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Rice (Oryza sativa) production is seriously affected by the root-knot nematode Meloidogyne 
graminicola, which has emerged as a menace in upland and irrigated rice cultivation 
systems. Previously, activation tagging in rice was utilized to identify candidate gene(s) 
conferring resistance against M. graminicola. T-DNA insertional mutants were developed 
in a rice landrace (acc. JBT 36/14), and four mutant lines showed nematode resistance. 
Whole-genome sequencing of JBT 36/14 was done along with the four nematode 
resistance mutant lines to identify the structural genetic variations that might be contributing 
to M. graminicola resistance. Sequencing on Illumina NovaSeq 6000 platform identified 
482,234 genetic variations in JBT 36/14 including 448,989 SNPs and 33,245 InDels 
compared to reference indica genome. In addition, 293,238–553,648 unique SNPs and 
32,395–65,572 unique InDels were found in the four mutant lines compared to their JBT 
36/14 background, of which 93,224 SNPs and 8,170 InDels were common between all 
the mutant lines. Functional annotation of genes containing these structural variations 
showed that the majority of them were involved in metabolism and growth. Trait analysis 
revealed that most of these genes were involved in morphological traits, physiological 
traits and stress resistance. Additionally, several families of transcription factors, such as 
FAR1, bHLH, and NAC, and putative susceptibility (S) genes, showed the presence of 
SNPs and InDels. Our results indicate that subject to further genetic validations, these 
structural genetic variations may be involved in conferring nematode resistance to the 
rice mutant lines.
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INTRODUCTION

Rice (Oryza sativa L.) is the staple food crop for ~3.5 billion people and is one of the essential 
cereal crops for human nutrition and food security. Global rice demand is estimated to reach 
852 million tons by 2035 (Khush, 2013). However, several abiotic and biotic stresses constrain 
rice production, including a broad range of pathogens and pests. The rice root-knot nematode 
(RRKN) Meloidogyne graminicola Golden and Birchfield, 1965 is an important pest of rice 
and is reported to cause up to 80% yield loss (Mantelin et  al., 2017), whereas other nematode 
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parasites of rice cause a 10%–25% yield loss (Luc et  al., 2005; 
Kyndt et  al., 2014). Meloidogyne graminicola is reported to 
be the most damaging plant-parasitic nematode (PPN) in India. 
Out of the total loss of USD 1.58 billion caused by various 
PPNs in India, RRKN alone was responsible for ~ 23% loss 
(ca. USD 313 million; Kumar et  al., 2020). Resistant cultivars 
play a significant role in the management of RRKN in the 
absence of ample nematicides and other nematode management 
strategies (Mantelin et  al., 2017). Several RRKN-resistant 
germplasms have been identified previously (Plowright et  al., 
1999; Cabasan et  al., 2018; Galeng-Lawilao et  al., 2018; Zhan 
et al., 2018; Hatzade et al., 2020). In most instances, the natural 
resistance needs to be  transferred to agronomically desirable 
backgrounds/cultivars, which is time-consuming. Insertional 
mutagenesis with either T-DNA or transposons is a new and 
quick way to generate novel traits in high-yielding cultivars 
(An et  al., 2005). In a previous study, a forward genetic screen 
for resistance to RRKN in an indica rice landrace JBT 36/14 
genetic background identified four activation tagged mutants 
line-8, line-9, line-11, and line-15 (Hatzade et al., 2019a). These 
mutant lines showed post-penetration resistance to RRKN and 
reduced nematode multiplication factor as compared to the 
wild-type JBT 36/14 and a popular basmati rice cultivar Pusa 
Basmati 1121 (Hatzade et  al., 2019a,b).

The availability of rice genome sequence and advancements 
in next-generation sequencing (NGS) technologies have enabled 
rapid identification of the genomic and genetic diversity of 
various rice germplasm and facilitated their utilization for the 
genetic enhancement of rice. Genetic polymorphisms cause 
phenotypic variations in traits in response to environmental 
stimuli. These variations have been the basis for the development 
of several molecular markers used in genetic analysis, e.g., 
restriction fragment length polymorphism (RFLP) and  
simple sequence repeats SSR (Jones et  al., 2009). The detection 
of sequence polymorphisms, such as single-nucleotide 
polymorphisms (SNPs) and insertions/deletions (InDels), is one 
of the most important advantages of NGS technologies (Varshney 
et  al., 2009; Huang et  al., 2013). SNPs are being employed in 
breeding programmes for marker-assisted and genomic selection, 
association and QTL mapping, positional cloning, haplotype 
and pedigree analysis, seed purity analysis, and variety 
identification (McCouch et  al., 2010). In addition, InDels have 
also been successfully used for marker-assisted selection, fine 
mapping, QTL mapping, varietal testing (Hayashi et  al., 2006; 
Steele et  al., 2008; Vasemägi et  al., 2010; Liang et  al., 2011) 
and have the potential for map-based cloning of genes (Pan 
et  al., 2008).

