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To achieve food security, it is necessary to increase crop radiation use efficiency (RUE)
and yield through the enhancement of canopy photosynthesis to increase the availability
of assimilates for the grain, but its study in the field is constrained by low throughput
and the lack of integrative measurements at canopy level. In this study, partial least
squares regression (PLSR) was used with high-throughput phenotyping (HTP) data in
spring wheat to build predictive models of photosynthetic, biophysical, and biochemical
traits for the top, middle, and bottom layers of wheat canopies. The combined layer
model predictions performed better than individual layer predictions with a significance
as follows for photosynthesis R? = 0.48, RMSE = 5.24 pmol m—2 s~! and stomatal
conductance: R? = 0.36, RMSE = 0.14 molm~2 s~ . The predictions of these traits from
PLSR models upscaled to canopy level compared to field observations were statistically
significant at initiation of booting (R? = 0.3, p < 0.05; R? = 0.29, p < 0.05) and at
7 days after anthesis (R = 0.15, p < 0.05; R? = 0.65, p < 0.001). Using HTP allowed
us to increase phenotyping capacity 30-fold compared to conventional phenotyping
methods. This approach can be adapted to screen breeding progeny and genetic
resources for RUE and to improve our understanding of wheat physiology by adding
different layers of the canopy to physiological modeling.

Keywords: canopy photosynthesis, high-throughput phenotyping, PLSR, physiological breeding, RUE

INTRODUCTION

Increasing crop biomass and radiation use efficiency (RUE; dry weight biomass produced per unit
radiation intercepted) through the enhancement of photosynthesis has been presented as one of
our best options to improve staple crop yields (Evans and Lawson, 2020). Multiple lines of evidence
suggest that increased photosynthesis would stimulate higher yields, and moreover there is room
for improvement within the existing crop systems (Zhu et al., 2010; Slattery et al., 2013; Kromdijk
etal., 2016; South et al,, 2019; Ainsworth and Long, 2021).

Most of the yield gains achieved in wheat (Triticum aestivum L.) from the Green Revolution
came through the provision of the necessary resources for crop growth (i.e., water, nutrients,
and pest control) and the introduction of Rkt genes to increase harvest index (HI; proportion of

Frontiers in Plant Science | www.frontiersin.org 1

April 2022 | Volume 13 | Article 828451


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2022.828451
http://creativecommons.org/licenses/by/4.0/
mailto:c.robles@cgiar.org
https://doi.org/10.3389/fpls.2022.828451
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2022.828451&domain=pdf&date_stamp=2022-04-11
https://www.frontiersin.org/articles/10.3389/fpls.2022.828451/full
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Robles-Zazueta et al.

Trait Prediction in Wheat Canopies

biomass allocated in the grains) and plant structural integrity,
thereby making it more responsive to irrigation and nutrients
while reducing the risk of lodging (Reynolds et al., 2012).
Currently, prebreeding efforts in wheat are focused on improving
traits, such as aboveground biomass, light interception, HI, and
RUE (Molero et al,, 2019). Some of these traits are close to
optimum, HI (close to 0.6), and light interception (canopies
intercepting ~95% of light), whereas RUE and biomass have
a high potential for improvement. Therefore, increasing wheat
photosynthesis has become a primary goal to increase yield
(Murchie et al., 2009).

Biomass and RUE have increased in some wheat lines
serendipitously without direct selection of RUE or photosynthetic
traits. It has been suggested that RUE improvements in
wheat need to be addressed through changes in leaf or spike
photosynthesis (Carmo-Silva et al., 2017; Molero and Reynolds,
2020; Sanchez-Bragado et al.,, 2020), as previous studies have
found a significant relationship between genetic variation in
flag leaf light-saturated photosynthesis rates (Asy) and stomatal
conductance (gs) with yield (Fischer et al., 1998; Gutiérrez-
Rodriguez et al., 2000; Reynolds et al., 2000; Gaju et al., 2016) and
biomass (Reynolds et al., 2000; Gaju et al., 2016) at both pre- and
postanthesis stages. However, recent studies have failed to find
these correlations of single leaf photosynthesis or gs with yield
(Driever et al., 2014; Silva-Pérez et al., 2020). To fully exploit
genetic variation in existing germplasm, we need to not only
develop high-throughput plant phenotyping (HTP) methods for
faster assessment of photosynthetic-related traits but also find
ways in which measurements of leaf or canopy photosynthesis
will meaningfully correlate with canopy biomass and RUE to
accelerate genetic yield gains.

Photosynthesis field research in wheat has been relatively slow
in comparison to the study of other traits, such as aboveground
biomass accumulation, light interception, RUE, and leaf and
canopy pigment content, despite the latter requiring heavy
manual labor in the field. This is a consequence of several
factors that hinder accurate and representative estimations of
photosynthetic traits under field conditions, which are mostly
related to the complexity of photosynthesis as a trait. These
include the time it takes to measure a leaf in the field for
maximum assimilation rate under light saturating conditions
(Agqt, ~15-25 min); the impracticality and low throughput
techniques for measuring more complex photosynthetic traits,
such as induction, COy, or light concentration curves (A/C;, A/Q
curves), and the confounding effect of crop phenology. Moreover,
photosynthesis is typically measured in flag leaves which are
usually exposed to light saturating conditions for most of the day,
thus not representing the environmental conditions found across
the whole canopy (Murchie et al., 2018).

