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Transgene integration typically takes place in an easy-to-transform laboratory variety
before the transformation event is introgressed through backcrosses to elite cultivars. As
new traits are added to existing transgenic lines, site-specific integration can stack new
transgenes into a previously created transgenic locus. In planta site-specific integration
minimizes the number of segregating loci to assembile into a breeding line, but cannot
break genetic linkage between the transgenic locus and nearby undesirable traits. In
this study, we describe an additional feature of an in planta gene-stacking scheme,
in which the Cre (control of recombination) recombinase not only deletes transgenic
DNA no longer needed after transformation but also mediates recombination between
homologous or non-homologous chromosomes. Although the target site must first be
introgressed through conventional breeding, subsequent transgenes inserted into the
same locus would be able to use Cre-mediated translocation to expedite a linkage
drag-free introgression to field cultivars.

Keywords: gene stacking, transgene replacement, transgene translocation, GMO, recombinase, Cre

INTRODUCTION

Crop development via transgenesis is typically done by inserting DNA into an easily transformable
variety and then introgressing the transgene out to many different locale-specific cultivars. As new
traits are developed, it becomes a challenge of where to integrate new trait genes. If inserted into a
new locus, breeders will have more loci to reassemble back into a breeding line. Efforts to cluster
multiple transgenes at a single integration locus can be achieved through prior stacking of the many
genes in vitro into a single plant transformation construct (Goderis et al., 2002; Chen et al., 2006;
Shih et al,, 2016; Zhu et al., 2017; Collier et al., 2018). However, relying solely on this approach
means that further addition of transgenes would require combining new genes with previously
introduced transgenes into a larger transformation vector. Though this is not a technical limitation,
it could have legal ramifications. Previously introduced traits could then require a new round of de-
regulation for being a new transformation event. Adding more transgenes to an existing transgene
locus is possible via in planta site-specific integration through the use of site-specific nucleases
(Puchta et al., 1993; Wright et al., 2005; Fauser et al., 2012; Zhang et al., 2012; Dong and Ronald,
2021) or site-specific recombinases (Albert et al., 1995; Day et al., 2000; Li et al., 2009; Hou et al.,
2014; Nandy et al., 2015; Chen and Ow, 2017; Chen et al., 2019). This would insure co-introgression
to field cultivars without additional loci to impede downstream breeding.
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We had described an in planta gene-stacking system that
uses mycobacteriophage Bxbl integrase (recombinase) for site-
specific integration (Hou et al., 2014). In this system, a target
site is first created by the insertion of a first trait gene
linked to an attP (phage attachment) sequence that serves as
a “target site” (Figure 1A). New DNA is introduced through a
donor construct, such as a second trait gene plasmid that also
carries two complementary attB (bacterial attachment) sequences
(Figure 1B). The recombination of one plasmid-encoded attB
with the genomic attP places the incoming DNA precisely into
the genomic target (Figure 1C). Since the donor DNA can
carry two attB sites, two configurations are possible depending
on which attB site recombines. Figure 1C shows the preferred
configuration that can be screened by polymerase chain reaction
(PCR), and the attB not used in the first round of integration
can serve as a target site for the next round of integration by a
donor plasmid with two attP sites (not shown; refer to Hou et al.,
2014). In theory, this permits serial gene stacking by alternating
between the uses of attB and attP donor plasmids. Cre (control
of recombination) recombinase is then introduced to delete away
transgenic DNA flanked by lox (locus of x-over) sites that is no
longer needed after transformation (Figure 1E).

Of particular relevance is that the target construct has been
designed with a set of lox sites in the opposing orientations
(Figure 1A), in which they are retained after Cre-mediated
deletion regardless of the number of transgenes stacked into the
target site (Figure 1E). This pair of inverted lox sites can serve as
recombination substrates for Cre-mediated intra-chromosomal
inversion, as well as inter-chromosomal recombination. Prior
studies have shown that Cre is capable of causing recombination
between different chromosomes (Qin et al., 1994; Smith et al.,
1995; Koshinsky et al., 2000; Vergunst et al., 2000; Zong et al.,
2005; Titen et al., 2020). Inter-chromosomal recombination
would break genetic linkage that could potentially expedite
transgene introgression from a laboratory-transformed line to
field cultivars (Figures 1EG). In this study, we show that
inter-chromosomal recombination of lox sites can relocate a
transgene to a different chromosome, whether to the same
location of a homologous chromosome or to another location
in a non-homologous chromosome. Although the original
target construct must first be introgressed through conventional
breeding, subsequent transgenes appended to that locus would
be able to use site-specific translocation for linkage drag-free
introgression to field cultivars.

