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The number of wheat spikes per unit area is one of the most important agronomic
traits associated with wheat vyield. However, quick and accurate detection for the
counting of wheat spikes faces persistent challenges due to the complexity of wheat
field conditions. This work has trained a RetinaNet (SpikeRetinaNet) based on several
optimizations to detect and count wheat spikes efficiently. This RetinaNet consists of
several improvements. First, a weighted bidirectional feature pyramid network (BiFPN)
was introduced into the feature pyramid network (FPN) of RetinaNet, which could fuse
multiscale features to recognize wheat spikes in different varieties and complicated
environments. Then, to detect objects more efficiently, focal loss and attention modules
were added. Finally, soft non-maximum suppression (Soft-NMS) was used to solve
the occlusion problem. Based on these improvements, the new network detector
was created and tested on the Global Wheat Head Detection (GWHD) dataset
supplemented with wheat-wheatgrass spike detection (WSD) images. The WSD images
were supplemented with new varieties of wheat, which makes the mixed dataset richer
in species. The method of this study achieved 0.9262 for mAP50, which improved by
5.59, 49.06, 2.79, 1.35, and 7.26% compared to the state-of-the-art RetinaNet, single-
shot multiBox detector (SSD), You Only Look Once version3 (Yolov3), You Only Look
Once version4 (Yolov4), and faster region-based convolutional neural network (Faster-
RCNN), respectively. In addition, the counting accuracy reached 0.9288, which was
improved from other methods as well. Our implementation code and partial validation
data are available at https://github.com/wujians122/The-Wheat-Spikes-Detecting-and-
Counting.

Keywords: wheat spikes, detection and counting, deep learning, attentional mechanism, wheat yield

INTRODUCTION

As one of the three major cereal crops, wheat provides food for approximately one-third of the
world’s population. Global wheat consumption has increased due to rising per capita income and
urbanization. On the other hand, wheat crops are increasingly being hampered by phenological
changes, shrinking germplasm areas, and other stresses. Therefore, wheat genetic improvement is
critical to address future food security. At present, most wheat cultivation and breeding researchers
rely on costly manual counting. This time-consuming process is driving the need for new tools. In
addition, subjectivity and fatigue will lead to mistakes in counting wheat spikes (Jin et al., 2017).
When assessing crop genetic improvement, although genotyping is easier and more accurate than
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before, efficient phenotyping algorithms and techniques still
limit the establishment of phenotype-genotype relationships
(Eversole et al., 2014). Therefore, the construction of efficient
phenotypic algorithms and technologies are particularly urgent
and necessary for improving genetic efficiency. Furthermore,
wheat yield is one of the important indexes of quality breeding.
So, the detection and counting of spikes efficiently are one of
the main research directions of phenotypic technology based
on phenotype-genotype relationships for crop production (Slafer
et al., 2014; Ferrante et al., 2017).

In the past decade, image processing has been increasingly
used in analyzing and extracting phenotypic parameters.
Features that include color, texture, shape, and edge are
fused in the classifier to detect wheat spikes using traditional
image processing methods. Mirnezami et al. (2020) compared
automated and semiautomated soybean trichome counting
methods, which used thresholding and graph algorithms based
on color and shape features. They achieved approximately 90%
accuracy using semiautomated annotation, which outperformed
manual counting. Kulkarni and Patil (2012) employed the Gabor
filter to detect plant diseases by extracting typical plant features
from red-green-blue (RGB) images, including texture, edge, and
color for plant disease segmentation. Then, the features were
used to train the artificial neural network, and the accuracy
reached 91%. Sun et al. (2019) applied a region growing algorithm
with a double threshold integrating spatial and color features
to segment cotton bolls and developed an algorithm based on
geometric features to count cotton bolls. The counting accuracy
was 84.6%, and the F1 score was approximately 98%. The panicle
segmentation method extracted the color and texture of the
panicles to realize (semi) automatic counting of wheat spikes
(Cointault et al., 2008). Fernandez-Gallego et al. (2018) presented
an automatic spike-counting method to calculate the number of
spikes based on color images taken under natural conditions.
Additionally, the local peaks are segmented and counted by the
color features and the Find Maxima. The results showed that
the accuracy of wheat spikes counting is 90%, and the standard
deviation is 5%. Although most of these studies achieved good
results, there were still problems. They have used the traditional
image processing method and therefore require manual screening
of features. This limitation hinders the popularization and
application of the algorithm in more complex problems. The
wheat spike detection and counting is still a very challenging task.

Deep learning performs exceptionally well in detection and
classification tasks. A series of novel deep learning models
have been developed, such as region-based convolutional
neural network (R-CNN), Fast R-CNN, Faster R-CNN, fully
convolutional one-stage object detector (Fcos), You Only Look
Once (Redmon et al, 2016; Redmon and Farhadi, 2017)
version 3 (Yolov3), You Only Look Once version4 (Yolov4),
You Only Look Once version 5 (Yolov5), RetinaNet, and single-
shot multiBox detector (SSD) (Girshick et al., 2014; Girshick,
2015; Ren et al, 2015; Liu et al., 2016; Lin et al., 2017a;
Redmon and Farhadi, 2018; Tian et al., 2019, Bochkovskiy
et al., 2020; Jocher et al., 2020), which are ready to be used
in phenotyping applications. Backbone network and feature
pyramid network (FPN) (Lin et al., 2017b) are the two main