Photosynthesis research gained a lot of interest after
the seminal work from Farquhar et al. (1980). Since then
methodologies were developed to measure, upscale to canopy
level (“big leaf” models), and model photosynthesis considering
mainly sunlit leaves, assuming that its rates would change with
light intensity, penetration and distribution, N content, and leaf
angles (Farquhar, 1989), with this modeling approach being
applied in natural ecosystems (De Pury and Farquhar, 1997) and

Cj3 and Cy4 crop systems by upscaling information from individual
leaves to canopy level (Yin and Struik, 2009; Wu et al,
2019). Given that the prediction of canopy photosynthesis
is improved with knowledge of photosynthesis at multiple
canopy leaf layers, methodologies emerged to increase the
spatio-temporal scales over which measurements can be made.
Photosynthetic reactions can now be measured at cellular, leaf,
and plant level with low to medium throughput phenotyping
techniques (Murchie et al., 2018), and at ecosystem scale using
sensors mounted on micrometerological stations (Baldocchi,
2003), and biome photosynthesis using chlorophyll fluorescence
information collected from satellite sensors as a proxy of
productivity can be estimated (Farquhar et al., 2001; Parazoo
et al., 2014; Duveiller and Cescatti, 2016; Zhang et al,
2016). Although these are exciting methodologies used for
photosynthesis research, the latter examples are not easy to
deploy in wheat breeding programs as hundreds of lines are
grown in plots placed next to each other, and upscaling
information from leaves to plots can be hard due to the
spatial scale mismatch in these methods which can vary from
mm? to km?.

There have been various investigations to assess
photosynthetic-related traits at multiple canopy levels, such
as A, RUE, the fraction of absorbed photosynthetically
active radiation (fAPAR), maximum velocity of Rubisco
carboxylation (Vi pmay), electron transport rate (Jyay), non-
photochemical quenching (NPQ), and other chlorophyll
fluorescence parameters, have been assessed in glasshouse studies
coupled with 3D reconstructions using ray-tracing modeling in
wheat (Townsend et al., 2018), rice (Burgess et al., 2016; Foo
et al., 2020), maize (Cabrera-Bosquet et al., 2016), pear]l millet,
bambara groundnut (Burgess et al., 2017), and arabidopsis
(Retkute et al.,, 2015) in different canopy layers. Under field
conditions, Ay,;; measurements have been made with a custom
made sensor (OCTOflux) which allowed the user to increase the
phenotyping capabilities ~4-7 times compared to conventional
IRGAs (infrared gas analyzer) by measuring eight leaves at a
time (Salter et al., 2018), Ay, measurements made in the top and
bottom layers of wheat canopies (Salter et al., 2020), modeling
with light response curves coupled with eddy covariance
flux estimations of gross primary productivity (GPP; Hoyaux
et al., 2008), and through image spectroscopy used to measure
photochemical efficiency in wheat and maize (Pinto et al., 2016).

While these studies have shown that it is possible to estimate
canopy photosynthesis through modeling, it has usually required
laborious and complex manual measurements. Some have been
used only in controlled environmental conditions or have not
been tested in an HTP context limiting their use for physiological
breeding. Additionally, these techniques are hard to deploy in the
field, especially in breeding programs where hundreds of plots are
grown in close proximity with limited space to maneuver large
phenotyping equipment.

Recently, optical remote sensing techniques have gained
attention due to the possibility of measuring hundreds or
thousands of lines without the need of destructive sampling and
in a small fraction of time compared to conventional phenotyping
methods. Spectral data collected in the field has been used to
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calculate spectral indices or the full reflectance signature of an
area of the electromagnetic spectrum, usually ranging from 350
to 2,500 nm to predict physiological traits at leaf or canopy
scales (Ollinger, 2011; Gamon et al., 2019; Robles-Zazueta et al,,
2021). Among the methods using the full spectral range, partial
least squares regression (PLSR) modeling has become the gold
standard for HTP modeling of physiological traits, such as leaf
Asats Vemaxs Jmaxs dark respiration; leaf osmotic potential; leaf
C, N, and chlorophyll content; protein; phenols; sugars; leaf
mass area; and specific leaf area (Serbin et al., 2012; Silva-
Perez et al., 2018; Coast et al.,, 2019; Cotrozzi and Couture,
2020; Burnett et al., 2021; Furbank et al., 2021). Even though
using hyperspectral reflectance data to predict physiological traits
is not novel, the use of the spectra to predict photosynthetic,
biophysical, and biochemical traits along different leaf layers has
not been explored so far.

Our hypothesis is that models derived from rapid
measurements of multiple layers of the canopy will produce
better predictions than models created with individual leaf layers
due to the unknown trait variability caused by a gradient from
top to bottom of the canopy. The objectives of this study are
to predict photosynthetic, biophysical, and biochemical traits
using PLSR modeling, to compare the measurements of Agy
and gs with PLSR predictions, and to explore the use of these
predictions as means to select wheat genotypes for higher RUE.