The position of SNPs and InDels within a genome can 
affect both gene expression and function (Shastry, 2009; 
Haraksingh and Snyder, 2013; Lin et  al., 2017). DNA 
polymorphisms present within coding regions are critical in 
this context as they might alter the function of a protein. In 
addition, genetic variations present in regulatory sequences 
are also significant, as they can induce/repress gene expression, 
thus modulating gene function. Therefore, the discovery of 
polymorphisms related to phenotypes is important for 
understanding gene functions. In the present study, we performed 

whole-genome resequencing of four RRKN resistant mutant 
rice lines (lines 8, 9, 11, and 15) and JBT 36/14 landrace to 
identify genome-wide structural genetic variations and their 
possible role in conferring resistance against RRKN.

MATERIALS AND METHODS

Plant Materials, DNA Isolation, and 
Genome Sequencing
The seeds of rice landrace JBT 36/14 were obtained from NRRI, 
Cuttack, India. The seeds from activation tagged mutants 
developed from JBT 36/14 background were provided by Dr. 
Rohini Sreevathsa, ICAR-NIPB, New Delhi. The seeds were 
germinated, leaf tissue was collected from 21-day old plants, 
and genomic DNA was isolated using the CTAB method. Qubit 
2.0 fluorometer (Thermo Fisher) was used to quantify and 
NanoDrop  2000 (Thermo Fisher) to assess the quality of the 
isolated DNA.

For Illumina sequencing, the library was prepared by The 
NEBNext® Ultra™ II FS DNA Library Prep Kit as per 
manufacturer’s specifications. The quantity and size distribution 
of the libraries was estimated by Bioanalyzer 2100 (Agilent 
Technologies). The quantified libraries were subjected to whole-
genome sequencing on the Illumina NovaSeq  6000 platform 
(Illumina Technologies) by paired-end sequencing to generate 
150-base pair long reads. Standard Illumina pipeline was used 
to filter the whole genome sequencing data. To remove low-quality 
reads and reads containing adaptor/primer contamination, 
FASTQ files were further subjected to stringent quality control 
using NGSQC Toolkit v2.3 (Patel and Jain, 2012). Stringent 
criteria of 70:30 was used to obtain high-quality filtered reads 
wherein more than 70% HQ bases, each having Phred scores 
>30, were considered further for downstream analysis.

Bioinformatic Analyses
The general flow of bioinformatic analyses is presented in 
Figure  1. The high-quality filtered reads were mapped against 
Oryza sativa ssp. indica reference genome assembly 
(GCA_000004655) downloaded from Ensembl Plants (Howe 
et  al., 2020) using BWA-MEM v1 (Li, 2013). The alignments 
were stored in BAM files. Duplicate read alignments were 
removed using SAMtools v0.1.16 (Li et  al., 2009). Variants in 
the form of SNPs and small InDels were called using VarScan 
2 (Koboldt et  al., 2012). SNP annotations were done through 
SNPEff v5 (Cingolani et  al., 2012) and SNPSift (Ruden et  al., 
2012). Circos was used to visualize the distribution of the 
SNPs and InDels on rice chromosomes (Krzywinski et  al., 
2009). All pathways associated with different variations were 
annotated using rice metabolic pathway database (RiceCyc; 
Dharmawardhana et  al., 2013) and KEGG using default 
parameters. Gene ontology analysis was performed through 
DAVID (Huang et  al., 2009). QTLs/Genes morphological, 
physiological and resistance/tolerance traits were downloaded 
from the Q-TARO database (Yonemaru et  al., 2010). O. sativa 
ssp. indica transcription factors were downloaded from 
PlantTFDB (Jin et  al., 2017). Previously characterized S genes 
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(van Schie and Takken, 2014) of Arabidopsis and O. sativa 
were taken, and comparative sequence analysis was done with 
O. sativa ssp. indica genes. Variants related to these putative 
S genes were identified at the common genomic location in 
all mutant lines compared to JBT 36/14.

