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With the widespread use of high-throughput phenotyping systems, growth process data
are expected to become more easily available. By applying genomic prediction to growth
data, it will be possible to predict the growth of untested genotypes. Predicting the
growth process will be useful for crop breeding, as variability in the growth process has
a significant impact on the management of plant cultivation. However, the integration
of growth modeling and genomic prediction has yet to be studied in depth. In this
study, we implemented new prediction models to propose a novel growth prediction
scheme. Phenotype data of 198 soybean germplasm genotypes were acquired for 3
years in experimental fields in Tottori, Japan. The longitudinal changes in the green
fractions were measured using UAV remote sensing. Then, a dynamic model was fitted
to the green fraction to extract the dynamic characteristics of the green fraction as five
parameters. Using the estimated growth parameters, we developed models for genomic
prediction of the growth process and tested whether the inclusion of the dynamic model
contributed to better prediction of growth. Our proposed models consist of two steps:
first, predicting the parameters of the dynamics model with genomic prediction, and
then substituting the predicted values for the parameters of the dynamics model. By
evaluating the heritability of the growth parameters, the dynamic model was able to
effectively extract genetic diversity in the growth characteristics of the green fraction.
In addition, the proposed prediction model showed higher prediction accuracy than
conventional genomic prediction models, especially when the future growth of the test
population is a prediction target given the observed values in the first half of growth as
training data. This indicates that our model was able to successfully combine information
from the early growth period with phenotypic data from the training population for
prediction. This prediction method could be applied to selection at an early growth stage
in crop breeding, and could reduce the cost and time of field trials.

Keywords: soybean, unmanned aerial vehicle, remote sensing, drought, green fraction, dynamics model, genomic
prediction, genomic selection
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INTRODUCTION

Genetic mechanisms of growth processes have become a crucial
topic in plant breeding. The genetic dissection of the formation
process of target traits of breeding such as yield quantity and
quality will provide profound insights into its mechanism,
which will lead to efficient selection of useful genotypes and
rapid genetic improvement. This understanding is important in
genomic selection (GS), where breeders skip field trials and select
promising candidates based on the predicted breeding value
provided by genomic prediction (GP) (Meuwissen et al., 2001).
Most GP studies on crops have focused on traits at harvest,
such as yield and quality (Krishnappa et al., 2021). If GP can
predict genetic variation during the growth process, breeders
can accurately determine the behavior of the genotypes obtained
by GP and select the appropriate candidates. Further, growth
prediction from the early period is likely to reduce the cost of
field trials by shortening the period of observation.

However, the measurements required to derive data of
growth trajectory are cost and labor intensive, representing
a major bottleneck for genetic dissection, which requires
the characterization of many genotypes. Due to the rapid
development of sensing technologies in recent years, high-
throughput phenotyping has become available for plant breeding,
and the measurement of growth traits is becoming more practical.
An accurate and detailed acquisition of growth processes through
high-throughput measurements is expected to lead to improved
genetic gains in plant breeding (Furbank and Tester, 2011;
Cabrera-Bosquet et al, 2012; Araus and Cairns, 2014). For
example, an automated phenotyping platform for the monitoring
of three-dimensional plant growth in a greenhouse has enabled
the genetic dissection of growth processes using a dynamic
model (Campbell et al, 2018). In a field experiment, high-
throughput phenotyping using unmanned aerial vehicles (UAVs)
(Yang et al, 2017) and tractors (White et al, 2012) was
used to measure plant growth. Among growth traits, the leaf
area index (LAI) is often investigated because it is accessible
from high-throughput phenotyping (Verger et al., 2014; Liu
et al.,, 2017) while being sensitive to the environment, directly
determining amount of light absorption, and thus affecting
biomass production and yield. Until recently, however, these
techniques were mainly used for crop management such as
estimation of canopy state variables, soil properties and yield (Jin
et al., 2018), and their applications to genetic dissection remain
limited (Blancon et al., 2019).

Several methods have been proposed for the analysis of
plant growth. One commonly used method involves fitting a
growth model, such as Gompertz (Winsor, 1932) and logistic
(Nelder, 1961), to the data and using the model parameters to
quantify the dynamic pattern. This method can be applied to
various types of dynamic measurements such as stem diameter
of trees (Wu et al., 2004) and soybean canopy cover and height
(Borra-Serrano et al., 2020). Several methods of quantitative
genetics, such as quantitative trait loci analysis (Ma et al,
2002; Wu et al, 2002) and genome-wide association studies
(Das et al, 2011; Crispim et al., 2015), have been applied to
discover possible associations with growth model parameters.