MATERIALS AND METHODS

Plant Material and Experimental Design
Spring bread, wheat cultivars chosen from the Photosynthesis
Respiration Tails (PS Tails) panel from the International Maize
and Wheat Improvement Center (CIMMYT) were grown at
CIMMYT’s Campo Experimental Norman E. Borlaug (CENEB)
field station in Ciudad Obregon, Sonora, Mexico (27°23'46"'N,
109°55'42""W, 38 mamsl) during the spring wheat growth season
that encompasses early December-early May.

A subset of eight cultivars and advanced lines were studied in
year 1 (Y1) and three more lines were added at years 2 and 3 (Y2
and Y3) to have a total of 11 lines. Germplasm from this panel
is characterized by contrasting RUE expression at vegetative and
grain filling stages, high aboveground biomass, and these lines are
used for their promising high yield potential.

The experimental design was a randomized complete block
design with three replicates in raised beds and two beds per plot
(Y1) with the same experimental design, but four replications
per genotype in Y2 and Y3. Sowing dates were December 5,
2017, December 6, 2018, and December 18, 2019 for Y1, Y2,
and Y3, respectively. Emergence dates were December 12, 2017,
December 12, 2018, and December 26, 2019 (Y1, Y2, and Y3,
respectively). Harvest dates were May 8, 2018, April 30, 2019,
and May 13, 2020 (Y1, Y2, and Y3, respectively). Seed rate was
~250 seeds m~2 in 3 years. Irrigation was applied four times
during the crop cycle in approximate 25-day intervals (pre-
sowing, 25, 50, 75, and 100 days after emergence). Plants were
grown under optimal conditions in the field with pests, weed
control, and fertilization to avoid limitations to yield. In Y1
fertilization was applied in the form of urea (200 kg N ha~!)

25 days after emergence (DAE). For Y2, fertilization was divided
into 100 kg N ha™! 25 DAE and another 100 kg N ha~! 58
DAE. Finally, for Y3 100 kg N ha™! was applied 30 DAE and
50 kg N ha~! 50 DAE; 50 kg P ha=! was applied in the three
cycles when the first application of N was made.

Phenology was scored according to the Zadoks growth scale
for cereals (Zadoks et al, 1974). The growth stages recorded
were initiation of booting (GS41, InB), anthesis (GS65, A), and
physiological maturity (GS87, PM) when 50% of the shoots in the
plot reached a particular stage. Meteorological data from a nearby
station to the experimental site were collected for the whole crop
cycle, and accumulated PAR was calculated for the growth stages
where biomass was collected.

Aboveground Biomass and Biophysical
Traits

Aboveground biomass was sampled following Robles-Zazueta
etal. (2021). Samples of biomass at InB, 7 days after anthesis (A7)
and PM were collected. Biomass harvests were made in 0.4 m?
(40 days after emergence) and 0.8 m? (InB, A7), leaving 25 and
50 cm, respectively, at the northern side of the plots to reduce
border effects in subsequent biomass samplings. All fresh biomass
was weighed, and a subsample of 50 shoots was weighed and dried
in an oven at 70°C for 48 h to record dry weight. For biomass
at PM, calculations were made from the measurement of yield
components. For every growth stage, the aboveground biomass
was calculated according to Pask et al. (2013):

Total FW x Harvested area

Aboveground biomass = Subsample DW x
Subsample FW

1

At InB and A7, 12 shoots were randomly selected for biomass
partitioning. In the lab, plant organs were separated into stems,
flag, second, third, and remaining leaves. After partitioning,
leaf areas were measured using an area meter (LI 3100C, Licor
Biosciences, Lincoln, NE, United States). Finally, samples were
dried in an oven for 2 days at 70°C, weighted, and the data was
used to calculate the leaf area index (LAI), specific leaf area (SLA),
and leaf mass area (LMA) as follows:

Green leaf lamina area

LAl = 2

# stems m? @

SLA — Leaf green area 3)
Leaf dry mass

LMA — Leaf dry mass @)

Leaf green area

Radiation Use Efficiency

Radiation use efficiency was estimated from the slope of the
linear regression between accumulated aboveground biomass
and the corresponding accumulated intercepted PAR during the
determined growth period (Monteith, 1977). Incoming radiation
from a nearby meteorological station was used to estimate the
accumulated PAR multiplying irradiance by a factor of 0.45 to
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convert it to PAR, and ceptometer (AccuPAR LP-80, Decagon,
Pullman, WA, United States) readings were used to correct the
accumulated radiation for the fraction of absorbed PAR by each
genotype following the same procedure presented in Robles-
Zazueta et al. (2021).