RESULTS

Whole-Genome Sequencing of JBT 36/14
Whole-genome shotgun sequencing of JBT 36/14 genomic DNA 
on Illumina NovaSeq  6,000 platform yielded 81.57 million 
paired-end reads of 151 bp, containing 92.54% HQ reads (= 
reads > Phred quality score Q30; Table 1). These reads provided 
30X coverage of the JBT genome. The data have been deposited 
in the NCBI SRA database (accession number PRJNA721239, 
SRX10576230). Further, the reads were aligned to the reference 
Oryza sativa ssp. indica 93-11 genome assembly GCA_000004655 
and 98.3% of the total reads could be mapped to the reference 
genome with an average depth of 29 (Table  2).

Comprehensive genome-wide densities of SNPs, insertions, 
deletions, and intra-chromosomal translocations in the JBT 
36/14 genome are represented in Figure 2A. A total of 482,234 
variations (448,989 SNPs and 33,245 InDels) were identified 
in JBT 36/14 genome as compared to the reference genome 
(Table  3; Supplementary File 1). The chromosome wise 
distribution of SNPs revealed maximum density of variations 
at the centromere region of chromosomes (Figure  2A). The 
majority of SNP variations (66.07%) were heterozygous, whereas 

most of the InDels were homozygous (60.18%; Table  3). For 
comparing nucleotide substitutions, all SNPs were subdivided 
into transitions (Ts) and transversions (Tv). Most of the SNP 
changes observed were of transition type with a Ti/Tv ratio 
of 2.40. Among transitions, T → C variations (18.07%) were 
most prominent, whereas T → A variations (4.32%) were the 
most frequent variation for transversions (Figure  2C). The 
33,245 InDels ranged in size from 1 to 48  bp for deletions 
and 1 to 38 bp for insertions. A majority (90.23%) of the 
identified changes were short InDels of length 1–2 bp 
(Figure  2E). Of the total variations, 39,744 (8.24%) mapped 
to the coding region of the genome (Table  3). Chromosome 
(Chr) 1 shows the highest SNP and InDel density, while the 
lowest SNP density and InDel density were observed in  
Chr 9 (Supplementary File 1).

The regions in which all polymorphisms were located in 
JBT 36/14 are summarized in Figure 2B. In JBT 36/14 genome, 
the majority of the SNP variations span the intergenic region 
(72%), whereas, among genic variations, the majority are intron 
variations (~15%) followed by exon variations (~11%) and 3’ 
UTR variations (~3%). A similar trend was found among the 
InDel variations, with the majority being in the intergenic 
region (~69%; Figure  2B). Among the total SNPs, 14.9% of 
variations pre-existed in reference indica genome 93–11 (from 
ensembl plant database), whereas 85.1% variations were novel 
as identified through variant effect predictor tool.1 Of the total 
variations in coding regions, 23,358 SNPs were missense variations 
and 7,572 synonymous variations with 1,185 variations being 
nonsense (stop gained) SNPs (Figure  2D).

Whole-Genome Sequences of JBT 36/14 
Mutants
The whole-genome shotgun sequencing of mutant lines 
(line-8, line-9, line-11, and line-15) yielded 83.54–107.34 
million paired reads of 151 bp for each sample (Table  1). 
The raw reads have been deposited in the NCBI SRA database 
(BioProject accession number PRJNA721239, SRX10576231—
SRX10576234). More than 92.54% of the raw reads for each 
sample exceeded Phred quality score Q30 and were considered 
HQ reads. More than 98% HQ reads aligned to the reference 
Oryza sativa ssp. indica genome with an average depth of 
>29X (Table  2). Comprehensive genome-wide mapping of 
SNP, insertion, deletion and intrachromosomal translocations 
in the lines 8, 9, 11 and 15 genomes as compared to JBT 
36/14 are presented in Figures  3A–D. As compared to JBT 
36/14 genome, 354,340, 553,463, 396,978 and 293,237 SNPs 
were identified in line 8, 9, 11, and 15, respectively. Further, 
963, 1,037, 960, and 907 SNPs were unique to lines 8, 9, 
11, and 15 compared to JBT 36/14 and reference indica 
genome. Additionally, 32,885, 65,572, 41,296, and 32,395 
InDels were identified in line 8, 9, 11, and 15, respectively, 
and 100, 162, 115, and 102 InDels were unique as compared 
to JBT 36/14 as well as the reference indica genome (Table 4). 
The majority of SNP (>52%) and InDel (>75%) variants 

