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CONSTANS (CO) plays a critical role in the photoperiodic flowering pathway. However,
the function of soybean CO orthologs and the molecular mechanisms in regulating
flowering remain largely unknown. This study characterized the natural variations in CO
family genes and their association with flowering time and maturity in soybeans. A total
of 21 soybean CO family genes (GmCOLs) were cloned and sequenced in 128 varieties
covering 14 known maturity groups (MG 0000-MG X from earliest to latest maturity).
Regarding the whole genomic region involving these genes, GmCOL1, GmCOLS3,
GmCOL8, GmCOL9, GmCOL10, and GmCOL13 were conserved, and the remaining
15 genes showed genetic variation that was brought about by mutation, namely, all
single-nucleotide polymorphisms (SNPs) and insertions-deletions (InDels). In addition, a
few genes showed some strong linkage disequilibrium. Point mutations were found in
15 GmCOL genes, which can lead to changes in the potential protein structure. Early
flowering and maturation were related to eight genes (GmCQOL1/3/4/8/13/15/16/19).
For flowering and maturation, 11 genes (GmCOL2/5/6/14/20/22/23/24/25/26/28)
expressed divergent physiognomy. Haplotype analysis indicated that the haplotypes
of GmCOL5-Hap2, GmCOL13-Hap2/3, and GmCOL28-Hap2 were associated with
flowering dates and soybean maturity. This study helps address the role of GmCOL
family genes in adapting to diverse environments, particularly when it is necessary to
regulate soybean flowering dates and maturity.

Keywords: soybean, GmCOL orthologue, natural variation, flowering time, maturity group

INTRODUCTION

Plants can adapt to different environmental conditions in response to various day lengths
(photoperiods). In the photoperiodic flowering pathway, CONSTANS (CO), which is a B-box-
containing transcription factor (Robson et al., 2001; Gangappa and Botto, 2014), plays a key role
(Putterill et al., 1995; Suarez-Lopez et al., 2001). CO also possesses a CONSTANS, CONSTANS-
LIKE, TIMING OF CABI (CCT) domain at its C-terminus involved in DNA binding (Strayer
et al., 2000; Robson et al., 2001). CYCLING DOF FACTOR (CDF) family proteins bind to the
CO promoter to repress its transcription in the morning (Imaizumi et al., 2005; Fornara et al.,
2009). FLAVIN-BINDING, KELCH REPEAT, and F-BOX1 (FKF1) interact with GIGANTEA
(GI) to degrade the CDF1 protein, which results in the elevation of CO mRNA (Sawa et al.,
2007). CO acts in the phloem of leaf vascular tissues to activate FLOWERING LOCUS T (FT)
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expression, which causes flowering under linkage disequilibrium
(LD) conditions (Takada and Goto, 2003; An et al, 2004).
SUPPRESSOR OF PHYTOCHROME A-105 (SPA) proteins
interact with the CCT domain of CO (Laubinger et al., 2006). CO
is ubiquitinated by CONSTITUTIVE PHOTOMORPHOGENIC
1 (COPI1) and degraded by the 26S proteasome (Jang et al.,
2008; Liu L. J. et al, 2008). HIGH EXPRESSION OF
OSMOTICALLY RESPONSIVE GENESI (HOS1) interacts with
CO and participates in the degradation of CO mediated by red
light (Lazaro et al., 2012, 2015). Nucleoporin96 (Nup96) interacts
with HOS1 to gate CO protein levels (Cheng et al., 2020). CO
protein is stable under the light in the evening but degraded in
the morning or in the dark under LD conditions (Valverde et al.,
2004). All of the abovementioned comments are based on studies
in Arabidopsis.

As a short-day plant (SDP) distributed over a vast range of
latitudes, soybean is characterized as having 14 maturity groups
from MG 0000 to MG X (Liu et al, 2017; Jiang et al., 2019).
There are hundreds of genetic loci associated with flowering time
and maturity in soybean, among which EI (Xia et al., 2012), E2
(Watanabe et al., 2011), E3 (Watanabe et al., 2009), E4 (Liu B.
et al., 2008), E6 (Fang C. et al., 2021), E9 (Kong et al., 2014),
E10 (Samanfar et al,, 2017), E11 (Wang et al., 2019), J (Lu et al,,
2017; Yue et al., 2017) and Tof11/GmPRR37/GmPRR3b (Li et al.,
2020; Lu et al,, 2020; Wang et al., 2020), GmTof16 (Dong et al.,
2021b), GmFUL (Dong et al., 2021a; Sun et al., 2021; Yue et al,,
2021), and GmLUX (Bu et al.,, 2021; Fang X. et al.,, 2021) are
molecularly identified. There are 28 CO orthologs in soybean
(Fan et al., 2014), but the functions of most of the CO orthologs
remain uncharacterized. It has been shown that GmCOL1la and
GmCOLI1D can fully complement the late-flowering phenotype
of the col mutant in Arabidopsis (Wu et al., 2014). In contrast,
GmCOLIa and GmCOLID repressed flowering in soybean under
long-day conditions (Cao et al., 2015; Wu et al., 2019).