Photosynthesis and Chlorophyli

Measurements

Spot measurements of Agy, gs, the maximum efficiency of
PSIT photochemistry under light conditions (Fv//Fm’), and
PSIT quantum yield (®PSII) were made using an IRGA (Licor
6400 XT, Licor Biosciences, Lincoln, NE, United States) at
InB (Y1 and Y2) and A7 (Y1, Y2, and Y3) coupled with
the leaf chamber fluorometer (6400-40 Licor Biosciences,
Lincoln, NE, United States). Photosynthetic measurements
were made at the flag (top of the canopy), second (middle
of the canopy), and third (bottom of the canopy) leaves
in two healthy shoots per plot with light conditions set at
1,800 jwmol m~2 s~! PAR, which are light saturating conditions
in our study site, and the leaves were acclimated for ~15-
20 min until steady state was reached. Chlorophyll content was
measured using a SPAD-502 meter (Konika Minolta, Tokyo,
Japan) in the same leaves where photosynthesis was measured
(Pask et al., 2013).

Measurements were performed between 10:00 and 15:00 as
this timeframe has been found to maximize the stability and
accuracy of the measurements (Evans and Santiago, 2014).
Then CO; assimilation (Agy) and stomatal conductance (gs)
were upscaled from leaves to canopy level by multiplying each
individual layer value by the LAI of its corresponding layer. This
is an adaptation of the protocol for upscaling C and N content
proposed by Gara et al. (2019). Calculations are shown in Eq. 5:

Canopy Photosynthesis = Z(AS.MFL x LAT FL) + (AgSLx LAISL) + (AsTL x LAITL)

(5)
where Ay, is CO, assimilation, LAI is leaf area index, and FL, SL,
and TL are flag leaf, second leaf, and third leaf, respectively.

For gs, an average of the three layers of the canopy was
estimated to obtain a gs pooled value of the canopy to assess if
the average gs of any leaf in the canopy correlated better with the
traits of interest.

Total C and N Content

Flag, second, and third leaf samples from each genotype were
collected from the field to obtain the total C and N content at
GS41 and GS65 + 7 days in Y1 and Y2. Leaf samples were dried
in an oven at 70°C for 48 h, then finely grounded, weighted,
and analyzed with dry combustion Dumas method using an
elemental analyzer (Flash 2000, Thermo Scientific, Waltham,
MA, United States).

Leaf Hyperspectral Reflectance

Hyperspectral reflectance was measured on the adaxial sides
of the same leaves where gas exchange data were collected.
Measurements were made using a leaf clip equipped with
a halogen bulb light source (ASD Field Spec 3, Boulder,
CO, United States). Reflectance was measured in the flag,
second, and third leaves at the same growth stages as

photosynthesis measurements between 10:00 and 15:00, making
sure there were no water or dust particles in the leaves to
avoid noisy readings.

Statistical Analysis

Leaf spectral reflectance (350-2500 nm) collected at the three
positions of the canopy was used to predict the photosynthetic,
biophysical, and biochemical traits using PLSR (Serbin et al.,
2012, 2014) with the orthogonal scores algorithm (oscorespls)
from the R package pls (Mevik and Wehrens, 2007). Before
constructing the models, outliers of the traits measured were
removed (43 o) and the dataset was divided for training (70%)
and validation (30%) randomly using the sample function from
R Studio, which has an equal probability of selecting any numeric
vector within a dataset (RStudio Team, 2020). This procedure
is characterized by reducing the risk of model overfitting, as
shown in previous studies, that measured photosynthetic and
physicochemical traits in leaves (Serbin et al., 2012, 2014).

A jackknife resampling test with 1,000 iterations was done
to estimate the variance and model bias. Jackknife resampling is
also known as leave-one-out cross-validation, which implies that
for any dataset of size n, the estimation of a given parameter
in the dataset will be done by the addition of the parameter
estimates from a subsample of size n — 1 (Jiang et al., 2002).
Then the number of principal components used in the model was
defined by the smallest root mean square error from the cross-
validation stage (RMSEP CV) in conjunction with the smallest
prediction of the residual sum squares (PRESS) from the training
model according to Serbin et al. (2014). After the validation
process, regression coeflicients and intercepts were generated and
multiplied by the reflectance value of each individual wavelength
to predict the abovementioned traits (Serbin et al., 2014; Silva-
Perez et al., 2018).

The models were built based on two approaches: individual
layers and all canopy layers combined. The size of the
training and validation dataset and statistical parameters used
to evaluate the models is presented in Table 1. Then results
were compared to define which approach was better to predict
the physiological traits based on the regression coeflicient (R?),
root mean square error (RMSE), and the model bias (Table 1).
Furthermore, variable importance in projection (VIP) scores for
each physiological trait were calculated to define which areas
of the electromagnetic spectrum carry significant weight for the
model construction, where values >1 represent areas of higher

importance compared to values <1.

Bilinear unbiased estimators (BLUEs) were calculated for each
trait measured on the field using the general linear mixed model
with META-R v 6.04 (Alvarado et al., 2020). Physiological traits
were adjusted using the days to InB as a covariate for traits
measured during the vegetative stage and days to A for traits
measured during the grain filling stage when no significant
statistical differences were found. For the analysis combined
across the 3 years, the following model was used:

Yijy =wn + Envi + Repj(Env;) 4 Genj + Env; x Gen; + Cov + &kl (6)

Where Yjj is the trait of interest, u is the mean effect,
Env; is the effect of the ith environment, Rep; is the effect
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TABLE 1 | Statistical parameters used to build the partial least squares regression (PLSR) models.

