
fpls-13-822217 April 25, 2022 Time: 17:25 # 1

REVIEW
published: 24 February 2022

doi: 10.3389/fpls.2022.822217

Edited by:
Jue Ruan,

Chinese Academy of Agricultural
Sciences (CAAS), China

Reviewed by:
Jun Chen,

Zhejiang University, China
Chengjun Zhang,

Kunming Institute of Botany (CAS),
China

Suhua Shi,
Sun Yat-sen University, China

*Correspondence:
Fang K. Du

dufang325@bjfu.edu.cn

†††ORCID:
Li Feng

orcid.org/0000-0002-8252-9463
Fang K. Du

orcid.org/0000-0002-7377-5259

Specialty section:
This article was submitted to

Plant Bioinformatics,
a section of the journal

Frontiers in Plant Science

Received: 25 November 2021
Accepted: 10 January 2022

Published: 24 February 2022

Citation:
Feng L and Du FK (2022)

Landscape Genomics in Tree
Conservation Under a Changing

Environment.
Front. Plant Sci. 13:822217.

doi: 10.3389/fpls.2022.822217

Landscape Genomics in Tree
Conservation Under a Changing
Environment
Li Feng1† and Fang K. Du2*†

1 School of Pharmacy, Xi’an Jiaotong University, Xi’an, China, 2 School of Ecology and Nature Conservation, Beijing Forestry
University, Beijing, China

Understanding the genetic basis of how species respond to changing environments
is essential to the conservation of species. However, the molecular mechanisms of
adaptation remain largely unknown for long-lived tree species which always have large
population sizes, long generation time, and extensive gene flow. Recent advances
in landscape genomics can reveal the signals of adaptive selection linking genetic
variations and landscape characteristics and therefore have created novel insights into
tree conservation strategies. In this review article, we first summarized the methods
of landscape genomics used in tree conservation and elucidated the advantages and
disadvantages of these methods. We then highlighted the newly developed method
“Risk of Non-adaptedness,” which can predict the genetic offset or genomic vulnerability
of species via allele frequency change under multiple scenarios of climate change.
Finally, we provided prospects concerning how our introduced approaches of landscape
genomics can assist policymaking and improve the existing conservation strategies for
tree species under the ongoing global changes.

Keywords: changing environment, genotype-environment associations (GEAs), landscape genomics, local
adaptation, tree conservation

INTRODUCTION

Forest trees cover ca. 30% of the terrestrial surface of the earth from boreal to tropical latitudes
and contain approximately three-quarters of the terrestrial biomass of the earth, which tightly
links them with the global carbon cycle (Holliday et al., 2017; Isabel et al., 2020). They generally
have higher levels of genetic diversity and experience rapid microevolution, which often show
distinguishable adaptation to local environments (Hamrick et al., 1992; Petit and Hampe, 2006;
Neale and Kremer, 2011). In addition, quantitative traits with high heritability make trees exhibit
stronger signals of local adaptation (clinal variation); however, a large genome, long generation
time makes it not suitable for quantitative trait loci (QTL) and related analysis even though great
progress have been achieved on quantitative genetics study on trees (Savolainen et al., 2013; Milesi
et al., 2019 and references therein). Therefore, understanding the genetic basis of adaptation to
the environment via landscape genomics studies is essential for management interventions of tree
species related to conservation and reforestation under climate change (Allendorf et al., 2010;
Savolainen et al., 2013; Anderson and Song, 2020).

Empirical studies had already suggested that adaptation in tree species primarily arises from
standing genetic variations, facilitating more rapid adaptation to climate change than that via
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new mutations (Barrett and Schluter, 2008; Alberto et al., 2013;
Savolainen et al., 2013). However, rapid climate change can
break this association and create a mismatch between population
climatic optima and current climate (Jump and Peñuelas, 2005;
Aitken et al., 2008). Additional challenges such as gene flow,
eco-evolutionary dynamics on the species range margins, and
variation in climate changes across the landscape may also
impact the adaptation of species (Savolainen et al., 2007; Alberto
et al., 2013; Aitken and Bemmels, 2016). Still, in practice, very
few conservation strategies consider genetic resources, especially
for forest species (Lefèvre et al., 2013), with some applications
in forest restoration program, e.g., it is recommended that
Quercus mongolica seeds should not be transferred from their
provenances because the genetic cline was determined between
the northeastern and southwestern Japan by neutral genetic
markers (Nagamitsu and Shuri, 2021).