Growth models have also been used as a flexible tool to analyze
various factors, such as the effect of selection in breeding (Piles
et al., 2003) and the relationship among traits (Onogi et al.,
2019). However, its application to GP has not been discussed in
previous studies.

In this study, a method integrating a model of growth
dynamics and GP was proposed and applied to investigate the
growth of soybeans. We focused on the green fraction (GF) to
model its dynamics. GF is defined as the fraction of green pixels
in an image taken from the sky. This trait is a proxy for LAI
and can be easily measured from UAV observations. The GF
dynamics of soybean germplasm accessions were described using
the parameters of a model consisting of logistic and exponential
curves. Genetic variations in GF dynamics were quantified by
decomposing the model parameters into genetic and residual
effects using mixed models. Finally, the GP model is applied to
predict the parameters of the GF dynamics model under a range
of scenarios to illustrate the potential of the proposed method.
A similar experiment was conducted in an earlier paper in which
UAV-RS data was used as secondary traits to predict biomass
(Toda etal., 2021a), while this study developed prediction models
of growth curve itself.

MATERIALS AND METHODS
Field Trials

Soybean accessions registered in the National Agriculture and
Food Research Organization Genebank' were used. A total of
198 accessions, consisted of 96 Japanese accessions and 96 world
accessions from mini core collection (Kaga et al.,, 2012) and 6
additional accessions. From 2017 to 2019, the field trial was
conducted in an experimental field with sandy soil at the Arid
Land Research Center, Tottori University (35°32' N lat, 134°12
E long, 14 m above sea level) (Supplementary Figure 1). A total
of 198 accessions between 2018 and 2019 were used, with 186 out
of 198 accessions used in 2017. Each plot consisted of four plants.
The distances between two rows, two plots, and two individuals
were 50, 80, and 20 cm, respectively (Figure 1D). Sowing was
performed at the beginning of July, followed by thinning after 2
weeks (Supplementary Table 1). Fertilizer (15, 6.0, 20, 11, and
7.0 gm~2 of N, P, K, Mg, and Ca, respectively) was applied to the
field before sowing.

Two watering treatment levels, control (C) and drought
(D), were used to evaluate the genetic variations in the
responses to water stress. White mulching sheets (Tyvek,
Dupond, United States) were laid to prevent rainwater infiltration
(Figure 1), and pipes were installed under the sheets to irrigate
the field. Irrigation with irrigation rate 8.1 mm/h was applied for
daily for 5 h (7:00-9:00, 12:00-14:00, 16:00-17:00), starting the
day after the thinning in treatment C, while no water was brought
in treatment D. In the following, an abbreviation for denoting a
specific combination of the level of the treatment and the year
of the experiment is used; for example, treatment C in 2017 is
abbreviated to “2017-C.”

'https://www.gene.affrc.go.jp/index_en.php
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FIGURE 1 | The field experiment. (A) An ortho-mosaic image of the field, obtained on August 25, 2018. The ortho-mosaic images were created for each treatment.
(B,C) Ground level images of treatments C and D. (D) Planting pattern of plots made of 2 rows of 4 plants (green dots) and separated by 80 cm.
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Remote Sensing and Image Analysis

UAV flights started after thinning and were performed 16-35
times during the cultivation period. A consumer drone (D]I
Phantom 4 Advanced, China) was used for image collection.
Images consisted of RGB layers and 3,648 x 4,864 pixels,
captured with an automated focus and white balance. The UAV
flew 12-14 m above the ground and captured images every
2 s with an autofocus function. A single UAV flight took
approximately 15 min and collected 500-600 images, which was
repeated twice to cover the entire field.

Ortho-mosaic images were constructed using Pix4Dmapper
(Pix4D, Switzerland). The images of individual plots were
then segmented from the ortho-mosaic image based on the
geolocation of their corners. The canopy regions of the images
of the individual plots were segmented based on GRVI and hue
values (GRVI < 0.05, 20 < Hue < 90). Finally, the GF of each plot
was estimated as the ratio of the green pixels to the total number
of pixels in the plot. The image analysis process was implemented
in Python 3.7% and library opencv (ver.4.1.0) and gdal (ver.3.2.2).
For data in 2019, a similar procedure was used by Hiphen Inc.’
The analysis protocol was the same as previous research (Verger
et al., 2014; Madec et al., 2017).