Natural variation is associated with photoperiodic flowering
and adaptation in different species (Alonso-Blanco et al., 2005;
Balasubramanian et al., 2006; Rosas et al., 2014; Li et al., 2017;
Lu et al, 2017; Bao et al,, 2019; Jiang et al., 2019; Wu et al,
2020). In this study, 128 soybean varieties were selected and
planted, covering all 14 maturity groups from MG 0000 to
MG X with a continuous distribution in maturity groups (Jiang
et al., 2019). Due to the short duration of the project, 21 of
the 28 soybean COL genes (Fan et al, 2014) were sequenced,
and their sequence polymorphisms were analyzed. Furthermore,
we studied the haplotypes of these soybean GmCOL genes to
discover their natural variations in association with flowering
time and maturity. These results suggested that some natural
variations in 21 soybean GmCOL genes were associated with
flowering date and maturity.

MATERIALS AND METHODS

Plant Materials

Soybean varieties covering all 14 maturity groups (MG 0000-MG
X) were assessed in this study (Jiang et al., 2019). In this study, 64
Chinese and Russian soybean varieties and 64 North American

maturity group standard varieties were included, covering MG
0000-MG X, for a total of 128 accessions analyzed (Table 1).

Investigation of Flowering and Maturity

Dates

The soybeans were planted in soil in 10-L pots and grown
under natural conditions in Haidian District, Beijing (39.95°N,
116.32°E) on May 27, 2015, and May 18, 2016 (Jiang et al., 2019).
After emergence (VE), seedlings of similar size were selected so
that each pot contained five uniform plants. Each variety was
planted in three pots. The four developmental stages of soybean,
namely, VE, R1, R7, and R8 (Fehr and Caviness, 1977), were
investigated, and the average value of three pots for each variety

was used for statistical analysis.

TABLE 1 | Soyabean varigties and maturity groups.

MGR (maturity group reference) varieties

Maturity North American Chinese-Russian
group varieties varieties
MG 0000 Star4/75, Hujiao07-2479,
Hujiao07-2123, Dongnong 36,
Paula, R-4, Dongnong 41,
Lingbei 8
MG 000 Maple Presto, OAC Vision, R-2, Heihe 35
Rassvet, Jug 30, Mageva
MG 00 Canatto, Maple Ridge, Daksoy, = Mengdou 32, Beidou 16,
McCall, Agassiz Dongnong 44, Mengdou 11
MG 0 Traill, Chico, Barnes, Norpro, Jiangmodou 1, Heihe 18, Heihe
Dawson 43, Heihe 27, Beidou 37,
Dengke 1, Fengshou 12,
Dongnong 4, Hefeng 25
MG | Haroson, Kato, Parker, Granite, ~ Heinong 16, Taixingheidou,
NE1900 Heinong 26, Suinong 14
MG I Holt, Olympus, Century 84, IL1,  Jilin 20, Yongchengzihuadou,
LN92-7369 Xiangchundou 24, Tiefeng 19
MG Il Athow, LN89-5699, KS3494, Zhonghuang 13, Zhonghuang
IL2, Williams 82 30, Tiefeng 33, Zhongdou 39,
Xudou 9, Tiefeng 31, Jindou
19, Huachun 6, Huaidou 9
MG IV Flyer, Omaha, Calhoun, CF461,  Zheng 92116, Guandou 2,
UA-4805 Jindou 39, Shanning 16,
Houzimao
MG V Nathan, Hollady, Hutcheson, Shangdou 14, Dian 86-4,
RO1-3474F, TN04-5321 Diandou 7
MG VI Desha, Musen, D95-6271, Zhongdou 38,
GO1-PR16, Boggs Wuhuasiyuehuang, Suxiandou
19, Nannong 493-1
MG VI Stonewall, Benning, Santee, Huangfengwo,
Hagood Tongshanbopihuang,
Hengyangbayueqing,
Nanxiadou 25
MG Vil Motte, Dowling, Crockett, Aljiaoging, Pingguohuangdou,
Prichard, IAC-8, CIGRAS-51, Nandou 12, Shangraodagingsi,
CIGRAS-06 Lanxidagingdou, Qiudou 1,
Nandou 17, Jiangledagingdou,
Guixia 3
MG IX Jupiter, Alamo, FT-15, UFV-3
MG X I.C. 192 Zigongdongdou
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DNA Isolation, PCR, and Sequencing
Genomic DNA was extracted from fresh trifoliolate leaves
using the standard cetyltrimethylammonium bromide (CTAB)
method (Jiang et al., 2019). To amplify the 21 soybean GmCOL
genes, 36 PCR primer pairs were used. GmCOL9/15/16/20/28
was amplified with 2 primer pairs: GmCOL4 with 11 primer
pairs and GmCOL1/2/3/5/6/8/10/13/14/19/22/23/24/25/26 with
1 primer pair. The sequences of these primers and the template
designation are listed in Supplementary Table 1. Target regions
were amplified with the high-fidelity polymerase of KOD-Plus-
Neo and KOD-FX. Their reaction conditions were 94°C for
2 min (98°C for 10 s, 68°C for 3 min), 35 cycles, and 68°C
for 10 min. The PCR products were directly sequenced using
the Sanger method (TSINGKE Biological Technology Company,
BGI and Omega Genetics, Beijing, China). The polymorphic site
information of the 21 soybean GmCOL family genes is listed in
Supplementary Table 2.