Great progress had been achieved on the topic of the
adaptive potential of natural populations (Hoffmann et al.,
2017; Gaitán-Espitia and Hobday, 2021). In recent years,
integrated interdisciplinary methods such as landscape genetics
or genomics which are used to disentangle the impacts of
environmental conditions on forest trees might provide guides
for forest conservations (Rellstab et al., 2015; Isabel et al.,
2020). The classical method for detecting the genetic basis of
adaptation relies on population genetics (Wright and Gaut,
2004). This method attempts to find out outlier single-nucleotide
polymorphisms (SNPs) by the comparisons of the genetic
differentiation (FST) between populations and to hypothesize that
these outliers are most likely to be affected by natural selection
(Excoffier et al., 2009; Hohenlohe et al., 2010). However, this
method suffers a high ratio of false-positive results due to the
ignorance of environmental heterogeneity (Eveno et al., 2008;
Hoban et al., 2016). Another approach is landscape genomics,
which uncovers the molecular mechanism of adaptation on
the basis of the genotype-environment associations (GEAs) by
integrating genetic variation and spatial models (Holderegger
et al., 2006; Sork et al., 2013; Sork, 2017; De Lafontaine et al.,
2018). Recently, the evaluation of the genomic vulnerability (Bay
et al., 2018), genetic offset (Fitzpatrick and Keller, 2015), or risk
of non-adaptedness (RONA) (Rellstab et al., 2016) was used
to predict the climate-driven population shifts. At present, a
growing number of studies focus on tree species already utilized
the population-level genomic data to evaluate the genomic
vulnerability of the species in a changing climate.

The next-generation sequencing makes landscape genomic
studies currently possible for detecting adaptive signals and
uncovering the genomic basis of adaptation in many organisms.
Although landscape genomics has been pursued for a decade
and the advances of theoretical frameworks and applications are
promising (Schoville et al., 2012; Joost et al., 2013; Bragg et al.,
2015; Ćalić et al., 2015; Rellstab et al., 2015; Capblancq et al.,
2020), molecular ecologists and evolutionists are currently awash
with data, and the analytical methods in landscape genomics
have lagged behind.

As an emerging approach used for the conservation genetics
of trees, it is essential to understand its advanced trend. However,
the existing approaches belong to landscape genomics for

detecting adaptive signatures and predicting genetic offset of
adaptive allelic frequencies under multiple climates have different
assumptions, advantages, and limitations. An effective integrative
framework shortage and how to utilize the results from these
variable methods to improve management interventions of forest
trees are big challenges for landscape genomics studies in the
genomic era. Therefore, we first surveyed recent literature on
the landscape genomics approach used for tree conservation
study. We checked the Original Journal articles in the Molecular
Ecology, Evolutionary Applications, Global Change Biology, New
Phytologist, Ecology Letters, and Nature Climate Change from
2015 to 2021 (Table 1). Publications were selected based on four
criteria: (i) the research was performed on forest tree species; (ii)
an SNP dataset was used; (iii) adaptive SNPs were detected, and
(iv) articles must predict the optimal composition to the future
climate to evaluate genetic offset. Second, we summarized and
depicted the advantages and disadvantages of utilizing related
methods and genomic tools involved in detecting GEAs (Table 2)
to quantify and/or map the disruption in local adaptation of
forest trees under climate change. Then, we established a general
framework (Figure 1) integrated methods of landscape genomics
and population genomics for local adaptation analysis in forest
trees. Finally, we provided suggestions on how these approaches
can be used in making conservation strategies for tree species
under climate change.

EXISTING APPROACHES OF
LANDSCAPE GENOMICS

Mixed-Effects Models
Mixed-effects models provide a unified analytical framework to
indicate robust and powerful evidence for adaptation (Rellstab
et al., 2015). The advantage of the mixed-effects model is
that it can reduce false-positive results by considering the
influence of pairwise genetic distances and population structure.
In mixed models, the genetic structure is incorporated as
a random factor, allele frequencies are defined as response
variables, and environmental factors are used as fixed factors.
In this “Mixed-effects models” section, we illuminated the
principles and methodologies using mixed models to detect
signals of local adaptation based on BAYENV (Coop et al., 2010),
Bayesian population association analysis (BayPass) (Gautier,
2015; Olazcuaga et al., 2020), latent factor mixed models
(LFMMs) (Frichot et al., 2013), and spatial analysis method
(SAM) (Joost et al., 2007, 2008).

The BAYENV is a method under the Bayesian framework
employed to evaluate correlations between loci and
environmental variables, and it can incorporate the uncertainty
of allele frequencies from uneven sample sizes (Coop et al., 2010).
The advantage of this program is that it applies a covariance
matrix to take account for population structure, which is similar
to an FST or kinship matrix. BAYENV requires a null model based
on neutral loci and then determines the covariance matrix of
estimated allele frequencies across populations. The significance
test of each locus-variable combination utilizes Bayes factors
calculated automatically by the program. However, cautions
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TABLE 1 | Short overview of recent studies of landscape genomics for forest trees.

