AUTHOR=Zhang Yue , Henke Michael , Li Yiming , Xu Demin , Liu Anhua , Liu Xingan , Li Tianlai TITLE=Analyzing the Impact of Greenhouse Planting Strategy and Plant Architecture on Tomato Plant Physiology and Estimated Dry Matter JOURNAL=Frontiers in Plant Science VOLUME=Volume 13 - 2022 YEAR=2022 URL=https://www.frontiersin.org/journals/plant-science/articles/10.3389/fpls.2022.828252 DOI=10.3389/fpls.2022.828252 ISSN=1664-462X ABSTRACT=Determine the level of significance of planting strategy and plant architecture and how they affect plant physiology and dry matter accumulation within greenhouses is essential to actual greenhouse plant management and breeding. We thus analyzed four planting strategies (plant spacing, furrow distance, row orientation, planting pattern) and eight different plant architectural traits (internode length, leaf azimuth angle, leaf elevation angle, leaf length, leaflet area, leaflet elevation, leaflet number, leaflet width/length (W/L) ratio) using a formerly developed functional-structural model for a Chinese Liaoshen-solar greenhouse and tomato plant, which used to simulate the plant physiology of light interception, temperature, stomatal conductance, photosynthesis, and dry matter. Our study led to the conclusion that the planting strategies have a more significant impact overall on plant radiation, temperature, photosynthesis, and dry matter compared to plant architecture changes. According to our findings, increasing the plant spacing will have the most significant impact to increase light interception. E-W orientation has better total light interception but yet weaker light uniformity. Changes in planting patterns have limited influence on the overall canopy physiology. Increasing the plant leaf area by leaflet W/L ratio from what we could observe for a rose the total dry matter by 19.4 %, which is significantly better than growing leaflet area (6.5 %) or leaflet number (7.9 %). The combined analysis approach described herein digitized the causal relationship between investigated traits, which could directly apply to provide management and breeding insights on other plant species with different solar greenhouse structures.