MATERIALS AND METHODS

Site-Specific Integration and Rice

Transformation

Biolistic-mediated site-specific integration of rice (Oryza sativa
cv. Zhonghua 11) target line TS131 (Figure 1A) using integrating
vector pZH201B has been described (Li et al., 2016) and greater
details are available including lines TS325 and TS537 (Figure 1A;
Li et al., submitted). Each of these three target lines has a full-
length T-DNA construct-expressing reporter gene gus (encoding
p-glucuronidase), with correct sequence recombination sites, and

is located at a non-gene coding DNA >2.9 kb and >0.8 kb
from nearest start and stop codons, respectively. Line TS*537*
was generated from TS537 through CRISPR/Cas9-mediated
mutagenesis (Ma et al., 2015) using oligonucleotides listed in
Supplementary Table 1. The primer pair was connected to
vector pYLCRISPR/CasPubi-B after annealing. Agrobacterium-
mediated transformation of rice calluses with a cre-expressing
construct was conducted as described (Li and Li, 2003). Other
genes shown in Figure 1A are hpt, gfp, and bar that encode,
respectively, hygromycin phosphotransferase, green fluorescence
protein, and bialaphos resistance enzyme.

Mutated PCR and Restriction

Endonuclease Digestion

Restriction endonuclease analysis was carried out to distinguish
between TS537 and TS*537*. However, because the CRISPR-
mediated changes in TS*537* did not destroy an existing
restriction site, CRS-PCR (created restriction site PCR) (Qiao
et al,, 2013; Wang et al,, 2016; Avanus and Altinel, 2017; Ding
etal,, 2017) and overlapping PCR were used to create a restriction
site for the TS537 PCR product, but not for the TS*537* PCR
product. Specific steps are outlined in Figure 2H as follows:
primers h + e, h + f, e + k, and f + k can only be amplified from
F1 + cre; one or two bases were changed near the 3’-end of the
oligonucleotide m or o, respectively (Supplementary Figure 1);
primers h + n and m + i created the overlapping PCR product h-
i, and similarly, primers j 4+ p and o + k created the overlapping
PCR product j-k. The product h-i or j-k would be cleaved by
Asel or Agel (NEB Beijing, China), respectively, if amplified from
TS537, but not from TS*537* (Figure 2H).

PCR and DNA Sequencing

DNA was isolated from ~100 mg of a 60-day-old rice leaf tissue
and ground in liquid nitrogen as described (Lu and Zheng,
1992). PCR was conducted under standard conditions using
1.1 x T3 super PCR mix (Tsingke Biotechnology, Beijing, China)
and KOD-FX High-Fidelity DNA Polymerase (TOYOBO, Osaka,
Japan) with primers listed in Supplementary Table 2. PCR
products were isolated by using HiPure Gel Pure DNA Mini Kit
(Magen, Guangzhou, China) and sequenced by Sangon Biotech
(Shanghai, China).

RESULTS AND DISCUSSION

Recombination Between

Non-homologous Chromosomes

We sought to test Cre recombinase-mediated recombination of
lox sites between chromosomes and whether the recombination
between sets of flanking inverted lox sites could translocate a
transgene to another chromosome. Target lines TS131, TS325,
and TS537 served as receptor lines, and each harbors a single copy
of the target construct (Figure 1A). TS131 is located in the short
arm of chromosome 2, TS325 and TS537 are both located in the
long arm of chromosome 1, and their chromosome orientation
is indicated by the direction of attP flanked by the relevant lox
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FIGURE 1 | Cre-mediated recombination between different target sites. (A) Rice target lines TS131, TS325, and TS537 structure. (B) Integrating vector pZH210B
was inserted into TS325 and TS537 to form TS325-1 and TS537-I, respectively (C). F1 hybrids from crosses (D) and expected structures from Cre-mediated deletion
of DNA flanked by directly oriented lox sites (E); inversion from recombination of oppositely oriented /ox sites not shown. Translocation of gfpo-containing segment to
another chromosome (F) and after inversion (G). Red italic letters, PCR primers; red lines, PCR products. (H-K) Chromosome location of target sites in TS131,
TS325, and TS537 with relevant lox sites and the direction of attP. Crosses with gfpo-stacked lines (i.e., 325-1 and 537-) leads to Cre-mediated reciprocal
translocation of the lox-flanked DNA. (L,M) PCR results from deletion and chromosome recombination in F1 + cre plants. Genes described in the Methods section
and were transcribed in direction of lettering, promoters, and terminators not shown. Recombination sites indicated in inset legend. DNA size is mentioned in kb.

sites (Figures 1H-K). From Bxbl-mediated integration of the
gfp-containing plasmid pZH210B (Figure 1B) into TS325 and
TS537 (Li et al., submitted), integrant lines TS325-I and TS537-1,
respectively, were generated to serve as donor lines (Figure 1C).