components of an object detection framework. The backbone
network conducts feature extraction, whereas FPN conducts
feature fusion. As a result, advancements in the backbone
network and FPN directly impact the performance of the object
detection network. He et al. (2016) proposed residual network
(ResNet), introducing residual blocks and realizing across layer
information transmission through shortcut connections resulting
in improved optimization. After that, many studies designed
various modules to strengthen the ability of network feature
extraction. For example, selective kernel (SK) block (Li et al.,
2019), squeeze-and-excitation (SE) block (Hu et al., 2018), non-
local block (Wang et al., 2018), convolutional block attention
module (CBAM) (Woo et al., 2018), split attention block (Zhang
et al., 2020), etc. FPN fuses multiscale features extracted through
deep convolutional networks. Tan et al. (2020) proposed a simple
and efficient feature pyramid structure to address the top-down
architecture of FPN, which is called a bidirectional feature
pyramid network (BiFPN). It allows top-down and bottom-up
multi-scale weighted feature fusion.

Wheat spike image sets, such as ACID (Pound et al., 2017) and
SPIKE (Hasan et al., 2018) were used in many studies and they
achieved good deep learning model training results (Alkhudaydi
and Zhou, 2019; Madec et al,, 2019; Yang et al., 2019). Misra
et al. (2021) developed an online platform “Web-spikeSegNet”
that uses deep learning methods to segment wheat spike images
taken under laboratory environment conditions. It can achieve
99.59% segmentation accuracy. Zhao et al. (2021) proposed an
improved Yolov5 network by adding a microscale detection
layer, setting prior anchor boxes, and adapting the confidence
loss. These improvement points solve spike error detection
and miss detection caused by occlusion conditions in UAV
images. These studies used deep learning methods to overcome
the disadvantages of traditional image processing methods that
require manual feature design. However, the datasets used in
these studies are relatively homogeneous in terms of wheat
spike collection environments and varieties. Most wheat spike
datasets are limited in terms of genotype, geographic area, and
observational condition. Therefore, the research requires a richer
dataset and the ability to overcome the detection of wheat
spikes in complex environments. The Global Wheat Detection
(GWHD) dataset (David et al., 2020) was a standard image set
collected by several research institutions, which was considered
by many scholars as a new challenge for wheat spike detection.
Bhagat et al. (2021) proposed a novel WheatNet-Lite network,
which was solved the dense and overlapping wheat spikes. The
network was validated on GWHD, SPIKE, and ACID datasets.
The mAP50 values were 91.32, 86.10, and 76.32%, respectively. Li
et al. (2021) also investigated the GWHD dataset. They trained
RetinaNet models using migration learning. The images of wheat
at the filling stage and the maturity stage from the GWHD
dataset were used for regression analysis of count results. The
R? was 0.9722. Wang et al. (2021) proposed an occlusion robust
wheat spike counting algorithm based on EfficientDet-D0 with
the CBAM attention module. It was the network that focused
more on small wheat spikes with the counting accuracy which
was 94% and the false detection rate was 5.8% on the GWHD
dataset. The new models in these studies were proposed to solve
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FIGURE 1 | Data acquisition and labeling process: (A) map of data collection place; (B) the WSD images collection scene; (C) an example WSD image; (D)

the wheat spike images occlusion problem. However, it is not only
the occlusion images of wheat spikes that are difficult to recognize
in the field, but also difficult to recognize wheat spike images
with dim lighting and complex environmental backgrounds.
Therefore, there is still room for continued improvement in
wheat spike detection and counting. In this study, we used
the GWHD dataset supplemented with wheat-wheatgrass spike
detection (WSD) images, where WSD was collected from trials.
There is one variety in our dataset, Jilin wheat-wheatgrass No.
37. Because of its excellent quality, wheat-wheatgrass has been
crowned as a geographical landmark product of Jilin Province.
The spike of wheat-wheatgrass No. 37 is rectangular in shape,
and the spike length is usually 10-12 cm. The wheat spikes have
white hulls and are awned but without hairs. WSD images added
diversity to the GWHD to train spike detection models.

In this study, SpikeRetinaNet was trained to detect wheat
spikes based on the RetinaNet network structure of a one-
stage detector, which kept the one-stage detector’s speed while
improving detection accuracy. In the dataset, it is difficult to
distinguish wheat spikes because of light, shadows, color, and
shape similarity. To solve the problems, the focal loss function
was introduced into the structure of RetinaNet to reduce the
influence of background during wheat spike detection tasks
(Lin et al., 2017a). Meanwhile, we introduced the BiFPN (Tan
et al., 2020) and double SA (DSA) (split attention block and
spatial attention block) into the backbone network to realize
fine-grained feature extraction and representation across feature
map groups and strengthen the fusion of global information and
local information. By proposing BiFPN, it introduces learnable
weights to learn the importance of different input features
and repeatedly applies top-down and bottom-up multiscale
feature fusion. Because different input features have different
resolutions, their contribution to the fused fine-grained features

is different. Meanwhile, introducing DSA into the backbone
realizes the interaction between feature map channels and
receptive field regions. In this way, fine-grained discriminant
feature of detecting wheat spikes, such as the shape, texture,
and color, can be better extracted and represented. The cluster
growth of wheat spikes makes it difficult to distinguish between
multiple wheat spikes or multinode parts of wheat spikes because
wheat spikes occlude each other. In the previous work, non-
maximum suppression is an integral part of the object detection
pipeline which is used to filter the detection candidate boxes.
The detection box with the maximum score is selected and
all other detection boxes with a significant overlap (using a
predefined threshold) are suppressed. To this end, we introduced
soft non-maximum suppression (Neubeck and Van Gool, 2006)
(Soft-NMS) (Bodla et al., 2017), an algorithm that decays the
detection scores of all other objects as a continuous function of
their overlap, to solve the problem of missed detection caused by
mutual occlusion.