Data Mining and Sequence Analysis
The annotated soybean COL gene sequence was downloaded
from the Joint Genome Institute (JGI) Phytozome website'. The
protein sequences of the annotated Arabidopsis genes (TAIR9
release) were downloaded from the Arabidopsis Information
Resource (TAIR) website’. The CO-like gene sequence data
were also collected from the USDA-ARS Soybean Genetics and
Genomics Database (SoyBase Database’). The reference sequence
of the soybean variety Williams 82 was obtained from the
Phytozome (version 12.0) database* as a reference design for the
amplification and sequencing primers of the COL genes.
Sequencing was performed using an ABI3730 sequencer.
Multiple sequence alignment, editing, and stitching were carried
out using ClustalW in MEGA5 with default parameters. Single-
nucleotide polymorphism (SNP) analysis was carried out using
TASSELS5 software. The haplotype analysis of the sequencing
results was conducted by DNAsp to determine whether the
protein coding was affected. LD was also evaluated using
TASSEL5 software. The statistical analysis was performed
using “R” software.

RESULTS

Diversity of Soybean Varieties in

Flowering Time and Maturity

The results of the growth traits are presented in Table 2. The
varieties utilized in this experiment exhibited significant diversity
in flowering time and maturity (Table 2). In 2015, 19 varieties,
namely, MC119, MC63, MC69, MC70, MC54, MC121, MC122,
MC123, MC72, MC124, MC125, MC126, MC48, MC64, MC65,
MC66, MC67, MC68, and MC71, flowered but failed to reach R7.
In 2016, 50 varieties did not reach R7 (Table 2). In 2015, the days
to R1 from emergence (VE) ranged from 21 (MC82, MG 0) to

Thttps://phytozome-next.jgi.doe.gov/
2www.arabidopsis.org

3http://soybase.org/
“http://phytozome.jgi.doe.gov/pz/portal. html

121 days (MC72, MG VIII) with a span of 100 days. In 2016,
the span time was 96 days between MG 0000 (MCO05, 13 days)
and MG VIII (MC129, 109 days). In 2016, the days to R7 ranged
from 68 (MCO05 and MC74, MG 0000) to 144 days (MC42, MG
IV), and the days to R8 ranged from 76 (MCO05, MG 0000) to
109 days (MC37, MG III). The combination of maturity group
information for the days of flowering time from the emergence
and the days of beginning maturity from emergence in 2016 is
plotted in a box diagram (Figure 1).

GmCOL Gene Sequencing and Mutation
Study

A large number of mutated sites were found in GmCOL2,
GmCOL5, GmCOL14, GmCOL16, GmCOL20, and GmCOL28
(Figures 2B1,D1 and Supplementary Figures 1G1,I1, 2B1,H1).
A majority of the mutation sites were in gene intron
regions, but a few were located in protein-coding regions
caused by insertions-deletions (InDels) and substitutions.
In addition, GmCOL6, GmCOL22, GmCOL23, GmCOL24,
GmCOL25, and GmCOL26 showed high mutation frequencies
in the protein-coding regions (Supplementary Figures 1, 2).
In contrast, GmCOL4, GmCOLI15, and GmCOL19 expressed
lower mutational occurrences (Supplementary Figures 1A1,H1,
2A1). The exception was GmCOL3, which did not show
mutations (Figure 2C) in either the intron or exon region
of the entire gene. GmCOL3 is a highly conserved gene with
no change in sequence. However, the amino acid sequences
encoded by GmCOL1, GmCOL8, GmCOL9, GmCOL10, and
GmCOL13 were not affected (Figure 2A and Supplementary
Figures 1C1-F1).

Soybean COL Gene Family Exhibited

Different Linkage Disequilibrium

Linkage and association mapping were drawn among the SNPs of
the gene via TASSEL5. GmCOLS5 across the region almost from
the starting to the end site presented a strong LD by completing
the haplotype block (Figure 3D). GmCOL20, GmCOL24,
and GmCOL25 across the region expressed strong LD as a
haplotype block (Figures 3N,Q,R), and the polymorphic sites
of GmCOL6, GmCOL8, GmCOL10, GmCOL13, and GmCOLI9
showed a strong LD, with almost the entire region being a
haplotype block (Figures 3E,FH,LLM). Although GmCOL2,
GmCOL16, GmCOL22, GmCOL26, and GmCOL28 had a
high-sequence polymorphism, the entire region distributed a
few LDs (Figures 3B,L,0,S,T) with the same high-sequence
polymorphism of GmCOL4, GmCOLY, and GmCOL23, and quite
a few strong LDs were distributed broadly (Figures 3C,G,P).
GmCOLI1, GmCOL14, and GmCOLI5 did not reveal any LD
(Figures 3A,J,K). GmCOL3 was the most conserved gene,
showing no polymorphic site(s).

