in small
pockets at the beginning or when the leaves are young, and as
the disease progresses, they form in bands. The color of the
pustules is usually orange-brown in PUCCRT and orange-yellow
in PUCCST.

Figure 9 analyzes the effect of the K-value in the k-NN
classifier for three different experiments (N = 6, N = 30, N
= 200), where the parameter F-score is calculated for different
values of K (3, 5, ..., 21). It can be appreciated that Triplet
approach surpasses the performance of categorical cross-entropy
method. The only exception is observed on N = 6 where the
choice of value of k higher than the number of image per class
(N = 6) reduces the performance of the experiment, since in that
case the classifier takes into consideration samples of different
classes for each prediction. On the other hand, when the value of
the classifier is lower than the number of images per class, there is
little variability in the results, so the value of K does not influence
them. That is, when designing the algorithm, it is not possible to
set a value of K higher than the number of classes, since, as can be
seen in the graph on the left, the F-score decreases in both models
as the value of K increases with respect to N. However, for values
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FIGURE 9 | The effect of the K-value of the classifier knn for the experiments of N = 6 (Left), N = 30 (Middle), and N = 200 (Right) images per class. In the cases of N

= 30 and N = 200, very little variability is observed for all K-values selected. In contrast, in the case of N = 6, the value of the F-score decreases as higher K-values

are chosen.

FIGURE 10 | DB-index and Silhouette score metrics. The triplet approach achieves a lower DB-index and a higher Silhouette value than the categorical cross-entropy

method for all experiments, resulting in a better ability to group classes into different clusters.

of N higher than K, it is observed that the use of the triplet loss
model achieves better performance.

4.3. Clustering Results
Clusters are generated by the output embedding vectors of the
feature extractor. Davis-Bouldin and Silhouette metrics represent
the capacity the network has to group the classes in different
clusters. Figure 10 displays the values of mentioned parameters
for all the models created, where we can see that results improve
while the number of images per class increment. Moreover,
in all cases, triplet loss models achieve better results for both
parameters. The average values of the DB-index and Silhouette
parameters have been calculated considering the values obtained
in all experiments (from N = 4 to N = 2,000). On the other
hand, we observe that the triplet loss model improves the value
by 22.7% with respect to the categorical cross-entropy loss model

(DBindextriplet = 1.87 vs. DBindexcat = 2.42). Similarly, the
Silhouette value also improves, now by 166.7% (Silhouettetriplet
= 0.24 vs. Silhouettecat = 0.09). These metrics are used to assess
the quality of the clusters generated by the embedding vectors,
and these results show that the triplet loss model achieves better
cluster separability than the categorical-cross entropy loss model.

The t-SNE technique obtains the representation of the
embedding vectors in a two-dimensional graph. The 256-
dimensional embedding vectors are then reduced to two
dimensions in order to visualize the clustering capabilities of the
different losses to group the test embeddings into class clusters.
Figure 11 presents the t-SNE graph of the models created during
training, showing the results obtained with the triplet loss models
in the left column and the results with the categorical cross-
entropy loss models in the right column. Four experiments have
been plotted: on the top left, the model results using 2,000 images
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FIGURE 11 | Test embeddings of N = 2,000 (top left), N = 200 (top right), N = 30 (bottom left), N = 4 (bottom right) reduced to 2 dimensions using the t-SNE

technique. For each experiment, the graphs on the left show the results obtained with the triplet loss, and those on the right show the results obtained with the

categorical cross-entropy loss. In the case of N = 2,000 and N = 200, high class separability is observed with triplet loss. By reducing the number of images per class

to N = 30, the triplet loss model loses separability in certain classes. Finally, in the case of N = 4, the class groups are not well-defined. In the case of categorical

cross-entropy loss, similar results are shown in all graphs.

per class; on the top right, the model results using 200 images
per class; on the bottom left, the model results using 30 images
per class; and on the bottom right, the model results using 4
images per class. Each color represents a different class. We
can see that in the case of N = 2,000, the model trained with
the triplet loss maximizes the interclass distance achieving a
high separability between classes, while minimizing the intraclass
distance, creating a grouped cluster of each of the classes. It
can also be observed how the SEPTTR class represented in dark
blue is close at certain points to several clusters belonging to the
PUCCST (light green) or PUCCRT (red) classes, which confuses
the algorithm, as analyzed in the results of section 4.5. On the
other hand, the t-SNE 2D projection of the model trained with
categorical cross-entropy shows a larger overlap between classes
which is consistent with the DB index and Silhouette values. By
reducing the number of images to 200, a clear difference between
the two models is observed. In the case of triplet loss, similar
results are obtained with respect to the previous model analyzed
(N = 2,000). In fact, the model already obtains compact clusters
with N = 200 and improves slightly when training with more
images. In the case of N = 30, as before, we obtain a better
separability between classes by training the model with triplet
loss, since in the case of categorical cross-entropy loss very few
classes are well-defined. However, if we compare this with the
previous cases of N = 200 and N = 2,000, we observe that for
both models, the experiments trained with 200 and 2,000 images
per class achieve a better clustering of the classes with respect

to the experiments trained with 30 images per class. This is due
to the fact that, by training with a larger number of images the
models manage to extract themost representative features of each
class which are reflected in the embedding vectors. Finally, in
the case of N = 4, similar results are obtained with both triplet
and categorical cross-entropy loss, where no class separability is
shown in either case.