MATERIALS AND METHODS

Image Data Acquisition

The original GWHD dataset included 4,700 high-definition color
images of wheat from multiple genotypes. There were a total
of 190,000 wheat spikes annotated. Wheat spikes in the image
were labeled interactively by delimiting bounding boxes that
contained all spike’s pixels using web-based labeling (Brooks,
2019). Seven categories that contain 3,373 images and 147,793
labeled spikes from Europe and North America were used in this
article. The seven categories are Arvalis_1, Aralis_2, Aralis_3,
INRAE_1, USask_1, RRes_1, and ETHZ_1. They are collected
between 2016 and 2019. They were acquired over experiments
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FIGURE 2 | Sample images taken under different complex conditions. (A) Dim
illumination conditions. (B) The complex environment illumination conditions.
(C) Overlapping occlusion of wheat spikes.

following different growing practices, with row spacing varying
from 12.5 cm (ETHZ_1) to 30.5 cm (USask_1). They include
normal sowing density (Arvalis_1, Arvalis 2, Arvalis_3, and
INRAE_1) and high sowing density (RRes_1 and ETHZ_1).
The GWHD dataset covers a range of pedoclimatic conditions
including very productive contexts, such as the loamy soil
of the Picardy area in France (Arvalis_3), silt-clay soil in
mountainous conditions, such as the Swiss Plateau (ETHZ_1) or
Alpes de Haute Provence (Arvalis_1 and Arvalis_2). In the case
of Arvalis_1 and Arvalis_2, the experiments were designed to
compare irrigated and water-stressed environments. An average
of 44 spikes was present in each image, with a range of 15-70
real spikes per image. The WSD images that contain 210 high-
definition color images and 6,123 annotations were used in this

study to supplement the experimental data as well. All images
were collected from Chengkai Cooperative, Nangangzi Village,
Zhenlai Town, Baicheng City, Jilin Province, China (45.83 N,
123.21 E) from May to July 2020 using a Canon 11 EOS 80D
digital camera. Images were captured at the height of 30-70 cm
above the wheat canopy and at various tilt angles. The resolution
of the WSD images was 3,456 x 4,408 pixels. All images were
stored in JPG format according to the RGB color standard.
Then, the collected images were labeled by the Labellmg Tool
(Labellmg, 2015). The overall process is shown in Figure 1.

Formation of the Mixed Dataset

The original image set was first normalized to obtain a total
of 3,583 images of 1,024 x 1,024 pixels due to the limited
computing power of laboratory equipment. The diversity and
complexity of the mixed dataset brought great difficulties to the
method in detecting and counting. Three image categories were
the most difficult to identify: (1) images with low illumination, (2)
complex environment, and (3) overlapping objects. For example,
it is difficult to distinguish wheat spikes in the evening due to
dim light and complicated shadows (Figure 2A). When wheat
plants are young (Figure 2B(a)), their spikes are small and as
green as the leaves. Wheat spikes (Figure 2B(b,d)) and stems are
similar in color too, and there is a mutual occlusion phenomenon,
which can easily confuse analysis. Figure 2B(c,d) is sparsely
planted, with a visible soil background, and the distribution of
shadows is mixed by light. The cluster growth of wheat spikes
in Figures 2C(a,b) makes it difficult to distinguish between
multiple wheat spikes or multinode parts of wheat spikes. In
Figures 2C(c,d), wheat spikes occlude each other, which make
it difficult to mark.

Our next step filtered out some inappropriate bounding boxes
[the boundary box is too large (box areas >200,000) or too
small (box areas <50)] from the dataset before putting the
images into the model to make it more accurate and clean. Then,
we used online augmentation techniques, such as horizontal
and vertical flips, rotations and resizing, and augmenter and
normalizer to enhance the image. This method has the advantage
of not requiring the augmented data to be synthesized, which
saves data storage space and provides high flexibility. Among the
3,583 wheat images collected, 70% of each category in the mixed
dataset was extracted as the training dataset, 20% of images were
extracted as the validation set, and 10% of images were extracted
as the test set.

Overall Design of the SpikeRetinaNet

Figure 3 depicts the specific process of our proposed
SpikeRetinaNet. First, the image features are extracted
through the convolution layer. Then, the extracted feature
sets are grouped and convoluted to calculate the weight of the
feature channel and then performing a weighting operation
on the obtained weights and feature sets. Second, we perform
AdaptiveAvgPool2d and AdaptiveMaxPool2d on the results
obtained. We then use the sum of the pooling results to
calculate the weight value through the Sigmoid function and
then performing another weighting operation on the weight
value and feature set to get the result of spatial attention. Third,
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FIGURE 3 | The schematic layout of the SpikeRetinaNet for the robust detection and counting of wheat spikes.
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SpikeRetinaNet employs five levels of feature pyramids. P3,
P4, and P5 are calculated by top-down and lateral connections
of the corresponding backbone network’s C3, C4, and C5
layers (architectures for ImageNet (Krizhevsky et al., 2012) are
divided into C1-C5), respectively. P6 is obtained by upsampling
based on C5, and ReLU obtains P7 based on P6. The output
is obtained by weighted bidirectional calculation of P3-P7.
Finally, the results of each layer of the FPN are input into two
subnetworks of classification and regression, respectively, to get
the final output image.