Haplotype Analysis and Its Association
With Maturity Groups of Soybean

Varieties
Based on LD and sequence clustering, haplotype definition
was analyzed for the 21 soybean GmCOL gene families in
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TABLE 2 | Phenotypic variation of soybean varieties at Beijing.

Code Variety name MG Phenotype in 2016
VE-R1 VE-R7 VE-R8

MCO1 Star 4/75 0000 154 +1.2 70.6 + 1.3 80.6 + 0.61
MC02 Hujiao 07-2479 0000 16.4 £0.82 72.06 +1.27 81.26 + 0.45
MC03 Hujiao 07-2123 0000 15.6 £ 0.50 71.13+0.35 80.8 + 0.41
MC04 Dongnong 36 0000 1413 £ 0.51 69.13 + 0.51 79.66 + 0.97
MC05 Paula 0000 13.66 +0.48 68.4 +0.82 76.66 + 0.48
MC06 R-4 0000 25.86 £ 0.74 71.46 + 0.91 82.6 +£0.82
MCOo7 Dongnong 41 0000 14.33 £0.48 69.46 + 0.51 79.53 + 0.91
MC74 Lingbei 8 0000 189+1.0 68.4+ 1.2 80.2+15
MC75 Dongnong 41-C 0000 257 +1.4 70.5+0.9 80.9+1.0
MC08 Maple-Presto 000 16.53 £ 0.51 69.2 + 1.01 77.66 +0.97
MC09 OAC-Vision 000 16.73 £0.79 69.8 + 1.52 77.53 +0.91
MC10 Rassvet 000 17.33 £0.48 71.63 +0.91 79.8 +0.41
MC11 Jug-30 000 24.33 +£0.48 71.2+0.41 79.8 +£0.67
MC12 Mageva 000 2573 + 0.45 75.66 + 0.97 83.8 + 0.86
MC73 R2 000 14.6 £0.9 706+ 1.4 80.8 + 2.1
MC76 Heihe 35 000 254 +1.5 735+ 0.5 87.5+05
MC13 Canatto 00 182+04 728+1.8 852+ 04
MC14 Maple-Ridge 00 18.4+£0.5 720+1.0 847+ 0.4
MC15 Daksoy 00 243+04 71.3+04 80.8+0.3
MC16 McCall 00 236 +0.8 73.4+£12 8568+ 1.5
MC17 Agassiz 00 252+ 0.4 71.6+0.8 81.2+04
MC77 Mengdou 32 00 226+24 732+1.0 86.3+0.9
MC78 Beidou 16 00 19.9+0.7 734+15 85.4+05
MC80 Dongnong 44 00 248+1.0 713+1.4 81.3+0.9
MC81 Mengdou 11 00 243404 712+13 816+15
MC26 Traill 0 27.3+04 73.3+0.9 82.26 £ 0.7
mMc27 Chico 0 26.4 4+ 0.9 708+ 1.5 814+15
MC28 Barnes 0 26.5+0.7 68.8+ 1.3 784+ 0.5
MC29 Norpro 0 253+0.9 71.4 +£0.50 821+1.2
MC30 Dawson 0 236+ 0.4 702+ 1.37 804 +1.2
MC31 Jiangmodou 1 0 234409 69.7 £ 1.1 80.5+0.9
MC82 Heihe 18 0 252+1.5 720+1.0 808+ 1.3
MC83 Heihe 43 0 26.4+05 719+16 82.6 £0.7
MC84 Heihe 27 0 23.6+0.4 70.8+ 1.0 81.6+05
MC85 Beidou 37 0 21.5+0.9 69.5 + 0.9 80.2+1.2
MC86 Dengke1 0 238+ 0.4 69.6 + 0.4 80.4+05
MC97 Fengshou 12 0 246+0.9 71.0+1.0 80.8+1.0
MC88 Dongnong-4 0 322+1.0 741408 85.8+ 0.6
MC89 Hefeng 25 0 32.7+0.4 75.5+0.9 85.7+0.7
MC23 Haroson | 26,2 £0.45 712+04 822+04
MC24 Kato | 27.5+0.9 722404 81.5+09
MC25 Parker | 254+ 0.9 71.4+0.9 80.3+0.9
MC26 Granite | 253+0.9 71.3+0.9 78.4+0.9
mMc27 NE1900 | 352+ 0.4 70.7+£1.0 80.1+0.3
MC90 Heinong 16 | 285+ 0.9 71.6+0.9 79.4+0.5
MC9O1 Taixingheidou | 26.6 £0.9 7273+ 1.6 79.3+1.7
MC92 Heinong 26 | 29.4+0.5 70.8 + 0.6 78.8+0.9
MC93 Suinong 14 | 272+15 69.4+1.3 782+1.3
MC28 Holt 1 30.3+24 70.8+0.8 81.8+15
MC29 Olympus I 27.7+0.9 723+0.4 820+1.0
MC30 Century-84 Il 26.6 + 0.4 716+0.8 81.0+1.2
MC31 IL1 Il 304 +55 702+1.7 796+25
MC32 LN92-7369 Il 304 +1.4 762+1.0 1079+ 1.6
MC94 Jilin 20 1 252 +1.0 70.3+0.9 782+ 1.0
MC95 ‘Yongchengzihuadou Il 413+1.2 721 +£1.2 87.7+1.2
MC96 Xiangchundou 24 1 43.8+1.0 77.4+05 86.6 +1.2
MC98 Tiefeng 19 I 244405 712+1.2 81.2+1.7
MC33 Athow 1l 30.3+0.9 76.3+0.9 106.3 £ 0.9
MC34 Zhonghuang 13 ll 433+ 0.4 78.4+£0.9 106.4 £ 0.9
MC35 Zhonghuang 30 1l 37.8+0.9 78.3+0.9 1055 +1.4
MC36 LN89-5699 Il 323+09 802+ 1.5 108.2 £ 0.4
MC37 KS3494 1l 37.4+05 79.8+0.9 109.4 £ 1.5
MC38 L2 1l 421 +£0.8 105.2 £2.3 105.3 £ 5.1
MC39 Williams 82 1l 36.8+0.3 107.3+0.8 108.1 £2.3