Species Spatial scale Data Adaptive signature
identification

Predictive
model

References Journal

Populus balsamifera North America Targeted
genotyping

FST outlier tests, Bayenv,
GPA

GF, GDM Fitzpatrick and
Keller, 2015

Ecology letters

Populus balsamifera North America Targeted
genotyping

LFMM, Bayenv GDM Gougherty et al.,
2021

Nature Climate
change

Quercus lobate United States GBS FST outlier test, LFMM GF Gugger et al., 2021 Molecular Ecology

Quercus rugose Mexico GBS FST outlier test, LFMM GF, GDM Martins et al., 2018 Molecular Ecology

Quercus spp. Switzerland Poolseq LFMM RONA Rellstab et al., 2016 Molecular Ecology

Quercus suber Western
Mediterranean

GBS FST outlier test, SelEstim RONA Pina-Martins et al.,
2019

Global Change
Biology

Betula nana United Kingdom RADseq FST outlier test, RDA,
Bayenv2

RONA Borrell et al., 2020 Evolutionary
Applications

Euptelea polyandra and
Euptelea pleiosperma

Japan and China RAD FST outlier test GF Cao et al., 2020 Evolutionary
Applications

Platycladus orientalis China GBS FST outlier test, Bayenv2 GF Jia et al., 2020 Evolutionary
Applications

Quercus aquifolioides Western China Poolseq FST outlier test, Bayenv,
LFMM

RONA Du et al., 2020 Evolutionary
Applications

Pinus densata Western China Exome capture
sequencing

Bayenv, Pcadapt, RDA GF Zhao et al., 2020 New Phytologist

Eucalyptus microcarpa Australia DArTseq FST outlier tests RONA Jordan et al., 2017 Molecular Ecology

Corymbia calophylla Western Australia DArTseq Bayenv2, LFMM GDM Ahrens et al., 2019 Molecular Ecology

Melaleuca rhaphiophylla
and Nuytsia floribunda

Southwestern
Australia

DArTseq FST outlier test, LFMM GDM Walters et al., 2020 Molecular Ecology

DArTseq, diversity arrays technology sequencing; GBS, genotype-by-sequencing; GDM, generalized dissimilarity modeling; GF, gradient forest; GPA, genotype-phenotype
association; LFMM, latent factor mixed model; Poolseq, whole-genome sequencing of pools of individuals; RADseq, restriction-site associated DNA sequencing; RDA,
redundancy analysis; RONA, risk of non-adaptiveness.

TABLE 2 | Overview of methods and software available for environmental associations and genomic offset analyses in landscape genomics.

Software Method Purpose Data type Specifics and limitations References

BAYENV, BAYPASS Bayes detecting GEAs Allele frequencies and
environmental variable

Less sensitive to population demography; but
calibration with neutral SNPs is needed and
significance thresholds need to be determined from
simulated datasets.

Günther and Coop,
2013; Gautier,

2015

LFMM, R (LEA) Bayes detecting GEAs Allele frequencies and
environmental variable

Corrects for population structure using latent
factors; but only performs association with
environment.

Frichot et al., 2013;
Frichot and

Francois, 2015

SAMβADA, R
(R.SamBada)

Spatial analysis detecting GEAs Allele frequencies and
environmental variable

Underlying models are simple, allows correction for
population structure; but possibly has high
false-positive rates.

Stucki et al., 2017;
Duruz et al., 2019

R (vegan) Ordination detecting GEAs SNPs, environmental
and geographic
datasets

Finds the linear combinations of genetic and
environmental datasets via RDA or CCA; but exists
strong multicollinearity and doesn’t allow missing
data.

XLSTAT, 2012;
Oksanen et al.,

2013

R (gdm) GDM projecting GF Allele frequencies,
environmental and
geographic datasets

Provides genomic offset based on numbers of
adaptive loci simultaneously via distance-based
method; but result should be validated by additional
datasets.

Manion et al.,
2014; Fitzpatrick
and Keller, 2015

R (gradientForest) RF projecting GF Allele frequencies and
environmental variables

Provides genomic offset based on numbers of
adaptive loci simultaneously via machine-learning
algorithm; but result should be validated by
additional datasets.

Ellis et al., 2012;
Fitzpatrick and

Keller, 2015

pyRona SLR projecting GF Allele frequency and
environmental variable

Provides genomic offset based on average change
in allele frequency at multiple adaptive loci; but
result should be validated by additional datasets.