RetinaNet
RetinaNet is an object detector that consists of a backbone
network and two task-specific subnetworks. Among them, the
backbone networks include a convolutional neural network to
extract information from the image and the FPN enhancing
the feature information with top-down and lateral connections.
The two subnets use convolution to classify and regress from
bounding boxes to real object boxes.

The core of RetinaNet is focal loss. It simply and efficiently
solves the category imbalance faced by the one-stage detector,

which improves the classification precision of the one-stage
detector. RetinaNet was proposed to reshape the standard
crossentropy loss to focal loss to deal with the category imbalance.
It downweighs simple samples so that even if the number of
samples is large, their contribution to the total loss is small. The
focal loss formula is as follows Eq. 1.

FL(p;) = —at(1 — pt)Y log(pt)
pr=1F if v=1

1—-p otherwise

(1)

The weighting factor a € [0, 1] is the parameter for class 1,
and 1 — a for class —1, a maybe set by inverse class frequency
or treated as a hyperparameter set by cross-validation. Though
a balances the weight values of positive or negative examples,
it does not differentiate between easy or hard examples. So,
the modulating factor (1 — pt)¥ is introduced with a tunable
focusing parameter and y > 0 and pt is the class probability score.
The proposed adjustment factor reduces the loss weights ratio
from simple examples and quickly focuses on hard examples. It
is suitable for difficult distinguishing between foreground and
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FIGURE 4 | Schematic layout outline of ResNet-DSA.

background, such as many negative examples in the process of
wheat spike detection. Therefore, when discussing dense object
detection (such as our mixed dataset), RetinaNet is the best choice
for speed and accuracy.

Selection of the Feature Learning Network

The design of the feature learning network is very important.
We add the DSA (double SA, split attention block, and spatial
attention block) to the backbone network of RetinaNet to
enable the feature mapping attention between different feature
mapping groups and emphasize the spatial location information.
Further detailed description in Figure 4 divides the features
into two groups (V; and V3) for 1 x 1 convolution followed

by a 3 x 3 convolution. The attention weight is parameterized
using two fully connected layers with ReLU activation. We
aggregate channel information of a feature map using two
pooling operations (maxpool and avgpool), generating two 2D
maps. Then, we connect them and convolute them through
standard convolution operation to form our 2D spatial attention
maps. Finally, if the input and output feature maps have the
same size, the final output Y of our DSA is produced using
a shortcut connection: Y =V + X (V = Cancat{V;, V,}). For
blocks with a stride, an appropriate transformation T(X) is
applied to the shortcut connection to align the output shapes:
Y =V + T(X). The specific shape is depicted in the note
of Figure 4, where the feature maps become smaller and
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TABLE 1 | Architectures for ImageNet.

Layer name Output size SpikeRetinaNet RetinaNet
Conv1 112 x 112 [3 x 3] x 3, 64, stride 2 [7 x 7], 64, stride 2
Conv2_x 56 x 56 3 x 3 maxpool, stride 2 3 x 3 maxpool, stride 2
1x1, 128 - -
1x1, 64
Split Attention, C =2,G = 64
x 3 3x 3, 64 x 3
Spatial Attention
1x1, 256
1x1, 256 o -
1x1, 256 - -
Split Attention, C =2,G =128 11128
Conv3_x 28 x 28 pit Attention, & =25 = x4 3x3, 128 | x4
Spatial Attention
1x1, 512
1x1, 512 L -
1x1, 512 -
1x 1, 256
Split Attention, C = 2, G = 256
Conv4_x 14 x 14 x 23 3x3,256 |[x23
Spatial Attention
1x1, 1024
1x1, 1024 -
1x1, 1024
1x1, 512
Split Attention, C =2,G =512
Conv5_x 7x7 ) ) x 3 3x3,512 | x4
Spatial Attention
1x1, 2048
1x 1, 2048
P3_out 80 x 80 Conv3 — 1 x 1 Conv3 — 1 x 1
P4_out 40 x 40 Conv4d — 1 x 1 Conv4d — 1 x 1
P5_out 20 x 20 Convs — 1 x 1 Convs — 1 x 1
P6_out 10 x 10 Convb — 3 x 3 Convb —- 3 x 3
3x3 3x3
P7_out 5x5 Convs — | RelLU Convb — | RelLU
3x3 3x3
3 x 3, 256 3 x 3, 256
x 4 x 4
Regression Px.size() RelLU RelLU
3 x 3, 36 3x 3, 36
3 x 3, 256 3 x 3, 256
Eoiili s ]
Classification Px.size() © ©
3 x 3, 63 3x 3, 63
Sigmoid Sigmoid

Building blocks are shown in brackets, with the numbers of blocks stacked. C is the number of groups, and G is the number of channels per group.

the channels become more numerous as the network depth
deepens. The backbone network has better and more accurate
feature extraction capabilities than ResNet. Therefore, we can
extract more detailed features for the spike of wheat detection.
For the problem of dim light and complex environment
background in the mixed datasets, we can apply the DSA
attention module to emphasize the characteristics of wheat
spikes. Similarly, suppose the wheat spikes in the data set are
similar to the background. In that case, we can also use the
attention block to emphasize the useful features and suppress the
useless features.