Zhttps://www.python.org
3https://www.hiphen-plant.com

Green Fraction Dynamics Modeling

The GF derived from the UAV on day d day, GF;, was
first converted into the corresponding leaf area index (LAIy),
following (Soltani and Sinclair, 2012) the exponential model:

GFy = 1 —exp (—kLAly) (1)

where k = 0.5, and is the extinction coefficient commonly used for
soybean. The model proposed by Koetz et al. (2005) to describe
the dynamics of LAI was fitted to the time series of GF to estimate
the growth pattern of each plot with five parameters (Figure 2):

1
1 + exp (—rg (Ta—T,

LAI; = LALmp { )) —exp (rs (Ty — Ts))]

)

The first term in the parenthesis represents logistic growth,
and the second term represents exponential senescence, where
T, is a growing degree day on day d. The growing degree day
is a typical development scale corresponding to the cumulative
daily mean temperature from sowing above the base temperature
set to 8°C (Soltani and Sinclair, 2012). LAl is the maximum
value of the LAI reached, r, is the maximum LAI growth rate,
rs is the senescence rate, Ty is the growing degree day when
the LAI growth rate is maximum, and T; is the growing degree
day when LAI becomes zero. The five parameters, LAlmp,
rg» 15, Tg, and Ts, were estimated for each plot. However,
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FIGURE 2 | (A) An example of LAl dynamics described with the model (Equation 2)
(B,C) GF dynamics of the genotype “Enrei,” with the model fitted to the data. Each
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FIGURE 3 | Cross-validation schemes and prediction models. (A) Cross-validation schemes (CV1, CV2, and CV3). Training and test data in cross-validation are
expressed as blue and red cells, respectively. (B) Structures of prediction models (GP, TGP, and TGPG). Structures of the other prediction models with multivariate
GP (MGP, TMGP, TMGPG) can be understood by replacing GPs in the figure to MGPs.

fitting the dynamics model separately for each plot was difficult
because the GF in the drought treatment (D) was so small.
Many of the GF growth data from the treatment D contained
large noise, making it difficult to estimate the parameters, from
data of each plot alone, especially the inflection point of the
growth Tg. Therefore, the estimation was conducted in two
steps:

(1) First parameter estimates.

In this step, all of the parameters except LAl,mp were assumed
to be genotype dependent and treatment independent, that is,
parameters of each plot were the same for treatments C and D
if their genotypes were the same. The optimal values of Ty and
T, were found with a grid search in the range 300 < T, < 1,200
and 1,400 < T < 3,000 on seven points evenly distributed in
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the range. At the same time, the optimal values of the other
parameters were estimated using the Nelder-Mead method. The
cost function to be minimized in the Nelder-Mead method was
computed as follows:

A 2
Zz (}’i,d iyi,d) , 3)
d i Yd

where y; 4 is the GF of plot i on day d, J; 4 is the estimated value
of GF with the dynamics model, and y, is the mean value of the
GF on day d. The normalization by ¥, in Equation 3 accounts
for the measurement noise, which is roughly proportional
to the mean value.

(2) Fine tuning the parameter estimates.

The parameter estimation was conducted independently for
each plot. The optimal values obtained in the previous step for T,
and T, were the center of the grid search with a narrower range
(Tg-200 < Ty < Tg + 200 and Ts-400 < T < Te+ 400). The
other parameters were estimated using the Nelder-Mead method,
using the estimated values in Step 1 as the initial values.

Estimation of Genotypic Values

Genotypic values of the GF and LAI dynamic parameters were
estimated for use in the GP. The following mixed model was fitted
for each combination of a trait (GF or LAI dynamics parameter)
and a treatment (C or D):

y=ul+1g+ Ws +e (4)

where y is a vector of the phenotypic values; x is the mean;
B is a vector of block effects representing differences between
replications; s is a vector of genotypic values that follows N(s | 0,
0421); o2 is the genotypic variance; e is a vector of residuals that
follows N(e | 0, 0.21); 0,2 is the residual variance; 1 is a vector in
which all the elements are one; I is an identity matrix; and L and
W are design matrices. The genotypic value (g) was calculated as
follows:

g=ul+s (5)

The R package Ime4 (ver. 1.1-20) was used to solve Equation 4.
For the GF, the genotypic value estimation was applied separately
for each flight date.