Rellstab et al.,
2016; Pina-Martins

et al., 2019

CCA, canonical correlation analysis; GDM, generalized dissimilarity modeling; GEAs, genotype-environment associations; GF, genomic offset; RDA, redundancy analysis;
RF, random forest; SLR, simple linear regression.
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FIGURE 1 | The general framework of landscape genomics for tree conservation. The plots of cluster, FST outlier test and RONA are modified from Du et al. (2020)
and Feng et al. (2020), respectively.
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should be noticed here that these factors may not be directly
compared across environmental variables due to variable-specific
value ranges. In 2013, Günther and Coop developed an updated
program called BAYENV2, which added non-parametric tests in
the options and could be robustly applied for the Pool-Seq data
(Günther and Coop, 2013).

BayPass (Gautier, 2015) is an extension of the Bayesian outlier
detection model implemented in BAYENV to execute GEAs or
environmental association analysis (EAA). It takes demographic
effects into account by the estimation of the covariance matrix
of allele frequency between populations. The core model (i.e.,
multivariate generalization model) in the BayPass reports locus
XtX that is analogous to FST but explicitly corrected for this
covariance matrix, accounting for the neutral correlations of
allelic frequencies. Simulation studies suggested that the BayPass
provided a robust framework to detect adaptive SNP signals
(Gautier, 2015). However, a recent study revealed that the
assumed linear relationships between allele frequencies utilized
in EAA in line with the algorithm proposed by Gautier (2015)
are unsatisfactory and even problematic when dealing with small
datasets (Olazcuaga et al., 2020). Hence, they proposed a new
approach that does not necessitate considering the uncertainty of
the allele frequency estimation but assumes the exchangeability
of SNPs both across the populations and along the genome. It is
effective for gaining well-behaved P-values, avoiding intensively
computational calibration, and providing reasonable numbers of
SNPs analyzed (Olazcuaga et al., 2020). The advantage of BayPass
is that it improves test performances by the estimations of the
covariance matrix � (Olazcuaga et al., 2020).

The LFMMs rely on the Markov Chain Monte Carlo
algorithms and integrate fixed effects to model environmental
variables (Frichot et al., 2013). This algorithm is an extension of
principal component analysis (PCA). LFMMs incorporate fixed
effects to model environmental variables, and natural genetic
structure is introduced as a random factor (i.e., latent factor).
The computational speed is fast, and in addition, this approach
does not need any a priori knowledge, making it attractive for
determining adaptive signals with genomic data (Frichot et al.,
2013; Rellstab et al., 2015). LFMMs can be implemented by the
software LFMM (Frichot et al., 2013; Caye et al., 2019) or the R
package LEA (Frichot and Francois, 2015).

The SAM is developed to assess putative associations between
molecular markers and environmental variables using multiple
univariate logistic regressions (Joost et al., 2007). It detects
signatures of selection based on an integrative application
of geographical information systems (GIS), environmental
variables, and molecular data (Joost et al., 2007, 2008)
implemented in MATLAB. The significance is determined by
the likelihood ratio and Wald tests. Simulation studies implied
that SAM might provide false-positive results if tested species
endure complicated demography (De Mita et al., 2013; Frichot
et al., 2013). Recently, an improved version of SAM called
SAMβADA was developed (Stucki et al., 2017). This new
approach allows for rapidly analyzing large genomics datasets
by parallel processing. Compared with the early analysis method
(i.e., SAM), the advantages of this new algorithm include that it (i)
incorporates multivariate analyses to assess the impacts of many

environmental predictor variables, (ii) allows to split the datasets
and merges the results via parallel processing of SAMβADA, and
(iii) enables the inclusion of explanatory variables representing
population structure into the models to decrease false-positive
results. However, pre- and post-processing of data will be labor-
intensive when using the SAMβADA. In view of these facts,
Duruz et al. (2019) published the R.SamBada landscape genomics
pipeline to ease the identification and interpretation of candidate
genes underlying local adaptation.

Multivariate Statistical Analysis
The multivariate statistical analysis usually integrates
environmental variables and spatial genetic structure into
the analytical framework to detect the adaptive variation.
Traditionally, isolation by environment (IBE) is commonly used
to detect selection signatures (Wright and Gaut, 2004; Wang
and Bradburd, 2014; Manthey and Moyle, 2015). However, this
Mantel-based method had poor performance in detecting true-
positive results (Harmon and Glor, 2010; Hardy and Pavoine,
2012; Legendre et al., 2015), and its estimation bias might be
amplified in the genomic era. Instead, the multivariate statistical
analysis such as canonical correlation analysis (CCA) (Ter Braak,
1986) and redundancy analysis (RDA) (Van Den Wollenberg,
1977; Legendre and Legendre, 2012) may be more realistic for
detecting selection signatures than univariate methods (Forester
et al., 2016, 2018), because the selection is always a polygenic
process driven by multiple environmental factors.