Design of the Feature Pyramid Network Backbone

We use BiFPN of FPN to enhance feature fusion. BiFPN can
realize fast bidirectional cross-scale connections and weighted
feature fusion. Among them, multiscale feature fusion is to

be carried out using different levels and different resolutions
—

of the input. This produces a list of multiscale features P =
(P;I",P;Z", ...), which P;T‘ represents the feature at a level I.
1

BiFPN requires P§’ to PJ" level inputs for aggregate features. The
traditional output calculation of FPN is shown in Eq. 2, where

Resize is the upsampling or downsampling operators to adjust the
image size and Conv is a convolutional operator.

Po¥t = Conv(P¥")

P9 = Conv(Pi + Resize(PI™)) )

Pyt = Conv(Pg” + Resize(P§™))

TABLE 2 | Mean average precision (mAP), frames per second (FPS), root mean
square error (RMSE), and root mean square percentage error (RMSPE) of
RetinaNet in detecting wheat spikes.

Method Datasets mAP50 mAP75 FPS RMSE RMSPE Counting
Acc

RetinaNet Mixed  0.8703 0.4701 35 2.63 0.08 0.8984

RetinaNet-DSA  Mixed  0.9143 0.4842 30 - - 0.9122

RetinaNet- Mixed  0.9243 0.4942 25 - - 0.9206

DSA-BiFPN

Our method Mixed 0.9262 0.5023 22 1.96 0.06 0.9228

The results of our method are highlighted in bold.
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FIGURE 5 | The first image is the original image, the other images are the class activation mapping (CAM) for the different feature channels of our method.

Therefore, BiFPN adds an extra bottom-up path aggregation
network to solve the problem that conventional FPN only
has top-down unidirectional information flows. Besides, the
bidirectional network is simplified by removing the node with
only one input channel to integrate more features without
increasing much cost. Therefore, we represent the fused feature
at level six for BiFPN shown in Eq. 3:

u)1~Pé”+w2~Resize(P§")
w1+w2+¢€

Péd = Conv(

‘ 3
)P0y -PA +m;-Resize(Pg“‘)) 3)

! ! !
w;+o,+w;+e

Pt = Conv(

Péd is the median feature at level six on the top-down pathway
and PQ"™ is the output feature at level six on the bottom-up

pathway. The bidirectional fusion of BiFPN deepens the degree
of feature fusion. So, in the mixed dataset, images with complex
environment backgrounds can use deep, low-resolution, and high
semantic features to distinguish wheat spikes and background.
As a result, more overlapping wheat spikes can be retained.
Meanwhile, shallow, high-resolution features could provide more
accurate location information. It can also locate the problem of
wheat spikes occlusion better.

Soft Non-maximum Suppression

Soft non-maximum suppression was introduced to obtain
consistent improvements for the selection of candidate boxes.
Soft-NMS suppresses overlapping boxes with a non-maximum
value and sets the attenuation function for near boxes based on
the overlapping boxes’ size instead of setting its score to zero.
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Intuitively, if the crossarea between the bounding box and M
is higher than the threshold, its score should be reduced. If its
overlap is lower than the threshold, it keeps the detection score
unchanged. The calculation formula is shown in Eq. 4, where §;
is the final score, i is the subscript, M is the box with the highest
score in the prediction box set, b; is the box in the prediction box
set B, and N; is the intersection-over-union (IoU) threshold of
M and b;. The formula Eq. 5 updated the pruning step with the
following rule. Under natural conditions, the presence of wheat
spikes occlusion is inevitable in wheat spikes data collection.
The Soft-NMS can effectively retain the blocked wheat spikes
without affecting the selection of the normal calibration box.

S Si, iOM(M, bl) < Nt (4)
" S —iou(M, by)), iou(M, b)) = N;
iou(M,bi)z
Si=S8ie o ,Vbj¢D (5)
See Table 1 for detailed architectures compared the

SpikeRetinaNet with the original RetinaNet.

TRAINING THE WHEAT SPIKE
DETECTING AND COUNTING MODEL

Computational Hardware and Platform

All processing experiments in this article were carried out by the
DELL Precision T7920 Tower deep learning workstation which
consisted of an Intel(R) Xeon(R) Gold 5218 CPU with a clock
speed of 2.1 GHZ, 62.5 GB DRAM, 503 GB hard disk, and a
GeForce RTX 2080 Ti/PCle/SSE2 graphics card. The operating
environment was Ubuntu 18.0.4, Pytorch = 1.7.0, Python 3.7.

Model Training

The SpikeRetinaNet was used in the mixed dataset training
process. First, DSA was used to extract the features from
the backbone network. Second, BiFPN improved the extracted
feature map by adding more expression and multiscale target
region data. Finally, two subnetworks with the same structure but
no shared parameters used BiFPN feature maps to complete the
object classification task and regress the offset from the bounding
box to a nearby real object. The Soft-NMS was also used to
choose calibration boxes. The parameters of the different layers
are described in the note of Figure 3. The specific algorithm flow
is as follows:

Input: image to be detected D.

Output: Vector C is used for sample categories, and R is used
for boundary coordinates.

Step 1: Convolution layer for feature extraction. First, 64
convolution kernels with 7 x 7 stride-2 are used to feature
extraction, and then, a maxpooling with 3 x 3 stride-2 is used
to get the feature set. Second, all feature maps are divided into
2 splits. Additionally, the split attention is used to calculate the
weight of each split, and the weighted feature maps are used as
the input of the spatial attention module. Finally, a 1 x 1 Conv
is used again to change the number of channels and use skip

N
o
IS

—— RetinaNet

—— RetinaNet-DSA
RetinaNet-DSA-BiFPN

—— RetinaNet-DSA-BiFPN-SoftNMS

L o
NN
au o u

Loss or Accuracy values
=
=3
S

566 UM M e 1 t " -
o 50000 100000 150000 200000 250000 300000 350000

iteration

FIGURE 6 | Ablation studly loss.

connection to fuse the original input features of a DSA block (the
fusion method is element-wise sum). There are 101 layers as a
feature extraction network.