1�plants.ensembl.org/Oryza_indica/Tools/VEP

FIGURE 1  |  Pipeline followed for the analysis of NGS data in this study.
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were homozygous in the mutants. Like JBT 36/14, most of 
the SNP variants observed were of transition type with a 
Ti/Tv ratio ranging from 2.30 to 2.45  in the lines (Table  4). 
Transitions, G → A (~18%) and C → T (~18%) were found 
more frequently than A → G (~17%) and T → A (~17%) in 
all lines (Figure  4C). For transversions, A → T (~4%) was 
the most frequent, followed by T → A (~4%), C → A (~4%) 
and A → C (~4%), which were found at similar frequencies 
in all lines, while G → C (~3%) was least frequent in all 

lines (Figure  4C). The identified InDels ranged from 1 to 
45  bp in size for deletions and 1–34 bp for insertions. The 
majority (~90.23%) of the identified variations were short 
InDels of length 1–2 bp (Figure  4B). Of the total variations, 
56,681–90,023 SNPs mapped to the coding region of the 
genome. In all lines, Chr 1 showed the highest SNP and 
InDel density, while the lowest SNP density and InDel density 
were observed in Chr 9 (Supplementary File 1).

Intra-chromosomal and inter-chromosomal translocations 
were also observed in these mutant lines when compared 
to JBT 36/14 genome (Supplementary File 2). The number 
of inter-chromosomal translocations for lines 8, 9, 11, and 
15 (i.e., 2,805, 2,816, 2,728, and 2,553, respectively) were 
higher than intra-chromosomal translocations in the lines 
(i.e., 2,200, 2,202, 2,169, and 2,116, respectively). The largest 
intra-chromosomal translocation was observed in lines 8, 
9, and 11 as 45 Mb, whereas the largest intra-chromosomal 
translocation in line 15 was 31 Mb (Table  5). Among the 
mutant lines, ~72% of the SNP variations were present in 
the intergenic region (Figure 4A). In all lines, SNP variations 
in the introns (~15%) were higher than the exons (~10%). 

TABLE 1  |  Raw data statistics of the sequenced rice lines.

Raw Filtered

Sample No. Sample name Sample 
description

Total no. of 
reads (million)

Total no. of 
bases (Gb)

Total HQ reads 
(reads ≥70% HQ 

bases)

%HQ Reads % HQ bases* in 
HQ reads

1. JBT 36/14-1

Nematode 
Susceptible Rice 
Land Race

Forward reads

40.78 6.15 37.74 92.54 93.95

2. JBT 36/14-2

Nematode 
Susceptible Rice 
Land Race

Reverse reads

40.78 6.15 37.74 92.54 91.05

3. Line-8-1
Nematode 
resistant mutant 
Forward read

45.06 6.80 41.93 93.04 93.56

4. Line-8-2
Nematode 
resistant mutant 
Reverse Read

45.06 6.80 41.93 93.04 91.59

5. Line-9-1
Nematode 
resistant mutant 
Forward read

53.67 8.10 50.07 93.29 94.07

6. Line-9-2
Nematode 
resistant mutant 
Reverse Read

53.67 8.10 50.07 93.29 91.42

7. Line-11-1
Nematode 
resistant mutant 
Forward read

47.57 7.18 44.05 92.59 93.92

8. Line-11-2
Nematode 
resistant mutant 
Reverse Read

47.57 7.18 44.05 92.59 91.06

9. Line-15-1
Nematode 
resistant mutant 
Forward read

41.77 6.30 39.18 93.80 94.53

10. Line-15-2
Nematode 
resistant mutant 
Reverse Read

41.77 6.30 39.18 93.80 91.59

*HQ Bases > 30 Phred score.

TABLE 2  |  Alignment of HQ reads on reference genome and average 
sequencing depth of each line in this study.

Genotype name Alignment % Average sequencing 
depth

JBT 36/14 98.3 29
Line-8 98.3 32
Line-9 98.2 38
Line-11 98 33
Line-15 98 30
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Splice site acceptors were affected by 210–365 SNPs in the 
lines. Up to ~4% of the SNP, variations were present in 
the 3′ UTR region in all lines, whereas ~2.5% of SNPs 
affected all lines’ 5′ UTR region (Figure  4A). Similarly, 
InDel variations in the intron (~16%) were higher than 
the exon (~11%) in all the lines. Splice site acceptors were 
affected by 25–57 variations in the lines. Up to 4% of the 
total InDel variations were present in the 3′ UTR region 
in all lines, whereas ~2% of the InDels affected all lines’ 
5’ UTR region (Figure  4A).