Genomic Relationship Matrix and
Genetic Analysis

The whole-genome sequencing data of all 198 accessions were
available and used to estimate the genomic relationship matrix
(Kajiya-Kanegae et al, 2021). Only the biallelic sites in all
accessions with a minor allele frequency (MAF) > 0.025,
missing rate < 0.05, and linkage disequilibrium < 0.95
were extracted, and the imputation of missing genotypes was
applied. Genotyping data identified 425,858 SNPs. Genotypes for
individual alleles were represented as -1 (homozygous for the
reference allele), 1 (homozygous for the alternative allele), or
0 (heterozygous for the reference and alternative alleles). The
genomic relationship matrix G was estimated as G = XX' / ¢,
where X is an #n x m scaled marker genotype matrix (# and m

are the numbers of lines and markers, respectively), and c is the
normalization constant (Endelman and Jannink, 2012). Genetic
heritability was estimated for all traits using the genomic best
linear unbiased prediction (G-BLUP) model:

g=ml+Zu+e (6)

where g is a vector of genotypic values estimated using Equations
4 and 5, m is the mean, u is a vector of random genetic effects
that follows N(u | 0, 0,%G), ¢ is a vector of residuals that follows
N(e | 0, 0:2D), 0,2 and 0,2 are the genetic and residual variances,
respectively, and Z is a design matrix. The R package rrBLUP
(ver. 4.6) (Endelman, 2011) was used to solve Equation 6. After
solving the mixed model, the genomic heritability was estimated
as h? = 0,2/(0, 2 + 052).

Prediction of Green Fraction Dynamics

We investigated three cross-validation schemes for the four
different prediction models. The cross-validation schemes and
prediction models are detailed as follows: The correlation
coefficient between the genotypic values (g) and their predicted
values (u) of the GF was used to evaluate the prediction accuracy.

Cross-Validation Schemes
Cross-validation was repeated three times for the combination of
a cross-validation scheme and a prediction model.

(1) Cross-validation of genotypes (CV1).

CV1 corresponded to the prediction of LAI dynamics
for untested genotypes. Data from a subset of genotypes in
any treatment or year were excluded from the training data
(Figure 3A). The prediction model built using the training
dataset was evaluated for the left-out genotypes. Ten-fold cross-
validation was used to randomly select 19-20 left-out genotypes.

(2) Cross-Validation over combination of genotype and
environment (CV2).

The combination of a treatment and a year was considered
as an environment: there were a total of six environments
(two treatments x 3 years). Here, the predicted LAI dynamics
were evaluated for genotypes and environments left out from
the training dataset. A 10-fold cross-validation of genotypes
and leave-one-environment-out cross-validation were applied
simultaneously to get rid of data of test genotypes in one
environment from training dataset (Figure 3A).

(3)  Cross-validation with a  focus on the
growth period (CV3).

The growth cycle was split into early and late growth, with
an equal number of observations for the two periods. CV3
was similar to CV2, but data of early growth period of test
genotypes in a test environment was included in training data,
and prediction of the LAI dynamics were evaluated over the late
period (Figure 3A).

late

Prediction Models in Cross-Validation of Genotypes
and Cross-Validation Over Combination of Genotype
and Environment

In CV1 and CV2, four prediction models were compared:
genomic prediction (GP), two-step GP (TGP), multivariate GP
(MGP), and two-step multivariate GP (TMGP).
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GP is the most standard model, expressed as shown in
Equation 6, and applied to the GF on each day in the training data
(Figure 3B). Then, the random genetic values g of the left-out
genotypes were used as the predicted values.

The TGP consisted of two steps (Figure 3B). First, the
same model as GP was applied to the LAI dynamics model
parameters. Then, the GFs of the left-out genotypes on
each day were calculated using the predicted parameters
(Equations 1 and 2).