(Continued)
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TABLE 2 | (Continued)

Code Variety name MG Phenotype in 2016
VE-R1 VE-R7 VE-R8

MC97 Tiefeng 33 I 295+ 0.5 78.7+0.4 1068+ 1.2
MC99 Zhongdou 39 Il 445+ 0.5 77.4+0.5 1052+ 1.8
MC100 Xudou 9 1l 37.9+0.7 780+ 1.0 106.4 £ 1.5
MC101 Tiefeng 31 1l 242+1.1 772+13 105.2 £ 1.1
MC102 Jindou 19 1l 258+ 1.3 774+15 1048+ 15
MC103 Huachun 6 I 31.4+£05 77.3+04 106.6 £0.9
MC104 Huaidou 9 Il 343+ 0.4 ND ND
MC40 Flyer v 355+1.4 143.0+ 1.4 ND
MC41 Omaha v 38.0+1.0 143.4 £ 1.4 ND
MC42 Calhoun v 37.3+0.4 144.4 £0.5 ND
MC43 CF461 v 31.8+1.0 143.7 £ 0.4 ND
MC44 UA-4805 ) 612404 ND ND
MC105 Zheng 92116 vV 372+04 ND ND
MC106 Guandou 2 ) 35.8 £ 1.0 ND ND
MC107 Jindou 39 Y 36.2+1.3 1429+ 1.0 ND
MC108 Shanning 16 Y 434 +0.8 1423 £0.4 ND
MC109 Houzimao Y 437 +1.4 143.3 £ 1.1 ND
MC45 Nathan \ 60.2+ 1.0 ND ND
MC46 Holladay \Y 622+ 1.5 ND ND
MC47 Hutcheson \ 63.2+1.0 ND ND
MC48 RO1-3474F \ 622+1.5 ND ND
MC49 TNO04-5321 \ 63.6+1.5 ND ND
MC110 Shangdou 14 \ 447 £ 0.4 ND ND
MC111 Dian 86-4 \ 436+1.5 ND ND
MC113 Diandou 7 \ 88.3+ 0.9 ND ND
MC50 Desha \Y 48.0+0.8 ND ND
MC51 Musen \Y 80.0+ 1.0 ND ND
MC52 D95-6271 \Yl 823+1.5 ND ND
MC53 GO1-PR16 Yl 81.6+0.9 ND ND
MC54 Boggs Yl 798+1.5 ND ND
MC112 Zhongdou 38 \Yl 836+ 25 ND ND
MC114 Wuhuasiyuehuang Vi 86.3+£0.9 ND ND
MC108 Suxiandou 19 \Y 85.8+1.2 ND ND
MC116 Nannong 493-1 Vi 91.2+04 ND ND
MC55 Stonewall Vil 81.4+0.5 ND ND
MC57 Santee \ 826+1.8 ND ND
MC58 Hagood Vil 946+1.2 ND ND
MC56 Benning W 93.3+0.9 ND ND
MC117 Hunagfengwu W 93.7 £0.4 ND ND
MC118 Tongshanbopihuang Wi 932 +1.2 ND ND
MC60 Motte VIl 93.3+0.9 ND ND
MC61 Dowling Vil 958+ 1.5 ND ND
MC62 Crockett Vil 65.4 + 0.2 1422 +£0.5 168.0+ 1.0
MC128 Hengyangbayueging VI 96.9+1.0 ND ND
MC119 Nanxiadou 25 W 92.6 +£0.9 ND ND
MC63 Prichard Vil 94.8+1.0 ND ND
MC69 CIGRAS-51 Vil 81.44+0.5 ND ND
MC70 CIGRAS-06 Vil 81.5+0.9 ND ND
MC54 Aijiaoging Vil 943+ 0.4 ND ND
MC121 Pingguohuangdou Vil 929+1.0 ND ND
MC122 Nandou 12 Vil 91.3+0.4 ND ND
MC123 Shangraodagingsi Vil 92.8 +£1.0 ND ND
MC72 Zigongdongdou Vil 734 +£1.5 ND ND
MC124 Lanxidagingdou Vil 91.6 £0.5 ND ND
MC125 Qiudou 1 Vil 943+ 0.4 ND ND
MC126 Nandou 17 Vil 91.6+0.4 ND ND
MC48 Jiangledagingdou Vil 99.5 £ 0.9 ND ND
MC129 Guixia 3 Vil 109.2+1.0 1184 +£0.2 ND
MC64 Jupiter IX 96.3 £0.9 ND ND
MC65 Alamo IX 96.0+1.3 ND ND
MC66 FT-15 IX 942+1.3 ND ND
MC67 UFV-3 IX 96.2+1.0 ND ND
MC68 IAC-8 IX 90.0+ 1.0 ND ND
MCT71 1.C.-192 X 804+ 1.5 ND ND