Trait Layer NT NV RMSEP CV N Comp R2T R2V RMSE_V (Trait Bias_V (%)
(Trait units) units)
Asat Top 157 69 4.47 10 0.23 0.11 4.96 -0.78
Middle 155 67 4.51 11 0.48 0.34 6.6 1.28
Bottom 146 64 4.65 10 0.16 0.07 5.82 0.54
Combined 525 198 5.19 15 0.46 0.48 5.24 -0.32
gs Top 155 67 0.14 5 0.11 0.17 0.16 0.004
Middle 149 64 0.14 5 0.29 0.37 0.15 —0.01
Bottom 155 69 0.14 5 0.28 0.22 0.15 0.019
Combined 460 199 0.14 13 0.34 0.36 0.14 0.005
Fv'/Fm’ Top 151 66 0.03 12 0.27 0.36 0.04 0.008
Middle 154 67 0.03 10 0.03 0.18 0.81 -0.81
Bottom 152 67 0.04 6 0 0.1 0.05 -0.13
Combined 458 199 0.04 14 0.16 0.17 0.05 —0.003
DPSI| Top 157 69 0.03 12 0.49 0.29 0.04 0.0037
Middle 154 64 0.04 8 0.43 0.52 0.04 0.001
Bottom 145 63 0.03 12 0.26 0.56 0.04 —0.004
Combined 458 198 0.04 14 0.57 0.57 0.04 —0.003
SPAD Top 150 66 2.08 5 0.61 0.63 2.2 —0.03
Middle 155 68 1.99 10 0.24 0.24 1.56 0.54
Bottom 152 69 2.88 3 0.07 0.04 2.79 -0.25
Combined 460 198 2.4 13 0.47 0.48 2.48 0.217
Total C Top 89 40 1.3 8 0.38 0.3 1.9 —0.922
Middle 85 39 1.71 1 0.05 0.03 1.86 -0.48
Bottom 84 37 1.78 3 0.06 0.02 1.95 0.175
Combined 260 114 0.66 27 0.33 0.35 1.5 0.15
Total N Top 90 40 0.11 20 0 0 0.62 0.093
Middle 88 39 0.38 6 0.35 0.3 0.56 0.0714
Bottom 87 38 0.38 9 0.44 0.31 0.53 0.0082
Combined 266 116 0.44 8 0.3 0.38 0.49 0.008
SLA Top 153 67 3.74 0.03 0.17 4.18 0.033
Middle 122 54 2.92 10 0.11 0.01 3.66 0.354
Bottom 136 59 3.07 13 0.57 0.63 4.38 —0.241
Combined 413 178 4.38 6 0.31 0.32 5.23 -0.117
LMA Top 150 65 0.01 3 0.07 0.05 0.01 —0.0013
Middle 119 52 0.01 2 0.01 0.01 0.01 —0.002
Bottom 134 60 0 14 0.49 0.56 0.01 —0.00008
Combined 450 195 0.01 14 0.49 0.46 0.01 —0.0013

The lowest RMSEP CV was used to select the ideal number of components. NT, datapoints used for the training dataset; NV, datapoints used for validation dataset;
RMSEP CV, root mean square error from cross-validation; N Comp, number of components; R T, determination coefficient from test model; R? V, determination coefficient
from validation model; RMSE_V, root mean square error from validation; Bias_V, validation model bias.

of the jth replicate, Gen; is the effect of the Ith genotype,
Env; x Gen; are the effects of the ith environment and the
environment X genotype interaction, Cov is the effect of the
covariate, and ¢ is the error associated with the environment
i, replication j, kth incomplete block, and Ith genotype. All the
effects in the model are random, with exception of genotype and
covariate which are fixed. In this study, the term environment
refers to the year where data was collected (Y1, Y2, or Y3),
therefore three environments were analyzed.

Finally, to compare our estimations of Ay and gs with the
predictions from PLSR models, we used the equations generated
from the validation models and calculated BLUEs of the predicted
Agar, g5, and LAI to upscale these predictions to a canopy level.

RESULTS

Canopy Layer Position and Phenological

Effects on Photosynthetic Traits

Photosynthetic traits were greater in the middle leaf layer of the
canopy than the top layer in InB, and strong statistical differences
were found between the middle and bottom layers of the canopy,
with greater Ay, and gs rates in the middle layer. With exception
of total C content, statistically significant differences between
layers were found in all the physiological traits measured in this
study. Similarly, differences between growth stages were strongly
significant for all the traits. This highlights the importance of
considering adding data from different phenological stages to
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FIGURE 1 | Validation results of partial least squares regression (PLSR) models predicting Fv//Fm’ (A), ®PSII (B), and SPAD (C) by separating each layer of the
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build more robust models that could predict these traits at any
given point in time of the wheat-growing season (Table 2).