MGP is an extension of the GP, which simultaneously predicts
several traits (Calus and Veerkamp, 2011; Jia and Jannink, 2012).
The model is expected to enhance the accuracy of genomic
prediction via genetic correlations among traits. This model can
be expressed as follows:

g1 m;1 Z1 -0 u; €1

: : RN )
8 my1 07/ \y g

where J is the number of variates in the model, g ), and
g; are vectors of genotypic values, random genetic effects, and
residuals of variate j, respectively, and m; is the mean of
variate j. Assumptions for the random effects were included,
in which uy = (w7, .., wh)T follows N(uy | 0, K®
G) and gy = (1%, ..., g )T follows N(gy | 0, R®I).
Here, K is a genomic variance-covariance matrix between
the variates, and R is the residual variance-covariance matrix
between the variates. The R package MTM (ver. 1.0.0) was
used to solve Equation 7 based on the Markov chain Monte
Carlo (MCMC) method.

TMGP consisted of two steps, that is, MGP of the LAI
dynamics model parameters and the calculation of the GF using
the predicted parameters.

MGP and TMGP were expected to improve the prediction
accuracy compared to GP by exploiting phenotypic data from
environments included only in the training dataset. However,
since the GF was measured repeatedly in each environment, it
was difficult to include all the phenotype data (152 measurements
in total by adding up observation dates in all the environments).
Thus, a strategy was applied where the training of prediction
models was repeated for each observation date, and ten additional
variates were selected from the whole data to support the
prediction every time. In other words, the eleven variates
included each time consisted of one target variate and ten
supporting variates. The criterion for selecting supporting
variates is based on heritability and correlation with the target
variate. These two factors are essential for improving the
prediction accuracy in MGP (Calus and Veerkamp, 2011) Top-
10 observations of the following criterion were selected as
supporting variables:

s(h?) + s(rl) ®)

where s(.) is a scaling function that makes the mean and
variance of an input vector zero and one, respectively; h?
is the heritability; and r is the correlation coefficient with a
target variate.

The Prediction Models in Cross-Validation With a
Focus on the Late Growth Period

As in the other cross-validations, the performances of the four
prediction models were compared in CV3. GP was the same
as in CV2 because it only uses the data of the measurement
day to be predicted for training. MGP was modified to better
exploit the first half of the growth period used to train the model.
Seven out of the ten supporting variates were selected using the
selection criterion from Equation 8, the remaining three variates
corresponded to the GF values for the latest three flights of
the first growth period. The other two models with two-step
structures, TGP and TMGP, were also modified to better exploit
the training data for predicting the GF dynamics during the late
growth period. They were called TGPG (TGP for growth) and
TMGPG (TMGP for growth), respectively.

The TGPG included three steps (Figure 3B). The first two
steps were the same as those of the TGP, where the LAI dynamics
model parameters were predicted without using the data from
the first half of the growth period. However, for TGPG, the
distributions of the MCMC values of the LAI dynamics model
parameters were used instead of the average value of the samples
used in the TGP. As a result, 60,000 samples of the predicted
GF dynamics were obtained for each genotype corresponding
to the prior distribution when no GF measurements on the
genotype were available. Then, the GF data from the first half
of the growth period were exploited using the approximate
Bayesian computation (ABC) method, and the 60 GF dynamics
that minimize the Euclidian distance between the predicted GF
dynamics and the actual GF observations were selected. Lastly,
the mean values of the 60 samples were used as the predicted
values. The modifications on TMGP to obtain TMGPG were the
same as those applied to TPG to obtain TGPG.

RESULTS

Dynamics of Green Fraction Derived

From Unmanned Aerial Vehicles

The UAV observations transformed into GF values show typical
dynamics (growth, saturation, and senescence) of the several
genotypes and environments investigated (Figure 4), showing
large variations in the growth patterns. It is worth noting that
the period covered by the fights was longer in 2017, with up
to 80 days compared to 2018 and 2019, where the flights were
stopped after 60 days. For each plot, the GF dynamics were
relatively smooth, indicating a good temporal consistency of
the GF values derived from the UAV observations. The ranking
between genotypes is also generally consistent across growth
development, which would indicate good chances to predict the
late period from observations covering the early growth period.
Drought treatment (D) always showed lower GF values than the
control (C) treatment. However, the water stress experienced
by treatment D varied across years, with 2018 being the most
severe, and 2017 the mildest. The control treatment also showed
differences between the 3 years: 2017 showed the best growth
conditions, while 2019 showed the worst ones.
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FIGURE 4 | Dynamics of the GF as observed from the UAV. Treatments C and D are shown with blue and red lines, respectively, each line corresponding to a plot.
The number of days after sowing is used as the x-axis. Small vertical bars on x-axis indicate dates of UAV-RS.