ND, Not available data; VE, Variation after emergence.
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FIGURE 1 | (A,B) Flowering time and maturity of soybean varieties from different maturity groups. Flowering time and maturity data were collected in 2016 from 128
soybean varieties covering 14 maturity groups. DAE, days after emergence.

the 128 varieties investigated. A total of 21 haplotypes of the
GmCOL gene family variation types and polymorphic sites
used for composing haplotypes are listed in Figure 2 and
Supplementary Tables 3, 4 (Supplementary Figures 1, 2),
respectively. Supplementary Table 5 shows 21 GmCOL protein
groups associated with haplotypes.

GmCOL2-Hap2 was dominant in the 41 accessions covering
all maturity groups, except MG X. GmCOL2-Hap4 showed
early flowering compared with the other haplotype groups

(Figures 2B3,B4, Table 2, and Supplementary Table 3).
GmCOL4-Hapl accounted for 99 varieties, with all maturity
groups excluding MG X (Supplementary Figure 1A2).
GmCOL4-Hapl had an earlier flowering date in 2016.
GmCOL5-Hap2 was present in 56 accessions, covering all
maturity groups (Figure 2D1). GmCOL6-Hapl was the most
abundant in 70 varieties from different maturity groups,
including MG 0000-MG V and MG VIII-MG X (Supplementary
Figure 1B1). Among the 11 haplotypes, GmCOL9-Hapl was
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dominant in 67 varieties from maturity groups MG 0000-MG
X (Supplementary Figures 1D1,D2). GmCOL9-Hap3 and
GmCOL9-Hap4 were distributed in a few varieties, and the
flowering time for both haplotypes was early. GmCOLI10-Hapl
was the most abundantly expressed in 91 varieties from all
maturity groups except MG X (Supplementary Figures 1E1,E2).
GmCOLI6-Hapl was rich in accessions distributed in
the maturity groups MG 0000-MG VIII (Supplementary
Figures 1I1,I12). GmCOL20-Hap2 was present in 52 varieties
from all maturity groups (MG 0000-MG X) (Supplementary
Figures 2B1,B2). Among all the haplotypes of GmCOL2S,
GmCOL28-Hapl was the most common, accounting for 59
accessions, and was distributed in the maturity groups MG 0000,
MG 00, MG 0, MG I-MG VIII, and MG X (Supplementary
Figures 2H1,H2). In this experiment, no haplotype variants were
found in GmCOLI and GmCOL3 (Figures 2A,C). The Hapl
series of haplotypes of GmCOLS8/13/14/15/19/22/23/24/25/26
was the most abundant in the varieties and was distributed in
all 14 maturity groups (Supplementary Figures 1C1,F1,G1,H1,
2A1,C1,D1,E1,F1,G1).

Haplotypes Associated With Flowering
Time

The haplotype groups of 21 gene families are presented in
Table 3. An analysis of variance (ANOVA) was performed
to elucidate the natural variations in flowering time (VE-R1)
of the GmCOL gene families based on haplotype groups. In
this analysis, eight genes (GmCOL2/5/9/13/15/16/25/28) showed
significant results from the first emergence to the first flowering
date (VE-R1) in both years, and three genes [GmCOL8 (2015),
GmCOL22 (2015), and GmCOL26 (2016)] exhibited significant
results in a single year (Supplementary Table 6). The remaining
genes (GmCOL4/6/10/14/19/20/23/24) did not show significant
results in these years. Notably, GmCOLI and GmCOL3 were
the most conserved, and no polymorphisms in the coding
region were observed.

Among the 11 haplotype groups of GmCOL2, 4 were analyzed,
and GmCOL2-Hap3 was significantly different from every other
haplotype group (Figure 4A). The GmCOL2-Hap1/2/4 haplotype
groups, which appeared in the above haplotype group, were
not significantly different from each other. Analysis of GmCOL5
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FIGURE 3 | Linkage disequilibrium of GmCOL family genes in soybean. (A)
Linkage disequilibrium (LD) of GmCOL1. (B) LD of GmCOL2. (C) LD of
GmCOL4. (D) LD of GmCOLS5. (E) LD of GmCOLE. (F) LD of GmCOLS. (G)
LD of GmCOLY. (H) LD of GmCOL10. (I) LD of GmCOL13. (J) LD of
GmCOL14. (K) LD of GmCOL15. (L) LD of GmCOL16. (M) LD of GmCOL19.
(N) LD of GmCOLZ20. (0) LD of GmCOL22. (P) LD of GmCOL23. (Q) LD of
GmCOL24. (R) LD of GmCOL25. (S) LD of GmCOL26. (T) LD of GmCOL28.