The comparison of variants in the four lines showed 
that 93,224 SNPs and 8,170 InDels were found at common 
positions in all the lines. After that, the effects of variants 

on protein function were predicted and divided into four 
types (high, moderate, low, and modifier) based on the 
predicted severity of each effect (Supplementary File 3). 
Most variants belonged to the modifier category (70,609), 
such as intergenic region variants (26,088), upstream (24,490) 
and downstream gene variants (10,883), 3′ UTR (2,390), 5’ 
UTR ′(1,075) and intron variants (3,445). Variants that were 
inferred to have a low or weak impact (3,100  in number) 
mainly comprised synonymous variants (2,587), splice region 
variants, intron variants (243) and 5′ UTR premature start 
codon gain variants (167). The moderate effect group 
contained 3,410 SNP variants comprising mainly of missense 
variants (3,352). Notably, 316 SNP variants were predicted 

A

B

C

D

E

FIGURE 2  |  Genetic variation in JBT 36/14 compared to reference indica genome; (A) Circos diagram of genome wide variations depicting InDel density, SNP 
density and intrachromosomal translocations; (B) Annotation of SNPs and InDels by location; (C) Type of SNP variants by base substitution in JBT 36/14 genome; 
(D) Functional annotation of SNP variants; and (E) Size distribution of identified InDels in JBT 36/14 genome.
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to have a high impact on protein function, the majority 
of which were 202 stop gained variants, which result in 
premature stop codons leading to disrupted transcription 
of genes. Among the 8,170 InDels found at a common 
position in all the lines, the majority belonged to the modifier 
category (7,397), which were identified upstream (2,690), 
downstream (1,112), intergenic regions (2,488), intron variants 
(359) and UTR variants (401). InDels with low and moderate 
effects were less in numbers, being 35 (InDels in splice 
region) and 32 variants (conservative and disruptive InDels). 
InDels causing frameshifts (671) were most frequent among 
those classified to have a high effect on protein function 
(706; Figures  5C,D; Supplementary File 3).

Functional Annotation and Classification 
of Variations Common Between Mutant 
Lines
GO annotation, KEGG pathway, RiceCyc and Q-TARO analyses 
were carried out to annotate the genes affected with variations. 
Between the mutant lines, 6,948 genes contained SNPs, whereas 
1,901 genes contained InDels (Figures 5A,B). Clubbed together, 
7,331 genes common to all mutants showed SNPs or InDels 
compared to JBT 36/14, out of which 4,974 genes contained 
either SNPs or InDels at the same genomic location in all 
the mutants.

KEGG pathway analysis of the common genes affected 
with genetic variations showed that metabolic pathways 
(osa01100) were the most affected with SNP affected genes 
followed by biosynthesis of secondary metabolites (osa01110) 
and biosynthesis of antibiotics pathway (osa01130). 
Biosynthesis of secondary metabolites (osa01110) was also 
highly enriched in InDel affected genes in all mutants, 
followed by biosynthesis of antibiotics (osa01130) and carbon 
metabolism pathway genes (osa01200; Figure  6A). Gene 
ontology enrichment analysis showed that SNP-affected genes 
were highly enriched in the biological process such as protein 
phosphorylation (GO:0006468), oxidation–reduction process 
(GO:0055114) and regulation of transcription related genes 
(GO:0006355). Among genes related to molecular function 
and cellular components, protein binding (GO:0005515) and 
membrane related (GO:0016020) genes were highly enriched. 
Meanwhile, InDel affected genes involved in biological 
processes were highly enriched in transcription (GO:0006351), 
oxidation–reduction process (GO:0055114) and carbohydrate 
metabolic process (GO:0005975). Among InDel containing 
genes related to molecular function and cellular components, 
ATP binding (GO:0005524) and Integral component of 
membrane (GO:0016021) related genes were highly enriched 
(Figure  6B).

Pathway analysis of genes affected by genetic variations 
through RiceCyc led to mapping 1,350 genes on 212 pathways. 
The pathways with the highest number of variants affected 
genes included metabolism and regulation pathway (R-OSA-
2744345, 247 genes), growth and developmental processes 
(R-OSA-9030769, 60 genes), amino acid metabolism (R-OSA-
2744343, 57 genes), reproductive structure development 
(R-OSA-9031669) along with hormone signalling, transport, 
and metabolism (R-OSA-2744341; Figure  7A). Trait analysis 
using Q-TARO database mapped variant containing genes 
into four subgroups - morphological, physiological, resistance, 
or tolerance related genes and others. Q-TARO annotated 
a total of 253 genes, and the majority of them (92 genes) 
were grouped into morphological traits. Of these 92 genes, 
32 were related to culm leaf, 24 to dwarf character governing 
genes, and 14 to panicle flowering. Second to morphological 
traits, 83 genes related to physiological traits such as eating 
quality (23), sterility (19) and source activity (15) were also 
affected. A total of 70 genes involved in several disease 
resistance or tolerance were identified, of which 18 genes 
were related to blast resistance, 15 to bacterial blight resistance 
and 11 genes to salinity tolerance (Figure  7B).