4.4. Statistical Analysis
To calculate the statistical significance of the performance of
the two proposed algorithms, we follow the approach proposed
by Dietterich (1998), where the use of the McNemar test
is recommended in cases where multiple iterations of the
test are not possible or are time-consuming. McNemar’s test
proposes a tabulation of the responses given by two proposed
qualifiers (in our case the triplet loss and categorical cross-
entropy algorithms) where their discrepancies are measured for
marginal homogeneity.

Since McNemar’s test is aimed at binary decision classifiers,
we employ the Stuart-Maxwell test (Maxwell, 1970) which is
an extension of McNemar’s test for multiclass classification
algorithms (Cano-Espinosa et al., 2020). Table 2 details the
results obtained. We obtain statistical significance (pvalue<0.01)
for all experiments involving less than 500 images for training,
while there is no statistical significance for experiments with
a number of images greater than 500. This demonstrates the
benefit of using metric learning approaches for few-shot learning
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TABLE 2 | This table shows the statistical significance of the differences among the two proposed classifiers by a different number of training images.

No of images 4 6 8 10 12 15 20 30 50 100

pvalue 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

χ
2 0963.26 1888.42 2101.88 2513.66 1044.49 1590.29 1552.43 1056.37 906.48 959.85

No of images 200 500 1k 2k

pvalue 0.00 0.00 0.38 1.00

χ
2 280.09 209.58 157.85 102.98

It can be appreciated that the differences are significant (pvalue < 0.01) for training image numbers lower than 500 whereas classifier differences are not significant with larger number

of training images.

compared to classical metrics, as also seen in other fields (Medela
and Picon, 2019; Argüeso et al., 2020).

4.5. Analysis of Explainability
The dataset used to develop the project contains images of plants
taken in the field. Therefore, images containing human digits
with or without blue gloves are included, which could affect
the results of the experiments. The images were captured in
different campaigns and at different locations, and in all cases
the same protocols were followed for the acquisition of images
of all crops so that the occurrence of artifacts was controlled.
Additionally, along with the acquisition campaigns, the pictures
taken on the same day were assigned to a unique dataset subset
(train, validation, or test) to avoid data contamination.

To analyze the influence of these artifacts on the algorithm
performance, the Grad-CAM technique (Selvaraju et al., 2017)
has been selected, which produces visual explanations for the
CNN-based model decisions. It uses the gradients leading to the
final convolutional layer to produce a coarse localization map
that highlights important regions of the image for prediction. The
Grad-CAM technique has been applied to the trainedmodels and
test set images to find the most significant regions of the images
that the model focused on to predict plant diseases. Figure 12
shows the results obtained on different images for all the diseases,
where it can be seen that the trained model correctly focuses
on the most representative parts of the diseases, without being
affected by the different artifacts such as gloves, human hands or
specific backgrounds that might appear on the image.

5. DISCUSSION

In recent years, deep learning-based models for plant disease
detection have become increasingly important. Thus, some
datasets have been created and made publicly available for
research. An example of an open access dataset is the PlantVillage
dataset, which consists of over fifty thousand images of
26 different diseases that have been taken under controlled
conditions. Images of individual leaves are photographed on
a plain background where diseases are clearly visible in most
cases, as only late stage diseases have been considered. Several
experiments have been developed using the PlantVillage dataset
and have achieved high performance (Mohanty et al., 2016;
Rangarajan et al., 2018). In addition, few-shot learning models

have also been applied to this dataset in order to address the
problems of acquiring large datasets. Argüeso et al. (2020)
reached a median accuracy of 80% for the 6 classes selected
in the target dataset using only 15 images per class. However,
this model was pre-trained with all class images from the
source dataset which acted as a supporting dataset. Therefore,
with our experiments we want to demonstrate that by using
distance metric techniques good results can be achieved using
few images without needing a large dataset of annotated images
on which to train the base model. Moreover, the experiments
have been developed using images from a dataset taken in
real field conditions, which differs from a laboratory dataset by
having varied and non-uniform backgrounds, different lighting
conditions, different perspectives and distances, as well as by
including different disease stages (early and late stages). Five
crops with a total of 17 different diseases are included in
the dataset.