The genomic heritability estimated for each year and
treatment by fitting a mixed model to GF for each observation
day showed a decrease until 40-50 days after sowing, and then
increased with time (Figures 5A,B). However, some differences
between years were observed, with a higher heritability in the
early stages of 2018. The yearly patterns were also similar between
the control (C) and drought (D) treatments, while the heritability
in treatment C was systematically higher than that in treatment
D, except in 2017 for the late UAV flights.

Growth Parameter Estimation

The dynamics model fitted a wide range of GF growth patterns
in both treatments and all years (Figure 2). The root mean
squared errors (RMSE) of growth model fitting of GF on 25
days after sowing were 0.0060 and 0.0057 in treatment C and D,
respectively. RMSE reached 0.022 and 0.016 in two treatments
on 50 days after sowing, because growth of canopy increased the
measurement noise of GF.

The distribution of the estimated growth parameters varied
among years and treatments (Figure 6). Fundamentally, the
parameters related to period of growth (ry, Ty, and LAlymp)
showed a tendency wherein the values of the parameters became
smaller when the plants were subjected to drought stress. For
the parameters related to period of senescence (rs, Ts), the
results were not reliable due to the lack of observation of
senescence, except in 2017.

The genomic heritability of the growth parameters
(Figures 5C,D) varied among treatments and vyears. The
heritabilities of LAIzmp, T, and rg were relatively high, reaching
0.8 in the highest cases. The other two parameters, r; and
T, showed lower heritability, ranging between 0.1 and 0.5.
These parameters characterize the late development of the
canopy that was not well covered by UAV flights, except in
2017. This explains why heritability was highest in 2017.
Particularly, heritability in 2017-D exceeded 0.4 with all values.
On the other hand, heritability of all the parameters was lower
than 0.4 in 2018-D when summer heat stress was severe.

The heritability of the parameters of the model is generally
lower than that of the GF for each UAV flight (Figure 5),
except for LATLymp, which generally shows a higher heritability,
except in 2018.

Prediction of Growth Patterns

In CV1, the prediction accuracy of TGP and MGP was similar
to that of GP (Figure 7). In 2019-D, a significant improvement
in prediction accuracy in MGP (50.0% improvement in ratio
of correlation coeflicients of genotypic and predicted values)
compared with GP was observed, where the accuracy of GP was
very low in the latter half of the growth period (Supplementary
Figure 2). The accuracy of MGP was higher (12.6%) than that
of TGP. The accuracy of TMGP differed among environments; it
was lower than that of GP when predicting the GF in 2018, while
it was higher than the accuracy of MGP when predicting the GF
in the latter half of the growth period in 2019.

The predicted values of GP and TGP in CV2 were equal to
those in CV1 because they did not utilize data in environments
other than their targets. Thus, for CV2, the focus will be on
the accuracy of the MGP and TMGP. The accuracy of MGP
was higher in CV2 than in CV1 (11.6%) and was significantly
higher than that of TGP (25.6%) (Figure 7 and Supplementary
Figure 3). The accuracy of TMGP was lower in CV2 than in CV1
in 2018, while it was higher in CV2 than in CV1 in the other years.
Comparing MGP and TMGP, the accuracy of MGP was higher
in 2018 and the former half of the growth period, while that of
TMGP was higher in other environments.

In CV3, the prediction accuracy of TGPG and TMGPG
was higher than that of the other models (24.5 and 27.1%,
compared with MGP) in all the environments (Figure 7) over the
entire growth period (Supplementary Figure 4). The correlation
coeflicients between the predicted values of TMGPG and the
genotypic values were higher than 0.6 in most cases. The accuracy
of MGP was higher than that of GP (71.7%), but lower than that
of TGPG and TMGPG. As in CV2, the predicted values with GP
and TGP in CV3 were the same as in CV1.

Frontiers in Plant Science | www.frontiersin.org

March 2022 | Volume 13 | Article 828864


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Toda et al.