The CCA aimed to find a linear relationship between multiple
loci and environmental factors. The loadings consist of loci and
environmental variables indicate which loci respond to which
environmental factors. However, we need caution to infer the
outcomes if strong patterns of multicollinearity exist within
datasets (Rellstab et al., 2015; Fenderson et al., 2020). RDA is
another ordination approach that is effective to detect adaptive
variation based on allele frequency data (Legendre and Legendre,
2012; Capblancq et al., 2018). First, RDA produces a matrix of
fitted values based on the multivariate linear regression between
genetic and environmental data, and then, the PCA of the fitted
values produces canonical axes that are linear combinations
of the original explanatory variables (Forester et al., 2016). In
addition, partial RDA (pRDA) that stems from RDA also allows
for constructing and testing complicated models to avoid the
impacts of neutral genetic structure or spatial effects on detecting
loci underlying adaptive variation (Legendre and Legendre,
2012). Another analogous approach, called the distance-based
redundancy analysis (dbRDA), which differs in associations
between genetic data and principal coordinate analysis and the
procedure of emerging response variables compared with the
RDA, can also enable to detect the adaptive evolution (Legendre
and Anderson, 1999). However, when using the abovementioned
methods, an important caveat exists is that the explanatory
variables within these methods are uncorrelated and the number
of loci examined might be at least three times as large as the
number of putative explanatory variables (Jombart et al., 2009).

Simulation and empirical studies suggested that the RDA-
based method could detect lower false-positive and higher true-
positive rates when compared with generalized linear models
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(GLM) or LFMM (Forester et al., 2018). Even the powers to
identify adaptive loci associated with environmental variables
are similar via RDA and LFMM, the former has the advantage
to identify the main selective gradients as a combination of
environmental variables (Capblancq et al., 2018). Additionally,
the constrained ordination methods have robust performance
and enable to avoid spurious GEAs when the tested species has
isolation-by-distance (IBD) pattern or low dispersal capability
(Forester et al., 2016, 2018; Capblancq et al., 2018).

PREDICTING GENOMIC VULNERABILITY
UNDER ALTERNATIVE CLIMATE
SCENARIOS

Traditionally, the vulnerability of species mainly relied on
the prediction of species distribution models (SDMs) (Elith
and Leathwick, 2009) or its extensions, such as climate-niche
factor analysis (CNFA) (Rinnan and Lawler, 2019). However,
the abovementioned methods are unable to account for the
continuous, multidimensional nature of genomic variation
(Fitzpatrick and Keller, 2015). The expanding omics and
statistical tools enable us to generate robust predictions of
plant adaptive potential under climate change. In this study,
we introduced three new methods used for predicting genomic
vulnerability under alternative climate scenarios based on the
linear or non-linear functions: generalized dissimilarity modeling
(GDM) (Ferrier et al., 2007), gradient forests (GFs) (Ellis et al.,
2012), and RONA (Rellstab et al., 2016).

Predicting Genomic Vulnerability Using
Non-linear Regressions
The GDM is used for estimating and predicting the spatial pattern
of turnover in community composition (Ferrier et al., 2002,
2007). Fitzpatrick and Keller (2015) extended the application
of GDM to forecast the genetic offset of Populus balsamifera,
and they concluded that the changes of genetic composition are
required if it tries to mitigate maladaptation and maintain genetic
diversity in the future. GDM accounts for spatial patterns in
genetic data caused by demographic processes, accommodates
varied factors (e.g., geographic or ecological separation, barriers
to dispersal) as predictors, and also enables to deal with
numerous SNP loci (Fitzpatrick and Keller, 2015). The functions
can be implemented via the R package gdm (Manion et al.,
2014). A recent study evaluated the local, forward, and reverse
genetic offsets (Figure 2) of balsam poplar using the GDM and
incorporated migration and dispersal into predictive genomic
models to show the adaptive potential of balsam poplar in future
climates (Gougherty et al., 2021). This study provides a new way
to assess population-level risk at alternative climate scenarios that
accounts for local adaptation and breaks through the prediction
limitations at the species level.

The GF is an extension of random forests based on the
non-parametric, machine-learning regression tree approach
(Ellis et al., 2012). This method enables to estimate and map
the frequency changes of SNPs associated with environmental

FIGURE 2 | Predictions of potential adaptation to alternative climate
scenarios. (A) Local offset means the specific population P (red color) to the
theoretically required changes of allele frequency under a future climate in situ
[P′ (green)]. (B) Forward genetic offset means that a specific contemporary
population P (red color) can migrate (blue arrows) to the habitat whose future
climate best matches its genetic composition [P′ (green)]. (C) Reverse genetic
offset means for a specific location L (green color) and its future climate, the
minimum genetic distance of a contemporary population P (red color) to the
theoretically required population for location L. The purple dotted line
represents the association between the genetic composition of several
populations (blue circles) and their local, contemporary climate. These figures
are modified from Rellstab (2021).

tolerance at different spatial-temporal scales (Fitzpatrick and
Keller, 2015). It can be executed via the R package gradientForest
(Ellis et al., 2012). Unlike GDM, GF can handle complicated
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associations between predictors and accommodate these
correlated predictors, providing a means to determine the
response of individual SNPs to environmental gradients.