TABLE 3  |  Summary statistics of various identified structural variations  
in JBT 36/14 compared to reference genome Oryza sativa ssp. indica  
93-11.

SNPs

Total SNPs 448,989
Coding region variants 36,777
Homozygous variants 152,347
Heterozygous variants 296,652
Ti/Tv ratio 2.409

InDels
Total InDels 33,245
Coding region variants 3,967
Homozygous variants 20,007
Heterozygous variants 13,238

TABLE 4  |  Summary of unique structural variations in mutant rice lines as 
compared to reference genome Oryza sativa ssp. indica 93-11 and JBT 
36/14.

Mutants Line-8 Line-9 Line-11 Line-15

SNP variants
Unique SNPs 
compared to JBT 
36/14

354,340 553,463 396,978 293,237

Unique SNPs 
compared to JBT 
36/14 and 
reference 93-11

963 1,037 960 907

Coding region 
Variants

56,681 90,023 61,970 46,526

Homozygous 
variants

186,608 370,392 226,235 155,792

Heterozygous 
variants

167,732 183,071 170,743 137,445

Ti/Tv ratio 2.45 2.33 2.38 2.30
InDel variants

Unique InDels 32,884 65,571 41,295 32,394
Unique InDels 
compared to JBT 
36/14 and 
reference 93-11

100 162 115 102

Coding region 
Variants

6,531 12,300 7,540 6,183

Homozygous 
variants

24,953 54,979 32,638 24,983

Heterozygous 
variants

7,931 10,594 8,657 7,411
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Many genes affected by variations belonged to several classes 
of transcription factors like FAR1, bHLH, NAC, bZIP, C3H, 
MIKC MADS, G2-like, WRKY, B3, C2H2, HB-other, M-type 
MADS, and MYB related transcription factors (Figure  7C). 
The highest number of variants containing genes were localized 
in the FAR-RED IMPAIRED RESPONSE 1 (FAR1) family of 
transcription factors (31), the bHLH class of transcription 
factors (24 genes) and NAC and C3H transcription factor 
family (18 genes each; Supplementary File 4).

Biotrophic pathogens typically interact with susceptibility 
genes (S) in the hosts to facilitate infection and disease 

development for a compatible interaction. Previously 
characterized S genes of Arabidopsis thaliana and O. sativa 
(van Schie and Takken, 2014) were used to find the homolog 
of those S genes in the O. sativa ssp. indica genome. We found 
50 putative S genes with SNP variations and 31 with InDel 
variations. Among these, 23 S genes were affected by variants 
at common positions in all mutant lines with 53 SNPs and 
five InDels. Most of these variants were present in intergenic 
and 3′ UTR regions and were predicted to have modifier and 
moderate effects. Arabidopsis S genes like PME3, IOS1, PSY1R, 
CPR22, DMR6, FER, TOM1, RIN4, SSI1, FDH, CSLA9, 

A B

C D

FIGURE 3  |  Circos diagram representing genetic variation in mutant rice lines compared to JBT 36/14 genome depicting InDel density, SNP density and 
intrachromosomal translocations; (A) line-8, (B) line-9; (C) line-11, and (D) line-15.
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AtNUDT6, SRFR1, TOM2A, PMR6, AtUBP13, RST1, PMR4, 
SIZ1, and CPR1 had modifier SNPs and InDels, whereas FAD8 
had SNPs with predicted moderate effect (Supplementary File 4).