Step 2: FPN, the multiscale features formed in the backbone
network, is input into the feature pyramid for enhancement and
utilization, and the feature map with stronger expression and
multiscale target information is obtained. The backbone network
is divided into C1-C5 layers. Add a 1 x 1 Conv on C5, and the
upsampling is two times as much to generate the feature map, and
then, a ReLU activation function is performed to form Pt7d. Pgd is
toadd a1l x 1 Conv on C5, and the upsampling is two times as
much to generate the feature map and then fuse with Pt7d. Pf-)d is
directly mapped from C5 to merge P upsampling. Pi¢ and P{¢
have the same structure as Pid. Pid to P is the input of the FPN.
P§Ut is upsampled by C3 fusion P4, P is formed by P and C4
fusion P downsampling. P2" and P2" have the same structure
as PQU. P9t is downsampled and fused by P4 and P2™. Finally, a
3 x 3 Conv stride-2 is used for all the layers obtained after fusion
to eliminate the aliasing effect of upsampling.

Step 3: The output of each layer of the feature pyramid
performs two subnetwork tasks (classification and boxes
regression). Each subnetwork uses four layers of 3 x 3 x 256
Conv and then connects to 3 x 3 x KA (K is the number of object
classes, A = 9 anchors per level) Conv. In addition, it finally uses
Sigmoid activation to the output KA binary predictions at each
spatial position.

Step 4: Use a trained model to perform the next decoding
process on the top 1,000 boxes with the highest scores on
each FPN level. Summarize boxes of all levels, filter boxes
with a soft threshold of 0.1, and finally get the final boxes
location of the target. The training loss is composed of boxes
position information L1 loss and category information Focal-
Loss. Considering the extreme imbalance between positive and
negative samples when the model is initialized, the bias parameter
of the last convolution is initialized.

The specific steps of the training are as follows: due to
equipment limitations, a minibatch of four images will be
used to train the model. The Optimizer selects Adam, uses
Reduce LROnPlateau to dynamically adjust the learning rate, the
initial learning rate is le-4, and uses all images of the training
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(d) RetinaNet + DSA + BiFPN

+ SoftNMS

(¢) RetinaNet + DSA + BiFPN
+ SoftNMS

yellow boxes are missed spikes, blue boxes are false spikes.

T At 22\ []en
(d) RetinaNet + DSA + BiFPN  (¢) RetinaNet + DSA

FIGURE 7 | Four different examples, each with the four different methods. (a) Results of wheat spike detection with RetinaNet. (b) Results of wheat spike detection
with RetinaNet + DSA. (c) Results of wheat spike detection with RetinaNet + DSA + BiFFPN. (d) Results of wheat spike detection with our method. Additionally,

(d) RetinaNet + DSA + BiFPN
+ SoftNMS

BlFPN (d) RetinaNet + DSA + BIFPN
+ SoftNMS

dataset to train 100 epochs to analyze the training process.
Additionally, the same platforms are also applied to faster region-
based convolutional neural network (Faster-RCNN), YoLov3,
YoLov4, YoLov5s, YoLov5m, and SSD, which codes are publicly
available for comparison.

Network Evaluations
For this study, all samples were divided into four types according
to the IoU between the predicted bounding boxes and the real

bounding boxes exceeding a given parameter. True positive
(TP) corresponds to the correct predicted bounding boxes.
False-positive (FP) corresponds to the erroneously predicted
bounding boxes. False-negative (FN) is the marked bounding
box that could not be detected. Otherwise, it is a true
negative (TN). Eq. 6 precision (P) and Eq. 7 recall (R) are
computed.

TP

= —_— 6
TP + FP ©)
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FIGURE 8 | Counting accuracies calculated using “spike detection based counting” (top row) and “manual counting” (bottom row) strategies, respectively, for
individual spikes (a total of 60 data points). The above two images are the results of RetinaNet, and the following two images are the results of our method.
(A(a),B(a)) are linear regression results between the imaging derived and manual counts. (A(b),B(b)) are the histograms of counting errors. The “pre” in graph “spike
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Since the evaluation index mainly focuses on the positive
sample, thus to weigh the precision index and the recall index,
APy (the value k represents the type of wheat spikes) was defined
in Eq. 8 as the area under the Py and Ry curve of the class
k. AP is a standard measure to measure the sensitivity of the
network to target objects, and it is also an indicator of the overall
performance of the network. Additionally, mAP was defined
in Eq. 9 as the average precision of the eight classes of wheat
spikes. The higher the mAP, the better the detection results
of the convolutional neural network for the object detection,
and the average detection time is also calculated to evaluate the
performance of the model.

SsD

Faster R-CNN
Yolov3
Yolov4
Yolov5s
Yolov5m

Our method

Loss values

0 T T T

20 40 80 100

epochs

FIGURE 9 | Our method comparing against the state-of-the-art loss.