Both GDM and GF can handle large genomic datasets
that include numerous rare alleles and accommodate
pronounced non-linearities in the exploration of GEAs,
providing unprecedented insights into genome regions under
local selection and predicting the changes of adaptive genomic
diversity across landscape. For instance, Martins et al. (2018)
revealed a strong association between the genetic variation of
Quercus rugosa and the precipitation seasonality in Mexico via
the GDM and GF, and they predicted that future populations of
Q. rugosa might be at risk due to the high rate of climate change.
However, considering that the actual evolutionary responses
of populations to climate change will be more complex than
the simplified projections based on the two abovementioned
approaches, we must consider caveats when explaining the result
of genetic offset arising from the GDM and GF.

Predicting Genomic Vulnerability Using
Linear Regression
Rellstab et al. (2016) developed a method called RONA to
evaluate genomic vulnerabilities of populations under alternative
climate scenarios based on linear regressions inspired by the
study of assessing the relative risk of maladaptation in Douglas
fir (Bradley St Clair and Howe, 2007). RONA represents the
average change in allele frequency at adaptive SNPs required
to keep pace with the change of a given environmental factor
in future (Figure 3). The average absolute difference of the
changes in allele frequencies of these loci between the current
and future climate conditions represents RONA under a given
environmental variable (Rellstab et al., 2016; Pina-Martins et al.,
2019). Recently, Borrell et al. (2020) utilized the current RONA
(c-RONA, Figure 3) to define the average change in allele
frequency at climate-associated loci required to match the
estimation of the optimum for a given environmental factor,
using the future RONA (f-RONA; Figure 3) to define the original
concept of RONA proposed by Rellstab et al. (2016).

Theoretically, if the difference between the current and
the prediction values is high, then more conservation efforts
are needed for persisting of focal species. Empirical studies
in trees and invertebrates show that if the expected allele
frequency changes are less than 0.1 per decade, it might keep
pace with climate change, while if the changes are greater
than 0.1–0.2 per decade, it may cause a lag between allele
frequency and climate adaptation (Jump, 2006; Egan et al.,
2015; Jump et al., 2017). However, this simplified approach
does not take gene flow and migration into account and
assumes that the best model profiling the GEAs is resulted from
local adaptation. Furthermore, the predictions of RONA for
adaptive loci based on this method have multiple values, and
each RONA arises from a given environmental variable, which
will not account for the interactive effects of loci contributing
to climate adaptation (Rellstab et al., 2016; Capblancq et al.,
2020). Therefore, we must keep in mind that the genomic
vulnerability approaches are still in their infancy and face

numerous challenges and uncertainties, and they have yet
to be tested and validated in real conservation applications
(Rellstab, 2021).

APPLICATIONS OF LANDSCAPE
GENOMICS IN TREE CONSERVATION

Landscape genomics significantly improves our understanding of
ecological and evolutionary processes in tree species and offers
guidelines for conservation efforts and management applications.
The potential of landscape genomics for forest management is
discussed in the following sections.

Using Landscape Genomics to Inform
Genetic Rescue
Genetic rescue aims to increase population fitness and avoid
population declines by introducing immigration of new alleles
(Tallmon et al., 2004; Whiteley et al., 2015; Bell et al., 2019;
Fitzpatrick and Funk, 2021). Landscape genomics studies will
increase the effectiveness of genetic rescue by identifying which
populations are most likely to increase fitness and population
growth rate (Whiteley et al., 2015). The population with the
lowest level of adaptive differentiation would be chosen in order
to minimize outbreeding impression. A recent study on dwarf
birch suggested that the genetic rescue should be applied for
the populations with small population sizes that occurred in
the margins of the distribution of species (Borrell et al., 2020).
However, previous studies had indicated that genetic rescue can
only improve fitness and increase population sizes in the short
term rather than save imperiled populations over the long term
(Whiteley et al., 2015). Additionally, if the inbreeding depression
in small populations resulted from the recent effect of human-
caused fragmentation, assisted migration is more appropriate
than genetic rescue (Hohenlohe et al., 2021).