Our experiments compare two different approaches: a Siamese
network based on the distance metric with a triplet loss function,
and a traditional network with the categorical cross-entropy
loss function. Different models have been developed using from
N = 4 to N = 2,000 images per class. The results show that
the Siamese network with the triplet loss function achieves an
average f-score above 55.0% from N = 10, while the values
obtained with the categorical cross-entropy are below in most
cases (Figure 6). By increasing the number of classes to N = 30,
the triplet loss achieves an F-score of 69%, which, considering
that there are still very few images, is a great improvement. The
effect of the parameter k of the k-NN classifier has been analyzed,
where it has been observed that the algorithm keeps the results
constant for different values of k, except for the cases where K
is larger than N for low values of N, in which the effect of the
parameter k is large (Figure 9). On the other hand, the results
of the feature extractor part of the model have been analyzed.
We have analyzed the ability to create clusters of each class by
means of the embedding vectors obtained from the CNN through
the DB-index and Silhouette parameters, as well as by applying
the t-SNE technique. In both cases it has been observed that
the Siamese network with the loss of the triplet separates the
different classes better, obtaining a clear cluster for each class
(Figure 11).

We have performed a statistical analysis to find the most
significant differences between the two approaches. In the
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FIGURE 12 | Grad-CAM results applied to test images of all diseases. For each disease, the original image has been plotted on the left, and the most significant

regions detected by the algorithm is represented on the right. Each disease is expressed by its EPPO code: SEPTTR (Septoria tritici), PUCCST (Puccinia striiformis),

PUCCRT (Puccinia recondita), LEPTNO (Septoria nodorum), PYRNTR (Drechslera tritici-repentis), PSDCHE (Oculimacula yallundae), GIBBZE (Gibberella zeae),

EYRSGR (Blumeria graminis), PRYNTE (Pyrenophora teres), RAMUCC (Ramularia collo-cygni), RHYNSE (Rhynchosporium secalis), PUCCHD (Puccinia hordei),

DIRTYP (Various diseases), RHIZSO (Thanatephorus cucumeris), PYRIOR (Pyricularia oryzae), SETOTU (Helminthosporium turcicum), and LEPTMA (Phoma lingam).

range from N = 4 to N = 500, it has been observed that
triplet loss-based method outperforms the results obtained with
the categorical cross-entropy loss model. For example, in the
intermediate value of N = 30, we can appreciate that we obtain
better results both for classification performance (F1 = 0.69 vs.
F1 = 0.63) as well as for clustering performance (DB-Index =

2.25 vs. DB-Index = 1.62) and Silhouette (0.17 vs. 0.05) for the

triplet loss approach. For N-values above 500, differences are not
statistically significant.

6. CONCLUSIONS

This study analyzes two different networks to develop a model
based on deep learning techniques from a few images for plant
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disease classification: a Siamese network based on the distance
metric with a triplet loss function, and a traditional network with
the categorical cross-entropy loss function as defined by Picon
et al. (2019a).

The experiments have been developed using few images per
class. It is noteworthy that we stand for the most complicated
case where there is no supporting dataset for creating the few-
shot latent descriptor as it is performed in the classical few-shot
approaches. For this reason, in this study we have sought to
demonstrate that a distance metric-based Siamese network with
a triplet loss function is able to learn image features from few
images without the need for a supporting dataset which is a more
realistic and demanding few-shot use case.

The triplet loss model improves the average F-score value by
6% with respect to the categorical cross-entropy loss. The triplet
loss model achieves higher F-score values for all values of N,
where the main difference between the two architectures appears
at the lowest values of N. Furthermore, it has been analyzed that
this difference is due to the fact that the triplet loss model is
able to learn the features of classes with fewer available samples
and similar symptoms, considered as the most difficult classes.
Without loss of generality, in the particular case of N = 30, the
proposed method outperformed the baseline method for disease
classification (F1 = 0.69 vs. F1 = 0.63, N = 30). The classes
that benefitedmost from these improvements were LEPTNO and
PYRIOR among themost problematic classes, as well as ERYSGR,
RHIZSO, or GIBBZE among the classes with the best predictions.

If we analyze the quality of the generated latent space
descriptors, we can appreciate that the triplet loss model
outperforms the cross-entropy categorical loss model by
obtaining more compact and separated clusters (DB-Index =

2.25 vs. DB-Index= 1.62), Silhouette (0.17 vs. 0.05) which allows
for easier feature extraction and image retrieval. The triplet loss
model improves the mean value of the DB-index parameter
by 22.7% over the categorical cross-entropy model, as well as
the mean value of the Silhouette score by an improvement of
166.7%.

An important remark when using knn as shallow classifier
after the feature extraction that must be taken into account is
that the value selected for K must be greater than the number
of images per class used for training. In addition, it has also been
shown that the results obtained by the classifier are better in the
case of triplet loss.

Our results show that triplet loss approach obtains better
results than state of the art deep learning approaches for
both discriminating plant diseases and generating better latent
descriptors in the case of real and complex dataset taken in

real field implying complex conditions (changing backgrounds,
different lighting conditions, different distances, different disease
stages...) where only few images per class are available.

This generates new research opportunities for the use of
these techniques in the generation of large and openly available
feature extraction models that could help structure plant
disease representations allowing few-shot characterization of
uncommon and rare diseases.
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