DISCUSSION

JBT 36/14 is an indica rice landrace that has been previously 
studied for its suitability for a promising trait donor for rice 
improvement programs (Shet et  al., 2012; Mallikarjuna, 2013). 
JBT 36/14 showed tolerance to abiotic stress conditions (Raju 
et  al., 2014; Basavaraju et  al., 2020; Sampangi-Ramaiah et  al., 
2020) and brown planthopper (Nilaparvata lugens L.) resistance 
in previous studies (Dharshini and Gowda, 2014; Dharshini 
and Sidde, 2015; Raju et  al., 2017). We  sequenced the whole 
genome of a rice landrace JBT 36/14, and its activation tagged 
RRKN resistant mutant lines 8, 9, 11 and 15. We  found the 
highest genetic variations in chr 1  in the parent JBT 36/14, 
as well as the mutants. The whole-genome sequencing of JBT 
36/14 yielded 81.57 million paired-end reads of 151 bp, and 
98.3% of HQ reads mapped to the reference indica genome. 
The SNP variants were mostly transitions, whereas most InDels 
were short, of 1–2 bp size. Nucleotide substitution analysis (the 
ratio of transitions to transversions (Ti / Tv)) was performed 
and found to be  ~2.40. The mapped genome of JBT 36/14 
revealed a clear bias toward transitions (more than twice that 
of transversions), and deviated from the expected ratio of 0.5 
(Stoltzfus and McCandlish, 2017). This phenomenon is known 
as “transition bias,” which has previously been reported in 
rice (Morton, 1995). Higher Ti/Tv ratios have been previously 
reported in maize, oats, medicago, diploid wheat, Triticum 
monococcum and barley (Batley et al., 2003; Vitte and Bennetzen, 
2006; Bindusree et  al., 2017). The Ti/Tv ratio observed here 
is higher than some previous rice studies (Subbaiyan et  al., 
2012; Jain et  al., 2014; Chai et  al., 2018), suggesting a low 
level of genetic divergence in this landrace. Due to the wobble 
effect, transitions manifest primarily into silent mutations that 
do not alter the amino acid and thus conserve the amino 
acid chain (Wakeley, 1996). Moreover, Transitions are found 
to be more conservative than transversions (Stoltzfus and Norris, 
2016). SNP and InDel variations in JBT 36/14 were observed 
to affect metabolic pathways and biosynthesis of metabolic 
pathways, affecting the increased production of phenolic 
compounds and reduced sugar content observed in the previous 
studies (Dharshini and Gowda, 2014). The draft genome sequence 
of JBT 36/14 is a good resource for understanding genotypic 
and phenotypic variations in rice and will enable its use in 
rice breeding programs (Shet et  al., 2012).

Activation tagging is a robust forward genetics approach 
to generate genetic resistance against biotic and abiotic stresses 
and improve plant traits (Gao et  al., 2014; Moin et  al., 2016; 
Manimaran et  al., 2017). Such mutants can help study traits 
that are hard to find in natural sources, for example, nematode 
resistance. Four activation tagged mutant lines showing RRKN 
resistance were identified and T-DNA insertion was confirmed 
in a previous study (Hatzade et al., 2019a). Here, we sequenced 
the genomes of these resistant mutant lines 8, 9, 11, and 15 

A

B

C

FIGURE 4  |  Annotation of SNP and InDel variants identified in mutant lines 8, 
9, 11, and 15; (A) Annotations of SNP and InDel variants by their location; 
(B) Size distribution of identified InDels; and (C) Type of SNP variants by base 
substitution in mutant lines.

TABLE 5  |  Structural variations in genomes of mutant line as compared to JBT 
36/14.

Type of 
variation

Line-8 Line-9 Line-11 Line-15

Intra-
chromosomal 
translocation

2,200 2,202 2,169 2,116

Inter-
chromosomal 
translocation

2,805 2,816 2,728 2,553

Insertion 1 - 1 3
Deletion 5,271 5,292 5,260 5,083
Inversion 951 945 916 892
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to understand the genomic variations that might be responsible 
for imparting nematode resistance in addition to the T-DNA.

T-DNA insertions have been observed to cause chromosomal 
translocations and InDels in the target genome (Lafleuriel et al., 
2004; Curtis et  al., 2009; Ruprecht et  al., 2014; Pucker et  al., 
2021). The whole-genome sequencing of mutant lines showed 
a high degree of genetic variations in terms of SNPs and 
InDels compared to its JBT 36/14 parent. The difference in 

number of variants in the mutants was directly proportional 
to the number of sequenced reads. The Ti/Tv ratio of >2 for 
all mutant lines was similar to JBT 36/14. However, unlike 
T → C transitions in JBT 36/14, G → A and C → T transition 
were the major types of transitions in mutants. Also, the highest 
number of variants was observed to be  spanning chr number 
1 and lowest in chr number 9. The increased number of small 
mutations and chromosomal translocations in these lines are 

A B

C D

FIGURE 5  |  Common genes affected by SNPs and InDels in all mutant lines; (A) Venn diagram depicting common genes affected by SNP variants in mutant lines; 
(B) Common genes affected by InDel variants in mutant lines; (C) Annotation by location of common SNP variants at common genomic locations in all mutant lines; 
and (D) Annotation by location of common InDel variants at common genomic locations in all mutant lines.
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unprecedented for T-DNA mutants as these are usually low 
in such mutants (Ossowski et  al., 2010; Schouten et  al., 2017).