Using Landscape Genomics to Inform
Assisted Gene Flow
Assisted gene flow (AGF) means managed translocation of
individuals within the current species range to mitigate local
maladaptation (Aitken and Whitlock, 2013; Aitken and Bemmels,
2016). AGF is equivalent to the genetic rescue when target
populations are small and maladapted, with genetic diversity
therein dominantly threatened by drift (Aitken and Whitlock,
2013). Compared with genetic rescue, AGF emphasizes the
introduced alleles that are preadapted to new local environments
and thus increase the frequency of these adaptive loci in existing
populations. AGF has already been applied for some forest trees.
For example, Browne et al. (2019) suggested that AGF might be
applied to mitigate adaptation lag of temperature for California
oak according to a landscape genomic survey of the species.
Another fascinating case is dissecting the associations of GEAs
in balsam poplar (Gougherty et al., 2021). Gougherty et al. found
that the eastern populations of the balsam poplar might face the
greatest vulnerability and risk of future extirpation to climate
change, and the conservation efforts via AGF are needed for
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FIGURE 3 | Schematic illustration of the risk of non-adaptedness (RONA) to alternative climate change. (A) RONA is the average change of allele frequency in a set
of adaptive loci that are required under future climate scenario according to a simple linear regression of the relationship of allele frequency and environments. AAF,
alternative allele frequency; EF, environmental factor; I, intercept of the regression; S, slope of the regression. (B) The current and future RONA (c-RONA and
f-RONA); c-RONA/f-RONA is the average change in allele frequency required under current environmental conditions. Blue and red bands indicate suitable candidate
donor populations for assisted gene flow under current and future scenarios, respectively. The figures (A,B) are modified from Rellstab et al. (2016) and Borrell et al.
(2020), respectively.

those populations by estimating the local, forward, and reverse
genetic offsets of the species. However, outbreeding depression
might occur if source and recipient populations are isolated
for a long time (Aitken and Whitlock, 2013). Additionally,
high levels of gene flow introduced by AGF might result in
biotic homogenization between source and target populations
and consequently prevent them from adapting to novel climate
conditions (Gaitán-Espitia and Hobday, 2021).

Using Landscape Genomics to Inform
Seed Sourcing Strategy
Seed sourcing strategy aims to capture the adaptive diversity
and improve the adaptive potential of species under climate

change and has been proposed for ecological restoration during
past decades (Broadhurst et al., 2008; Breed et al., 2013, 2019).
Landscape genomics is an ideal approach to inform seed sourcing
strategies for species persisting. Jordan et al. (2017) detected
81 putatively adaptive SNPs in Eucalyptus microcarpa, and 62
of which are associated with mean annual temperature by
a combination of four FST outlier tests and one EAA (i.e.,
BAYENV2) as the general framework of landscape genomics
(Figure 1). They found that the expected allelic frequency
changes of these adaptive SNPs in the New South Wales (NSW)
populations were greater than that of other sites, suggesting
that the warmer, northern end of the range (i.e., NSW) of
E. microcarpa might not suitable for seed source. Recently, a
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provenance decision-making framework proposed by Carvalho
et al. (2021) offers a comprehensive perspective for seed source
guidelines based on the information that arises from neutral
and adaptive variation via integrative analyses of population
genomics and landscape genomics, which can also be applied for
informing seed sourcing strategy of forest species.

CHALLENGES AND FUTURE
DIRECTIONS

Landscape genomics provides unprecedented insights into
understanding the mechanism of adaptive variation of tree
species by dissecting the impacts of environmental variables and
landscape characteristics on their adaptive evolution (Browne
et al., 2019; Pina-Martins et al., 2019; Borrell et al., 2020; Du
et al., 2020; Zhao et al., 2020). Common challenges, such as
the sampling strategies and using only a single analysis for
detecting adaptive signatures, still exist in landscape genomic
studies although many reviews discuss the abovementioned
topics (Balkenhol et al., 2019). Instead of discussing the
abovementioned common challenges in this study, we focused
on the challenge of landscape genomics studies on tree species
in identifying adaptive variation and their spatial patterns facing
the changing climate.

First, the levels of commonality in genes or SNPs associated
with climates that arose in landscape genomics studies are quite
low. Although the large majority of landscape genomics studies
utilize integrative methods for detecting putatively adaptive loci
to illuminate the GEAs, few loci are shared between these
approaches. These inconsistent patterns by different methods
were detected in many studies, for example, in Mexican oak
Q. rugose (Martins et al., 2018: only one SNP associated
with temperature seasonality was identical between LFMM
and BAYESCAN test) or Norway spruce in three independent
landscape genomic studies across the Italian Alps sharing similar
sampling areas and climates (Scalfi et al., 2014; Ćalić, 2015; Di
Pierro et al., 2016: no identical adaptive genes were detected in
more than two studies).