Soybean Growth Prediction Using UAV

A C
o
2 @ 2017
@ 2018
@ 2019
©
&
—~
@)
~ ©
_‘és (<}
=
2 <]
E o
I
N
[}
—— 2017
—&— 2018
o —— 2019
S T T T T T T T T T T T T
20 30 40 50 60 70 80 LAlamp rq I's Ty Ts
Days after sowing
B D
o]
©
&
P——
o
T @
_‘és (<}
=
2 <]
3 o
L
N
[}
—e— 2017
—&— 2018
o —— 2019
© T T T T T T T T T
20 30 40 50 60 70 80 LAlamp rq s
Days after sowing
FIGURE 5 | (A,B) Heritability of the GF. Results of treatments C and D are shown in (A,B), respectively. Red, blue, and green lines indicate the values in 2017, 2018,
and 2019, respectively. (C,D) Heritability of the LAl dynamics model parameters. Results of treatments C and D are shown in (C,D), respectively.

DISCUSSION

Unmanned Aerial Vehicles-RS as a Tool

to Evaluate Growth Patterns

This study showed that the UAV measurements of GF could
be used to assess the genetic diversity of soybean growth
patterns. A U-shaped longitudinal pattern was observed in
the heritability of GF in all environments (Figures 5A,B).
The U-shaped heritability patterns can be explained in three
steps. In the early stage of growth, the GF seemed to be
determined by factors regarding initial growth speed, such as
radiation use efficiency, which results in high heritability of the
GF. At approximately 25 days after sowing, several additional
factors, such as growth phenology and plant structure, related
to phenological development started to affect the GE which
decreased the heritability. Then, the saturation of the GF

occurred around 45-60 days after sowing. During this period,
confounding factors related to the differences in phenological
development weakened, leading to increased heritability.

When we evaluate crop dynamics using remote sensing
techniques, the LAI is often used as the main trait of interest.
To apply remote sensing techniques to breeding populations,
differences in plant styles should be carefully considered when
deriving LAI from the images (Blancon et al., 2019). In this study,
we focused on GF rather than LAI as the target trait to model
its dynamics, due to the lack of data on plant style. Applying our
method to LAI would offer the advantage of being closer to crop
growth mechanisms, such as photosynthesis. Nevertheless, this
study has shown that GF is a useful trait to describe the growth
of soybean germplasm. In genomic prediction, the inclusion of
canopy area, which is proportional to GE, has been reported to
improve the prediction of biomass in soybean (Toda et al., 2021a).
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Thus, GF can be considered a useful index of genetic variation
in plant growth.

Fitting a Dynamics Model

The dynamics model was flexible enough to represent various
growth patterns in different environments (Figure 2). By fitting
the model, the GF time series is represented by five parameters.
The distribution of growth parameters reflected the effects of
drought stress on growth (Figure 6). The decrease in r, and T,
in treatment D indicates that the speed and duration of growth
were strongly suppressed under drought stress. As a result, the
maximum value of the plant canopy was significantly reduced,
which was expressed in the reduction of LAIymp.

Genetic analysis of the parameters showed that the heritability
of LAIymp was the highest (Figures 5C,D). This result is related
to the high heritability of GF in the later stages of growth. T,
which describes the stage-shift timing of the GF, also showed high
heritability in 2017-C and 2019-D.

For the senescence stage, the heritability was low for T, and rs,
except for 2017-D. Due to the long cultivation period in 2017 and
early senescence in treatment D, model fitting of the senescence
part was successful in that environment. The heritability of r,
was higher than T;, which means that the change in GF in the
senescence stage was mainly determined by its speed, r;, rather
than the timing of senescence, T;. The senescence pattern could
be evaluated more precisely in 2017 and 2018 by extending the
observation period.

Several useful results were obtained by applying the dynamics
model, and some problems were found to be improved. Because
of the high heritability of GF in the early stages, the growth
speed, 7,, was expected to be mainly determined by genetic
factors. However, the heritability of r, was low, except in 2017-
D. The use of other dynamic models, such as the Gompertz
(Winsor, 1932) curve, may improve the goodness of fit of a
growth curve to the GF in the early growth stages. It was reported
that the dynamics model that considers leaf appearance could
explain the dynamics of green LAI (GLAI) (Blancon et al., 2019).
Such structural models may also be candidates for alternative
dynamic models.

Another possible improvement of the model is the inclusion
of other environmental factors, such as soil moisture and
drought stress. In the dynamics model, the effect of temperature
on growth stages was considered. However, the inclusion of
other factors may allow for improved fitting and simultaneous

parameter estimation of multiple environments. For example,
the low heritability in 2018 of the growth parameters was due
to severe heat stress in the summer of 2018, which made the
growth slower than usual years. As a result, the sigmoid pattern
in growth was truncated at the end of the cultivation period
(Figure 4). Other environmental factors will allow simultaneous
parameter estimation in other environments, leading to stability
in the estimated parameters.