Predicting Photosynthetic, Biophysical,
and Biochemical Traits With

Hyperspectral Reflectance
The photosynthetic trait with the smallest accuracy prediction
of all, both for the separated (top: R* = 0.36, middle: R> = 0.18,
bottom: R?> = 0.1) and combined layers approach (R* = 0.17;
Figures 1A,D, respectively) was Fv//Fm'. On the other hand,
®PSII and SPAD predictions were traits with a high correlation
between observations and predictions with both approaches.
In the case of ®PSII, the middle and bottom layer of the
canopy were crucial to improve model accuracy, while the top
layer had a smaller correlation value compared to predictions
made with the three layers (Figures 1B,E); this was opposite to
SPAD predictions where the top layer of the canopy had the
highest correlation, and therefore the most influence on model
accuracy when combining the three layers of the canopy (Figures
1C,F). In the case of these three traits, we found that the two
approaches produced similar correlations between observations
and predictions, but in the case of Fv//Fm’ the combined layer
approach was better (Figure 1D).

Total C (%) and N (%) predictions were poor compared to
the photosynthetic traits, possibly due to a smaller sampling
size compared to the other traits predicted (Table 1) and the

experimental conditions, where N was not a limiting factor
coupled with low genetic variability as only eleven lines were
studied, and this could have had an effect on the low predictions
of these two traits. The top layer produced best predictions for
C content (Figure 2A, R? = 0.3, RMSE = 1.9), whereas the
middle and bottom layers were more important for N content
predictions (Figure 2B; R*> = 0.3, p < 0.001 and R*> = 0.31,
p < 0.001, respectively). When all the layers were combined,
predictions were better than separating the layers for both traits
with RMSE of 1.5 and 0.49% for C and N prediction, respectively
(Figures 2C,D, respectively). N content decreased from top to
bottom of the canopy, but C content was equally distributed
through the canopy (Table 2).

The bottom layer predictions were more accurate than the
top and middle layers for the biophysical traits. Predictions
at the bottom for SLA were R* = 0.63, p < 0.001 and for
LMA were R? = 0.56, p < 0.001 (Figures 3A,B, respectively).
When combining the three layers, the results were similar
for LMA, but in the case of SLA, the separated layer
model produced better correlations between observations and
predictions (Figures 3D,E). These results comply with our field
observations as narrower smaller leaves at the top layer, and
broader, larger leaves at the middle and bottom layers of the
canopy were found (Table 2).

The results from the models using canopy layers separated and
combined are presented in this section. Our results indicate that
photosynthetic traits prediction was better using the combined
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approach rather than the separated (Figure 4). Ay, predictions
from the combined model had RMSE of 5.24 wmol m~2 s !
(Figure 4C), and gs RMSE of 0.14 mol m 27! (Figure 4D). For
these two traits, the middle layer had more importance for model
accuracy (Figures 4A,B). We recognize that our photosynthesis
modelling results can increase by improving LAI predictions
(Figures 3C,F). Variable importance in projection (VIP) scores
were calculated to find spectrum areas, with the most importance
for model building. We found three main areas with the greatest
importance in the building of the photosynthetic, biophysical,
and biochemical models at 350-369, 527-575, and 671-750 nm
(Figure 5). After smaller peaks in the shortwave infrared region
(SWIR), spectral wavelengths above 1,436 nm lacked importance
for the predictive model building (VIP scores < 1; Figure 5).

Photosynthetic Predictions and Their
Relationship With Radiation Use

Efficiency
The prediction accuracy for canopy Ay, at InB was better
(R*> = 0.3, p < 0.05) than predictions at A7 (R* = 0.15, p < 0.05;

Figure 6A). For averaged gs, our results showed significant
correlations between ground truth data and predictions both
at InB (R?> = 0.29, p < 0.05) and A7 (R?> = 0.65, p < 0.001;
Figure 6B). The positive correlations between RUE from canopy
closure to GS41 (RUE_E40InB) with predicted canopy Ay from
InB (R? = 0.22, p < 0.05) and A7 (R® = 0.35, p < 0.001) were
statistically significant. RUE from InB to A7 only correlated
marginally significant with the predictions of canopy Ay, at A7
(R? = 0.13, p < 0.1). No significant correlations were found for
RUE vegetative, and this could be due to the use of Ay rates
from the middle and bottom of the canopy where light saturation
is less prevailing than in the top layer, but correlations between
RUE from grain filling and canopy A, A7 were found (R?=0.16,
p < 0.05). Finally, the correlations found between RUE of the
whole crop cycle (RUE_Total) and canopy Ay, predictions were
positive and the strongest of any growth stage (R? = 0.37, p < 0.01
for InB; and R? = 0.41, p < 0.001 for A7; Figure 7).

Predicted pooled gs at InB correlated significantly with RUE
from 40 days after emergence to InB (R? = 0.12, p < 0.05)
and RUE_Total (R* = 0.28, p < 0.05). For predictions at
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7.04, respectively; Meacham-Hensold et al., 2020). But they
were lower compared to reports in tropical trees (R* = 0.74,
RMSE = 2.85; Doughty et al., 2011) and wheat grown under
different salinity concentrations (R*> = 0.73, RMSE = 2.25;
El-Hendawy et al,, 2019). Including different layers of the canopy
in our models improved the accuracy compared to only
predicting the top layer (R?> = 0.11, RMSE = 4.96, Figure 1).
This makes the case of accounting for the variability associated
with leaf area, incident radiation levels, and N content in
the canopy, which affects light scattering in the canopy and
influences A, rates. Furthermore, our models include vegetative
and grain filling stages which allows the flexibility of predicting
photosynthesis throughout the growth cycle.