Analysis of common genes containing variants in all the 
mutant lines suggested that the majority of the genes were 
involved in the metabolic pathway and gene regulation in rice. 
In particular, genes involved in the biosynthesis of secondary 
metabolites seemed to contain majority of common InDels 
and SNPs. This is interesting as a previous study regarding 
changes in transcriptomic profile in line-9 after nematode 
infection showed up-regulation of genes involved in the 
production of rice phytoalexins such as oryzalexins phytocassanes, 
momilactones and several flavonoid compounds (Dash et  al., 
2021). It may be  suggested that in addition to the effect of 
activation tagging, these genomic structural variants may also 
be contributing to altered phytoalexin and flavonoid production 
in the mutants.

Several phenotypic variations were also observed in mutant 
lines compared to their JBT 36/14 wild type in green house 
conditions. These mutants varied compared to their wild type 
in terms of plant height, internodal length and width of leaf 
blade, number of tillers, flowering time, root structure and 
distinct seed color (Hatzade et  al., 2019b). The morphological 

and physiological trait governing genes with the common 
variants might be  associated with these different phenotypes 
observed in the mutants.

Common variants were also observed in several transcription 
factors (TF) families like FAR1, BHLH, and NAC in the 
mutants. FAR-RED IMPAIRED RESPONSE 1 (FAR1) 
transcription factor families play multiple roles in a wide range 
of cellular processes, including light signal transduction (Wang 
and Deng, 2002), circadian clock and flowering time regulation 
(Li et  al., 2011), oxidative stress responses (Ma et  al., 2016), 
and plant immunity (Wang et  al., 2016). Similarly, rice BHLH 
transcription factors also have a role in both abiotic (Wang 
et  al., 2003; Zhou et  al., 2009; Sun et  al., 2018) and biotic 
(Yamamura et  al., 2015; Wei and Chen, 2018) stress responses 
of plants. NAC transcription factor is also known to be involved 
in abiotic and biotic stress responses in rice (Kaneda et  al., 
2009; Puranik et al., 2012). Some other TF families like WRKY, 
bzip, GATA, and MYB, which are related to plant stress 
responses, were also affected by variants in mutant plants. 
The majority of variants affecting TFs in mutants were predicted 
to be  modifiers, while some had moderate effects. It may 
be suggested that some of these variations might be contributing 

A

B

FIGURE 6  |  Functional annotation of common genes affected by genetic variations in all mutant lines by KEGG pathway and Gene Ontology analysis (top 10); 
(A) common genes affected by SNP in all mutant lines and (B) Common genes affected by InDels in all mutant lines.
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to nematode stress response in the mutant lines in yet 
unknown ways.

Susceptibility genes play an important role in plant-pathogen 
interactions. All plant genes that facilitate infection and support 
compatibility can be  considered as susceptibility (S) genes 
(Eckardt, 2002; van Schie and Takken, 2014). Mutation or loss 
of an S gene can limit the ability of the pathogen to cause 
disease, either due to impaired pre-penetration requirements 
such as host recognition and penetration or impaired post-
penetration requirements like nutrients. Rice homologs of several 
Arabidopsis S genes were found to have common variants with 
predicted modifier and moderate effect in mutant lines. Among 
these S genes, PME3 is an S gene characterized in Arabidopsis 
targeted by Cyst nematode (Heterodera schachtii) cellulose-
binding protein (Hewezi et al., 2008). Likewise, TOM1, TOM2A, 
and EIF4E are S genes targeted by viruses, while the rest of 
the identified S genes are targeted by either bacterial or fungal 
pathogens (van Schie and Takken, 2014). Nematodes secrete 
several effectors to establish feeding sites and facilitate penetration 
(Truong et  al., 2015; Mejias et  al., 2019). Effectors generally 
target S genes to facilitate disease progression. Variants in S 

genes can lead to a loss in its activity and may impede interaction 
with the pathogen—RRKN in this case. However, further 
validation is required to affirm the role of identified S genes 
in nematode resistance.

In summary, this study investigated genomic structural 
variations in rice landrace JBT 36/14 and its nematode-resistant 
activation tagged mutants. The genome of the rice landrace 
JBT 36/14 will add to the available databases of rice genetic 
variations. A set of 7,331 common genes affected by structural 
variations were recognized in all nematode-resistant mutant 
lines. These genes included secondary metabolite biosynthesis 
pathway genes, several families of TFs, and S genes. Further 
validation of these variants might help link them to the resistant 
phenotype observed in these mutants and may be  helpful in 
future breeding programs.
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