showed that in both years two major haplotypes showed
significant differences from each other, and Hap2 was related
to late flowering compared with Hapl (Figure 4B). In terms
of GmCOL5 Hap2 (S999), the original nucleotide (A*?) was
mutated to G* in the coding sequence, resulting in a missense
mutation in the amino acid sequence (K'7 to E!¢7). K!¢7 was
located between the B-box and the CCT domain. In comparison,

GmCOLY, Hapl, and Hap2 (Figure 4C) did not show significant
differences from each other, and both were significantly different
from GmCOL9-Hap3 and GmCOL9-Hap4 only in 2015. Likewise,
GmCOL13-Hap2/3 (Figure 4D) was closely associated with
flowering time because both were significantly different from
GmCOLI13-Hapl in both years.

For GmCOL13 Hap2/3 (S584), the original nucleotide (G34)
was mutated to A% in the coding sequence, resulting in a
silent mutation in the no. 28 amino acid sequence, which was
located in the first B-box. In both years, GmCOLI15-Hap3/4
(Figure 4E) showed a significant difference compared with
GmCOLI15-Hap1/2. For GmCOL16, the haplotypes showed non-
significant results among the four haplotypes (Hapl, Hap2,
Hap3, and Hap4) (Figure 4F). In the first year, five haplotypes
of GmCOL25 (Hapl, Hap2, Hap3, Hap4, and Hap5) were
not significantly different from each other, whereas Hap3
and Hap4 were significantly different from Hapl, Hap2, and
Hap5 in the second year (Figure 4G). Hap2 of GmCOL28
was significantly different from Hapl and Hap3 in both
years (Figure 4H). For GmCOL28 Hap2 (S1066), the original
nucleotide (T26%) was mutated to C2°% in the coding sequence,
resulting in a missense mutation in the amino acid sequence
(V88 to A®®), which was located in the first B-box, and
may affect the protein and protein interaction. Thus, the
results revealed that Hap2 of GmCOL28 was closely associated
with flowering time.

DISCUSSION

Selected Soybean Varieties Showed

Diversity in Flowering Time and Maturity
The varieties analyzed in this study showed the diversity of
flowering time and maturity, which indicated that the flowering
time (VE-R1) and the days from emergence to physiological
maturity (VE-R7) were related to the variety trait and natural
environment (Jiang et al., 2019). According to the photoperiod
responses, many soybean varieties have evolved to adapt to a
broad range of growing areas in China (Wang et al., 2016).
The flowering time of the selected varieties ranged from 21 to
121 days and 13.66 to 109.2 days, and the maturity time ranged
from 61.2 to 150.7 days and 68.4 to 144.4 days, respectively,
for two consecutive years (2015 and 2016) (Jiang et al., 2019),
indicating high diversity (Table 2). However, Paula showed the
shortest VE-R1 in the 2nd year, with the maturity group MG
0000. Paula is recognized as a high-latitude cold region (HCR)
soybean variety and HCR soybean, which typically matures
early (Jia et al., 2014). This observation suggested that the
maturity group MG 0000 was relatively stable for days to start
flowering from emergence.

GmCOL Orthologs Showed Divergence

in Sequence Polymorphism

It has been shown that GmCOLla (Glyma08g28370) and
GmCOL1b (Glymal8g51320) in soybean are the closest
Arabidopsis COL2 orthologs to CO (Thakare et al., 2010). The
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TABLE 3 | Haplotype frequency of GmCOL family genes.

Haplotype
GmCOL2 Hap1 Hap2 Hap3 Hap4 Hap5 Hap6 Hap7 Hap8 Hap9 Hap10 Hap11
Accessions 18 41 20 17 3 3 3 3 1 1 1
GmCOL4 Hap1 Hap2 Hap3 Hap4 Hapb
Accessions 99 7 4 4 1
GmCOL5 Hap1 Hap2 Hap3 Hap4 Hapb
Accessions 51 56 1 1 1
GmCOL6 Hap1 Hap2 Hap3 Hap4 Hap5
Accessions 70 46 5 1 1
GmCOLS8 Hap1 Hap2
Accessions 88 11
GmCOL9 Hap1 Hap2 Hap3 Hap4 Hap5 Hap6 Hap7 Hap8 Hap9 Hap10 Hap11
Accessions 67 25 4 4 3 1 1 1 1 1 1
GmCOL10 Hap1 Hap2 Hap3 Hap4
Accessions 91 16 1 1
GmCOL13 Hap1 Hap2 Hap3
Accessions 122 5 1
GmCOL14 Hap1 Hap2 Hap3
Accessions 114 1 1
GmCOL15 Hap1 Hap2 Hap3 Hap4
Accessions 107 5 2 1
GmCOL16 Hap1 Hap2 Hap3 Hap4 Hapb Hap6 Hap7 Hap8 Hap9
Accessions 54 25 24 6 5 4 2 2 1
GmCOL19 Hap1 Hap2 Hap3 Hap4 Hap5
Accessions 99 17 2 2 1
GmCOL20 Hap1 Hap2 Hap3 Hap4 Hapb Hap6 Hap7 Hap8 Hap9 Hap10
Accessions 19 52 27 8 2 2 1 1 1 1
GmCOL22 Hap1 Hap2 Hap3 Hap4 Hapb Hap6
Accessions 110 7 4 3 2 1
GmCOL23 Hap1 Hap2 Hap3 Hap4 Hap5 Hap6 Hap7 Hap8 Hap9 Hap10
Accessions 80 4 3 2 1 1 1 1 1 1
GmCOL24 Hap1 Hap2 Hap3 Hap4 Hap5
Accessions 88 5 3 1 1
GmCOL25 Hap1 Hap2 Hap3 Hap4 Hapb
Accessions 89 9 6 6 1
GmCOL26 Hap1 Hap2 Hap3 Hap4
Accessions 61 56 7 2
GmCOL28 Hap1 Hap2 Hap3
Accessions 59 29 22