The variation of Ay, within canopy layers can be explained
by genetic variation of canopy architecture found in LAI and
SLA (Table 2), as light penetrating in areas of the canopy where
leaves are smaller (and usually erect) will cause differences in
light quality and quantity in the bottom layers of the canopy
where large amounts of diffuse radiation and decreased red:far
red and blue:red ratios compared to the top layers are found
(Burgess et al., 2021).

Stomatal conductance has been predicted previously only in
wheat (Silva-Perez et al., 2018; El-Hendawy et al., 2019; Furbank
et al,, 2021). In spring wheat elite and landrace cultivars were
grown in Northwest Mexico, and the prediction accuracies for gs
were the lowest for a set of traits studied (R? = 0.34, RMSE = 0.15)

and had the largest associated prediction error (Silva-Perez et al.,
2018). In salt-sensitive and tolerant genotypes El-Hendawy et al.
(2019) found very high associations between observations and
predictions of gs between genotypes, growing seasons, and salt
tolerance treatments (R? = 0.75). Furbank et al. (2021) tested
different methods to predict photosynthetic traits, and for gs,
they found a performance of R* = 0.42 in flag leaves using PLSR
modeling. In our study, gs predictions were weaker than Ag,y
predictions (R? = 0.36, RMSE = 0.14; Table 1), and assessing
this through the different layers of the canopy can help us to
understand why that is the case.

Our layer approach shows that there is a higher prediction
accuracy in the middle layer of the canopy compared to
the top and bottom layers, and this could be explained by
the environmental factors affecting gs, such as stomatal
responses to sunflecks at the top of the canopy, the temperature
and vapor pressure deficit differential within the canopy
layers, wind speed affecting the boundary layer especially
at the top, relative humidity, leaf water content, and
CO; depletion in sunny days. Hence, the lack of studies
predicting gs under field conditions and future studies should
consider the influence of the abovementioned environmental
factors when building predictive models, a combination
between PLSR and thermography, or the use of deep
learning methods (Supplementary Figure 1; Furbank et al,
2021).
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Chlorophyll content has been used as an important trait to
assess photosynthetic capacity, the ability of canopies to intercept
light, and the time wheat can maintain photosynthetically active
tissues during the crop cycle. SPAD measurements have become
one of the standard proxies to estimate chlorophyll content in
the field. Our predictions for SPAD values were lower than
the ones reported in a previous study measuring elite and
landrace bread wheat cultivars growing under yield potential
conditions in the same study site (R* = 0.63 vs R* = 0.82, in
flag leaves; Supplementary Figure 2; Silva-Perez et al., 2018;
Furbank et al., 2021). In general, the predictions of chlorophyll
content ranked very high in terms of accuracy (R?, RMSE) in
this study compared to other traits, a similar trend found for
tobacco (Meacham-Hensold et al., 2020) and tropical tree species
(Doughty et al., 2011).

Speeding Up Physiological Breeding

The use of HTP methods for physiological breeding has increased
in popularity, particularly the use of field spectroradiometers,
hyperspectral cameras mounted on UAVs, or modified IRGAs

that are deployed in glasshouses and field trials in conjunction
with commercial IRGAs. The use of these technologies can
reduce dramatically the measurement time, for example, for Ay,
measurements take ~15-25 min per leaf using a commercial
IRGA compared to 1 min when collecting leaf spectral data
(Heckmann et al.,, 2017). The use of HTP in this study allowed us
to screen ~50 plots for flag, second, and third leaves reflectance
in ~1 h compared to only 10 plots using two commercial IRGAs
during 6 h of field measurements in a day, thus increasing our
phenotyping capacity 30-fold. Coupling approaches like the one
used in our study based on hyperspectral data combined with
the modeling of performance physiological traits, such as biomass
and RUE (Robles-Zazueta et al., 2021), can boost the phenotyping
capacity in large breeding trials, increase our understanding
of the source-sink relationship, and help with the selection of
genotypes with higher biomass, RUE, and yield.

The relationship found between canopy assimilation
predictions and RUE observations could be used for screening
RUE in breeding programs and can be coupled with the previous
results from Robles-Zazueta et al. (2021). RUE could be screened
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relationships were found.

with up to 70% accuracy using vegetation indices, and the
predictions presented in this study could be used to screen lines
for extreme high and low RUE rates as the positive relationship
found between RUE and canopy assimilation predictions indicate
that the higher predicted values are we expect to screen genotypes
with higher RUE.