Prediction of Growth Curves

In CV1, the accuracy was close between GP and TGP (Figure 7).
This result suggests that the dynamics model used in TGP could
extract sufficient genetic variations from phenotypic variations
in the GF dynamics pattern to achieve the same predictive
accuracy as the GP.

Models with multivariate GP yielded better accuracy than
those with univariate GP; the accuracies of MGP and TMGP
were higher than those of GP and TGP, respectively. High
correlations among variates, a typical property of dynamic data,
suggest that multivariate GP improves the prediction accuracy
because MTG and TMGP can leverage the among-characteristics
correlation. In the following, we focus on the comparison
between MGP and TMGP.

In 2018, the accuracy of TMGP was lower than that of MGP
in CV1 and CV2 (Figure 7) because of the low heritability of
the LAI dynamics model parameters. However, the accuracy of
TMGP was higher than that of MGP in 2019 for CV2. TMGP
was better than MGP because of the higher heritability of growth
parameters than GF in 2018. The extraction of genetic variance in
growth patterns in 2019 was successful as LAl in 2019-C and
T, in 2019-D, leading to improved prediction accuracy.

In CV3, the prediction accuracies of TGPG and TMGPG
outperformed the other models (Figure 7). The higher prediction
accuracy compared to MGP indicates that the former growth
period’s data could be effectively included in the model by
specifying the growth curve’s shape through the dynamics model.
In most cases, the correlation coefficients between the predicted
values of TMGPG and the genotypic values exceeded 0.6,
indicating that TMGPG is robust to changes in the environment.
The similar prediction accuracy of MGP and TMGPG in 2017-
D may be due to the lack of change in the GF in the second
half of this environment’s growth period. This approach to future
prediction through dynamic models has potential applications
for selection in early growth stages in crop breeding.
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In this study, the dynamics model and GP/MGP were used
separately in TGP/TMGP, but they could be integrated into one
hierarchical model. Several reports have shown the effectiveness
of hierarchical models in the analysis of dynamic traits (Onogi
et al., 2019), quantitative trait loci analysis (Ma et al., 2002),
and genome-wide association studies (Das et al., 2011; Crispim
et al., 2015). The joint analysis is expected to make parameter
estimation more robust. In this study, although two steps are
required to estimate the growth parameters, joint estimation may
simplify the estimation process further.

Growth Analysis on Remote Sensing

Data for Plant Breeding

Applying the dynamics model to crops monitored with UAVs
allows us to capture the genetic variation in growth patterns.
The combination of the dynamics model and genetic analysis
was shown to be an efficient framework for analyzing our field
experiments. It was able to predict future GF dynamics from

observations covering only the early growth stages. This could
contribute to reducing the cost of the field trials. This study
suggests that data monitoring the experiment with UAVs and
analyzing them using dynamics models and mixed models will
benefit crop breeding.

Although this study applied the growth model that considers
both growth and senescence to soybean GF, characteristics of
growth curves vary depending on species, trait, or situation of
observation. For example, a logistic curve that consider only
growth was used for modeling stem diameter of forest tree
(Ma et al, 2002) and power function was used for modeling
leaf age of rice (Wu et al., 2002). Crop models that consider
physiological mechanisms such as photosynthesis may be applied
to consider effects of diverse environmental factors on dynamic
traits. Even in such cases, the proposed framework is flexible
enough to be applied. In particular, the future prediction of
growth curves (CV3) is a characteristic method of this framework
and is expected to be applied to various traits.
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A random regression model is also known as a regression
method of dynamic data with a mixed model structure, which
was used in the GP of dynamic traits (Sun et al., 2017; Campbell
et al,, 2018). The strength of random regression lies in its simple
formation, but it cannot incorporate the growth curve structure
like the dynamics model in exchange. Our prediction framework
attempts to improve the accuracy of future predictions by
considering the features of growth curves in the modeling.

In the near future, UAV-RS is expected to play an active
role in plant breeding and provide growth trajectory data from
multiple breeding programs. It will be possible for breeders and
researchers to focus on new genotypes to select and develop new
varieties suitable for the target environment. The integrated use
of dynamic models and GP will be a useful method to effectively
link growth process data with marker genotype data to improve
genetic gain for genomic selection.
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