The low commonality in adaptive signals might be the
evidence for lacking parallel evolution of adaptive traits in forest
trees (Geraldes et al., 2014) or just because of false-positive results
(Ćalić et al., 2015). Additionally, we believed that the varied
methods applied for detecting adaptive SNPs have different
assumptions, advantages, and limitations, which responded
to the low commonality. However, the commonality levels
for projecting genomic vulnerability under alternative climate
scenarios using GF or GDM are relatively high. Fitzpatrick and
Keller (2015) found that using GDM and GF for the projections
of genomic vulnerability, the genetic offset of the circadian
clock gene GIGANTEA-5 (GI5) associated with plant circadian
clock and light perception pathways in balsam poplar is similar,
although slight differences existed in its marginal area, both
methods predict the range core of balsam poplar likely suffered
minimal disruption of the existing GEAs. In the future, efforts
by a combination of simulations, genomic data, and common
garden experiments might be applied to demonstrate the high

effectivity and accuracy of genomic offset under alternative
climates (Fitzpatrick et al., 2021).

Second, the current studies of landscape genomics for
evaluating and uncovering the adaptive variation in tree species
focus only on a single species rather than at the community
level (Table 1). Analyzing multiple species within the same
landscapes makes it possible to assess the commonality of their
eco-evolutionary dynamics across species and landscapes and
thereby depict a thorough picture of how local adaptation is
originated in nature (Bragg et al., 2015; Hand et al., 2015;
Balkenhol et al., 2019). However, eco-evolutionary models
require new data and methods for assessing the adaptive potential
of species, which have only been possible for a few model
species so far (Waldvogel et al., 2020). In addition, the present
challenge of illuminating ecological adaptation at the community
level is how to simulate the patterns of local adaptation
of species or populations and their adaptive potential under
future climate changes, while a possible way to overcome these
inconveniences is integrating the prediction methods including
GDM, GF, or RONA into the analytical framework of landscape
community genomics.

Finally, the investigators of landscape genomics must consider
the genomic sequencing strategy employed and the genomic
resources available for their focal species. Prevalent sequencing
methods in the landscape genomics studies of non-model
species currently take advantage of reduced-representation
methods [e.g., genotype-by-sequencing (GBS) and restriction-
site associated DNA sequencing (RADseq)] and RNA sequencing.
However, the number of SNPs obtained and the ability to detect
genes underlying local adaptation from the abovementioned
methods may be influenced due to the differences in library
preparation, SNP densities, and the bioinformatics parameters
applied to SNP filtering (Hoban et al., 2016; Lowry et al., 2017;
McKinney et al., 2017). As more and more forest tree genomes
have been published (e.g., Table 1 in Ingvarsson et al., 2016)
and sequencing costs fall, whole-genome resequencing is thriving
and becoming an option for landscape genomics studies (Lin
et al., 2018; Zhu et al., 2020), which can provide unprecedented
marker density and determine other genetic variation such
as structural variants and mutations in regulatory elements,
increasing power for the detection of local adaptation and
providing novel insights into the role of selection, recombination,
and gene flow in promoting or impairing local adaptation to
new habitats compared with reduced-representation methods
(Fuentes-Pardo and Ruzzante, 2017; Bourgeois and Warren,
2021). In addition, the degrees of linkage disequilibrium (LD)
in the studied species will also influence the power of detecting
adaptive SNPs. Considering the low LD rates in tree species, using
these methods such as reduced-representation methods will fail
to detect loci that underlie most local adaptation and adaptive
phenotypic variation (Bragg et al., 2015; Hoban et al., 2016).
We advocated obtaining detailed LD information of focal species
using whole-genome sequencing before the studies of landscape
genomics in future because the resources of reference genome
are critical to fully address the issues of local adaptation (Manel
et al., 2016). Moreover, prior knowledge about LD decay from the
reference genome of focal species can inform sampling strategies
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and sequencing selections to maximize opportunities to identify
adaptive SNPs (Bragg et al., 2015).

CONCLUSION

Understanding the genetic mechanism of adaptation is the
key issue for molecular ecology and evolutionary biology. We
reviewed the existing theories and methods that belong to
landscape genomics for detecting adaptive evolution in species
and advocated utilizing an integrated analytical framework to
illuminate the GEAs between genetic and environmental data.
We particularly emphasized the effectivity and necessity of
multiple methods for detecting signatures of local adaptation
combined with models for predicting adaptation potential in tree
conservation. With the low sequencing cost, ease availability of
high-solution environmental data, and newly developed genomic
tools in the near future, we believe that the conservation efforts
and management interventions for forest trees will benefit from
advancing studies of landscape genomics.
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