transgenic soybean line overexpressing GmCOLla flowered late
under long-day or natural conditions (Cao et al., 2015). There is
a single-nucleotide substitution at the GmCOL1b CCT domain
in the gmcollb mutant, leading to the mutagenesis of conserved
threonine at amino acid 314 into isoleucine, which results in
early flowering of the gmcollb mutant (Cao et al.,, 2015). In this
study, the varieties that were taken for the observation of natural
variations regarding flowering time and maturation showed
divergent characteristics in flowering time (Jiang et al., 2019).
Allelic variation can have an effect on flowering time (Irwin
et al., 2016). In this study, the insertion and single-nucleotide
substitution (InDel918, InDel919, InDel920, s958, s1138, s1139,
s1218, and s1260) found in the first exon in GmCOL2 led to
missense mutations, which might have an effect on flowering
time and maturity. The other genes in the GmCOL family showed
various types of point mutations (Figure 2 and Supplementary
Figures 1-5). The loss of functions may have an impact on
gene function, and the presence of these mutations suggested

that polymorphism could be the main cause of the diversity of
soybean flowering time.

Polymorphism of GmCOL Family Genes
Was Associated With Flowering Time
and Maturity

Haplotype-based analyses have been successfully carried out
in different crops, such as maize (Zea mays L.) (Weber
et al,, 2009; Van Inghelandt et al., 2012; Lipka et al.,, 2013),
rice (Oryza sativa L.) (Lestari et al., 2011; Yonemaru et al,
2012, 2014; Shaoetal., 2013; Wu et al, 2020), and soybean
(Choi et al., 2007; Li et al, 2009; Langewisch et al, 2014;
Patil et al, 2016; Jiang et al, 2019). In this study, some
polymorphic sites were identified and utilized by conducting
a haplotype analysis of 21 soybean GmCOL gene families.
Based on LD analysis and polymorphic sites, tagging haplotypes
composed of some SNPs and InDels indicated that there were 7
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FIGURE 4 | Haplotypes of GmCOL genes in relation to flowering time (2015-2016). The relationship between flowering time and haplotype of GmCOL2 (A),
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polymorphic sites in GmCOL2 and just 3 polymorphic sites in
GmCOL10 and 46 and 10 polymorphic sites in GmCOL2 and
GmCOLI0, respectively (Supplementary Table 4). In addition,
some haplotypes associated with flowering date and maturity
(such as GmCOL2-Hap1, Hap2, and Hap4; GmCOL9-Hap1, Hap2,
Hap3, and Hap4; GmCOL13-Hapl, Hap2, and Hap3; GmCOL15-
Hapl, Hap2, Hap3, and Hap4; GmCOL16-Hapl, Hap2, Hap3,
Hap4, and Hap5; and GmCOL25-Hapl, Hap2, Hap3, Hap4,
and Hap5) were distributed in varieties with different maturity
groups. The LD differences among the 21 soybean COL gene

families may reflect selection pressure and, to some extent, the
process of natural selection and domestication.

CONCLUSION

In summary, 21 GmCOL genes exhibited natural divergence
in association with flowering and growth periods. Significant
changes were found in 21 COL genome sequences, among
which GmCOL1, GmCOL3, GmCOL8, GmCOL9, GmCOL10, and
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GmCOLI3 were conserved, but the sequences of the remaining
COL genes showed a wide range of changes that could alter
their function. In this study, it was noticed that additional
polymorphisms linked to the 21 GmCOL gene families in trait-
controlling regions might have a significant impact on flowering
time and maturity.
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Supplementary Figure 1 | Haplotype analysis, distribution in different maturity
groups, and flowering time (VE-R1) in the main haplotypes of approximately nine
GmCOL family genes. (A,A1) Haplotypes of GmCOL4. (A2) Haplotype distribution
of GmCOL4 in different maturity groups. (A3) Flowering time (VE-R1) of the main
haplotypes of GmCOL4 in 2015. (A4) Flowering time (VE-R1) of the main
haplotypes of GmCOL4 in 2016. (B,B1) Haplotypes of GmCOL6. (B2) Haplotype
distribution of GmCOLS6 in different maturity groups. (B3) Flowering time (VE-R1)
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