1
AP = / P(Ri)dRy (8)
0
L3 Two other metrics were proposed to evaluate the performance
MmAP = ~ Z APy (9) of spikes counting: root mean square error (RMSE) as Eq. 10 and
8 =1 root mean square percentage error (RMSPE) as Eq. 11, which
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TABLE 3 | Mean average precision (mAP), frames per second (FPS), root mean square error (RMSE), and root mean square percentage error (RMSPE) of SSD, Yolov3,

Yolov4, Yolov5s, Yolovbm, Faster R-CNN, and our method in detecting wheat spikes.

Method Backbone Datasets mAP50 mAP75 FPS RMSE RMSPE Counting Acc
SSD VGG Mixed 0.4356 0.1652 60 10.30 0.26 0.4841
Yolov3 DarkNet53 + FPN Mixed 0.8983 0.4832 50 2.56 0.08 0.8991
Yolov4 CSPDarkNet53 + PANet Mixed 0.9127 0.4902 52 2.13 0.14 0.9095
Yolovbs CSPDarkNet53 + PANet Mixed 0.9272 0.5128 60 1.71 0.12 0.9302
Yolovsm CSPDarkNet53 + PANet Mixed 0.9312 0.56217 50 1.58 0.06 0.9330
Faster-RCNN ResNet101 + FPN Mixed 0.8536 0.4956 10 3.14 0.07 0.8805
Our method ResNet101 + BiFPN Mixed 0.9262 0.5023 22 1.96 0.06 0.9288

The results of our method are highlighted in bold.

N, is the predicted value of wheat spikes and Nj is the actual
value of wheat spikes. The number of spikes detected by the
model and the number of spikes counted manually were analyzed
by simple linear regression. The coefficient of determination R?
was calculated to assess the effectiveness of using one variable to
predict the other.

k
1
RMSE= |+ D (Np = Np)? (10)
i=1
RMSPE = lzk: N — Ny) | (11)
NNEE N

RESULTS

Ablation Study

Evaluation of the SpikeRetinaNet

In this subsection, we empirically show the effectiveness of our
design choice. As shown in Table 2, the results indicate that
the effect of added DSA blocks to RetinaNet is better than
the original network, and the mAP is increased by 4.40%. The
RetinaNet-BiFPN is better than RetinaNet-FPN, and the mAP is
increased by 1%. Therefore, our model can improve the mAP
of RetinaNet by about 5.40%. The class activation mapping
(Selvaraju et al., 2017) of our model is shown in Figure 5. The
CAM uses the gradient information from the feature map from
the P7 layer of the BiFPN to understand the importance of
each feature point to the target decision. The thermodynamic
features of different colors reveal the “attractiveness” of the
regional network. Among them, the red area represents the most
significant influence on the network. As the color changes from
red to yellow and finally to blue, it means that the influence
has decreased. So, in Figure 5, these 24 images represent the
visualization result of the 24 feature channels (partial feature
channel of P7 layer of BiFPN), thus reflecting our method can
focus on wheat spike features in the complex environment.
The results show that our backbone has a better capability of
feature extraction. Finally, we improve the NMS parts, using
Soft-NMS to select candidate boxes, and the performance is
improved by 5.59%. The network complexity of our method is
increased, so the FPS is reduced from 35 to 22, the increase of

time is not much, and the performance is improved significantly.
As shown in Figure 6, the convergence rate of the loss value
is similar in the self-verification comparison experiment, but
the fluctuation of RetinaNet is the largest, and our method is
the most stable.

Counting Strategy

After detection, 60 images of three categories (low illumination,
complex environment background, and overlapping occlusion)
are selected for counting, with a total of 1,448 wheat spikes.
The counting result of our method is 1,345, and the counting
accuracy is 92.88%. The counting result of RetinaNet is 1,301,
and the counting accuracy is 89.84%. So, our method has
improved by 3.04%. The above experiments indicated that our
method could effectively overcome the three kinds of difficult
recognition images to improve the precision of spike detection.
As can be seen from the following four images (the above
two images show a complex environment background, and
the next two are low illumination and overlapping occlusion),
the counting results of four different networks in the same
image are inconsistent (Figure 7). Among them, yellow is
missing spikes and blue is false spikes. The real counting
result is 211, the total counting result of the RetinaNet is 193,
and the RetinaNet-DSA-BiFPN result is 205. RetinaNet-DSA-
BiFPN [Figure 7(c)] can detect wheat spikes that cannot be
detected in RetinaNet [Figure 7(a)], which indicates that the
increased fusion channel makes the fusion information more
useful. Finally, the total number of our method [Figure 7(d)]
is 207. The four images show that the missed boxes of our
method are lower than those of other models. This is because
Soft-NMS reduces the score of boxes with high IoU rather
than directly filtering them out, thus allowing the correct
boxes to be retained. The results show that our method
improves detection accuracy by 6.63% in images with high
detection difficulty.

For the detection results of 60 images, a comparison between
the “RetinaNet” and the “our method” is performed (Figure 8).
The regression slope of “our method” is higher than that of
“RetinaNet.” In addition, it has a higher correlation, lower RMSE
and RMSPE (the RMSE and the RMSPE of our method are 1.96
and 0.06, the RMSE and the RMSPE of RetinaNet are 2.63 and
0.08), which indicates that the counting result of our method
(Figure 8B) is better than that of RetinaNet (Figure 8A). At the
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FIGURE 10 | Four different examples, each with the seven different methods:
(a) sample of images; (b) results of wheat spike detection with SSD; (c)
results of wheat spike detection with Faster R-CNN; (d) results of wheat spike
detection with Yolov3; (e) results of wheat spike detection with Yolov4; (f)
results of wheat spike detection with Yolov5s; (g) results of wheat spike
detection with Yolovcm; (h) results of wheat spike detection with our method.
Additionally, yellow boxes are missed spikes, and blue boxes are false spikes.

same time, in our method, the counting error is concentrated
between =£5, which is better than RetinaNet.