Furthermore, the next steps that should be taken are to
compare the prediction vs. ground truth data heritability to make
the case to incorporate these predictions in breeding programs
and define what is the minimum genotypic, environmental
variation, and sample size needed to build accurate models

of complex traits. Previous studies show an extreme range
variation with models built from 50 samples (Heckmann et al.,
2017) to as large as 2,478 data points (Serbin et al., 2019). It
seems that the degree of accuracy of each trait modeled with
hyperspectral reflectance increases when combining different
plant species rather than working with different genotypes of
the same crops (e.g., wheat or maize), and this could be the
result of the stress responses of diverse plant communities
compared to the responses of a variety of genotypes from the
same species growing in controlled environments (Grzybowski
et al., 2021) or building models with environmental conditions
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that might not be replicated the following year, thus affecting can predict desired traits in a range of growing environmental
prediction results. conditions for wheat, although in our work two field cycles

For these reasons, we suggest building the models with data  were not accurate, perhaps for the small number of lines studied
from multiple field cycles (at least two) to create models which ~ (Supplementary Figure 3) as opposed to three field cycles
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FIGURE 8 | Relationship between radiation use efficiency measured at different growth periods and predictions of stomatal conductance average throughout the
canopy estimated from the PLSR models. Black dots represent predictions from initiation of booting and red dots predictions from 7 days after anthesis. Data shown
are the observed vs predicted bilinear unbiased estimator (BLUEs) in 2 years of study (initiation of booting, n = 19) and 3 years of study (7 days after anthesis,

n = 30). Lines represent the linear regression when statistically significant relationships were found.

which were more accurate due to the addition of year by year
variability and a larger sample size (Figure 4). Additionally,
new technologies should be deployed in the field to allow
the assessment of hyperspectral reflectance in all plant organs
including ears (Vergara-Diaz et al., 2020), stems, and if possible,
all the different leaves within the canopy to have a better picture of

wheat physiological processes while assuring that the predictions
have relevance for breeders.

The importance of VIP scores relies on identifying the
wavelengths from the electromagnetic spectrum with higher
predictive power. In this study, three relevant areas of the
spectra were found to have greater importance to build
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the models for all the traits measured. Those peaks were
found at 350-369, 527-575, and 671-750 nm (Figure 5).
The first two areas are located in the visible region, which
is an area related to pigment content, such as anthocyanins,
carotenoids, xanthophylls, chlorophyll a and b, as well as
light interception traits, such as canopy greenness, LAI,
photosynthetic capacity (Aga, Amax), NPQ (Malenovsky
et al, 2009; Gamon et al, 2019), and light use efficiency
(LUE; Blackburn, 2007). The third peak was found in the
region known as “red edge,” which is related to canopy
greenness, chlorophyll content, chlorophyll fluorescence,
and solar-induced fluorescence (SIF), which has gained
recent attention for its potential use as a proxy to measure
photosynthesis in crops (Pinto et al., 2020). With our VIP
scores, models for functional traits could be made to simplify
data management by only using the wavelengths with greater
predictive ability.

CONCLUDING REMARKS

This is the first study where physiological traits in the top,
middle, and bottom layers of wheat canopies were predicted by
building models with hyperspectral data using PLSR. We showed
that integrating measurements from the different canopy layers
improved the accuracy of the models in most traits studied. These
models can be used to study the variation caused by different
environmental conditions within the canopy and the effect of
phenology. Our models were built using an extensive dataset
from three field campaigns, which provides them robustness,
enabling their application in future field trials. Furthermore, this
modeling approach delivered fair estimations of Ay and gs that
can be incorporated in breeding pipelines. Using hyperspectral
data will allow the alleviation of the phenotyping bottleneck, and
if this approach is coupled to faster phenotyping platforms the
probabilities to screen genotypes for higher photosynthesis and
RUE will increase.
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Supplementary Figure 1 | Observations of Agar and gs compared to the
predictions from the models developed in Furbank et al. (2021). Measurements
from flag leaves were compared to predictions made with flag leaf reflectance from
the vegetative and grain-filling periods. The modeling was done using the web tool
Wheat Physiology Predictor (https://plantpredict.shinyapps.io/PredictionShiny/).
We selected the different methods available in the tool to compare the prediction
ability. Methods included single task convolutional neural network (black dots),
multi-task convolutional neural network (red dots), partial least square regression
(blue dots), and an ensemble of the three models (green dots). Lines represent the
linear regression when relationships between ground truth data and predictions
were statistically significant.

Supplementary Figure 2 | Observations of LMA and SPAD compared to the
predictions from the models developed in Furbank et al. (2021). Measurements
from flag leaves were compared to predictions made with flag leaf reflectance from
the vegetative and grain-filling periods. The modeling was done using the web tool
Wheat Physiology Predictor (https://plantpredict.shinyapps.io/PredictionShiny/).
We selected the different methods available in the tool to compare the prediction
ability. Methods included single task convolutional neural network (black dots),
multi-task convolutional neural network (red dots), partial least square regression
(blue dots), and an ensemble of the three models (green dots). Lines represent the
linear regression when relationships between ground truth data and predictions
were statistically significant.

Supplementary Figure 3 | Predictions with models built with a dataset from Y1
and Y2 to estimate data from Y3 of Asa: (A) and gs (B) by separating each layer of
the canopy (top panels) and predictions of Asgt (C) and gs (D) combining all the
layers of the canopy (black squares). Black dots: top of the canopy, blue dots:
middle of the canopy, gray dots: bottom of the canopy. The lines represent the
linear regression between predictions and ground truth data.
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