Comparing Against the State-of-the-Art
Detectors

With mainstream object detection, the one-stage detector used
Yolov3, Yolov4, Yolov5s, Yolov5m, and SSD, and the two-stage
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FIGURE 11 | Counting accuracies calculated using “spike detection based
counting” (top row) and “manual counting” (bottom row) strategies,
respectively, for individual spikes (a total of 60 data points). The (A) is SSD, (B)
is Faster R-CNN, (C) is Yolov3, (D) is Yolov4, (E) is Yolovbs, (F) is Yolovbm,
and (G) is our method. The left is linear regression results between the
imaging derived and manual count. The right is the histograms of counting
error. The “pre” in graph “spike detection-based counting” indicates the
predicted regression line.

detector used Faster-RCNN. RetinaNet model is different from
the five improved ideas but also has a good detection effect.
Figure 9 shows 100 epoch performances of all models, our
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method, Yolov3, Yolov4, Yolov5s, Yolovsm, SSD, and Faster-
RCNN. The convergence speed of the loss value of our method is
faster than Yolov3, Yolov4, Yolov5s, Yolov5m, SSD, and Faster-
RCNN. The final loss of our method is 0.05, Yolov3 is 0.07,
SSD is 1.51, Faster-RCNN is 0.15, Yolov4 is 2.04, Yolov5s is
0.28, and Yolov5m is 0.27. Because the one-stage detector does
not deal with the detection frame, the initial value of Yolov3
and SSD loss function is greater. As a result of the imbalance
between positive and negative examples, the initial value and
overall trend pair differ from the other models. Because of the
two-stage detector’s special RPN network, the convergence speed
of Faster-RCNN is slower than that of RetinaNet. Due to our
model improving on the loss function, the convergence speed
of our model is comparable to Yolov5 and better than the other
models. Finally, the mAP value also shows that our method has
achieved good experimental results (Table 3). The mAP value
of our method is 2.79% higher than Yolov3, 1.35% higher than
Yolov4, comparable to Yolov5, 7.26% higher than Faster-RCNN,
and 49.06% higher than SSD.

After detection, 60 images of three categories (low
illumination, complex environment background, and
overlapping occlusion) are selected for counting, with a
total of 1,448 wheat spikes. The counting result of the Faster-
RCNN is 1275, SSD is 701, Yolov3 is 1302, Yolov4 is 1317,
Yolov5s is 1347, Yolov5m is 1351, and the counting result of our
method is 1345. The counting accuracy of our method is 92.88%,
Faster R-CNN is 88.05%, Yolov3 is 89.91%, Yolov4 is 90.96%,
Yolov5s is 93.02%, Yolov5m is 93.30%, and SSD is 48.41%. The
counting accuracy of our method is 4.83% higher than that of
Faster-RCNN, 2.97% higher than that of Yolov3, 1.92% higher
than that of Yolov4, and 44.47% higher than that of SSD, and
comparable to YoLov5. The above experiments show that our
method can effectively overcome the three kinds of difficult
recognition images to improve the accuracy of spike detection.
As can be seen from the following four images (the above two
images show a complex environment background, and the
next two are low illumination and overlapping occlusion), the
counting results of seven different networks in the same image
are inconsistent (Figure 10). Among them, yellow is missed
spikes, and blue is false spikes. The real counting result is 211, our
method counting result is 207, the Yolov3 result is 170, Yolov4
result is 191, Yolov5s result is 194, Yolov5m result is 200, Faster
R-CNN result is 161, and the SSD result is 46. The detection
results indicate that Faster-RCNN is not good for images with
complex environment backgrounds, Yolov3 and Yolov4 are not
good for images with similar background color and occlusion
spikes, and the counting effect of SSD is very bad. Additionally,
our method is most concentrated in the counting error, mainly
between —5 and 10. Therefore, our method is superior to the
four methods and comparable to YoLov5.

For the detection results of 60 images, the comparison among
“Faster-RCNN;” “Yolov3,” “Yolov4,” “Yolov5s,” “Yolovsm,” “SSD;”
and “our method” is performed (Figure 11). The RMSE and
RMSPE of our method are 1.96 and 0.06. Faster R-CNN is 3.14
and 0.07, Yolov3 is 2.56 and 0.08, Yolov4 is 2.13 and 0.14, Yolov5s
is 1.71 and 0.12, Yolov5m is 1.53 and 0.06, and SSD is 10.3 and
0.26. The results indicate that our method has better detection

and counting effect than Faster R-CNN, Yolov3, Yolov4, and SSD
in the mixed dataset.

CONCLUSION

In this article, we developed a wheat spike detection method
based on the SpikeRetinaNet to address the issue of small dense
object detection and counting in complex scenes. The method
consists of three critical steps: use BiFPN to better integrate
multiscale features, network refinement by adding a DSA block,
and Soft-NMS was used to solve the occlusion problem. In
addition, the WSD images are added to enrich the varieties of
the wheat dataset. Based on the methodology, mAP of wheat
spikes and counted were outputted, with detection rates of 92.62
and 92.88%, respectively. Therefore, the knowledge generated
by this study will greatly aid in the detection and counting
of wheat spikes in complex field environments and provide
technical reference for agricultural wheat phenotype monitoring
and yield prediction.
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