The F1 hybrid from an integrant and target line would
be expected to harbor two chromosomes with lox sites
that can recombine with each other if Cre is introduced
(Figure 1D). Cre-mediated intra-molecular recombination
of lox sites is expected to produce a resolved structure
(Figure 1E), while inter-chromosomal recombination can
generate various intermediates, including one final outcome
being the translocation of gfp to another chromosome in

either orientation (Figures 1EG). To test this possibility,
we conducted four pairs of crosses between homozygous
plants, namely, TS325-I" x TS131Q(Figure 1H), TS537-
10" x TS131Q(Figure 1I), TS325-16" x TS537Q(Figure 1J), and
TS537-16" x TS325Q(Figure 1K). The F1 seeds, hemizygous for
two different transgenic loci, were used to induce embryogenic
calluses. The cre gene was then transformed into these calluses
by Agrobacterium-mediated gene transfer.

After regeneration of F1 + cre plants from calluses, the
non-recombined structures were tested by PCR using primers
a + f and e + b (Figures 1E,L), whereas the translocation
of the gfp-containing fragment to a different chromosome was
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FIGURE 2 | Gene translocation from a target site to an allelic target site. (A) TS*537* structure mutated by CRISPR. (B) Structure of gfp-stacking line TS537-I.
(C) Structure of F1 hybrid from TS537-1 x TS*537*. (D) Resolved structure from Cre-mediated deletion; inversion not shown. (E) Structure after Cre-mediation
reciprocal translocation from recombination between lox sites (red dashed lines) from a TS537-1 x TS*637* cross (F). (G) CRISPR generated mutations in TS*5637*
(S2066, S2210, S4678, and S4851). Red letters, PCR primers; red lines, PCR products. (H) CRS-PCR and overlapping PCR to create Asel or Agel restriction site
for PCR products derived from TS537, but not from TS*537*. Blue * indicates mutation in PCR primer to form restriction site, red * indicates CRISPR mutations that
abolish restriction site. Expected fragment sizes (in kb) and data from Asel (I,J) or Agel (L,M) cleavage of CRS-PCR/overlapping PCR products of F1 + cre DNA.
Sequencing results of h—i fragment resistant to Asel (K) or Agel (N).

also detected by primers ¢ + f and e + d (Figures 1EL).
Note that the primers a, b, ¢, and d lie outside the target
construct and are, therefore, unique for each chromosome
location. Detection by location-specific primers ¢ + f and e + d,
however, could not distinguish between a double recombination
events in the same cell vs. separate recombination events in
different cells. Location-specific primers ¢ + d also failed to
amplify a contiguous fragment containing gfp that would be ~4.5,
~4.9, or ~4.3 kb from TS131, TS325, or TS537 chromosomes,

respectively, likely due to competing reactions of the smaller
~0.6, ~1.0, or ~0.4 kb fragment from the corresponding
WT chromosomes. In contrast, the reciprocal product from a
translocation, the replacement of the gfp-containing fragment
by an attP fragment, was only 0.8 kb larger than the WT
chromosome-derived product. Indeed, location-specific primers
a + b amplified the WT ~1 kb and a larger ~1.8 kb band
from the TS325-1 x TS131- and TS325-1 x TS537-derived F1
plants, and a ~1.2-kb product was detected along with the WT
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~0.4 kb product from the TS537-1 x TS131 and TS537-1 x TS325
F1 plants (Figure 1M). A contiguous fragment from location-
specific primers a + b indicated a double recombination event
from at least some cells.

Since Cre-mediated recombination could also invert lox-
flanked DNA, the attP could be in the opposite orientation in
the chromosome (Figure 1G). Using nested PCR of the location-
specific a-b PCR product, where primer g corresponds to within
the attP sequence (Figures 1E-G), both attP orientations were
found as amplified products were detected with primers a + g as
well as by primers g + b (Figure 1M).

Recombination Between Homologous

Chromosomes

To test for potential transgene cassette exchange between
homologous chromosomes, it was necessary to have sequence
differences in the flanking regions. Therefore, we used
CRISPR/Cas9 technology to mutate both sides of TS537 to
generate TS*537* (Figure 2A). Out of 96 transgenic plants,
43 had segregated away cas9, and 15 of those were sequenced
for PCR products from primers h + i and j + k (Figure 2G).
Three independent TS*537* lines were found with mutations on
both sides of the target construct and without heterozygosity,
which suggested the same mutations generated in both homolog
chromosomes or that the mutations were copied onto its
homologous chromosome. Four mutations were found at
chromosome 1 positions 35,912,066, 35,912,210, 35,914,678,
and 35,914,851, hereafter named sites S2066, S2210, S4678,
and S4851, respectively (Figure 2G). TS*537*#8 has mutations
at all four sites, whereas TS*537*#10 and TS*537*#12 lack
a mutation at S2066. These three lines (i.e., TS*537*#8,
TS*537*#10, and TS*537*#12) were crossed with homozygous
TS537-19 (Figure 2B) to generate F1 heterozygotes (Figure 2C).
Cre-lox intramolecular recombination is expected to produce
a resolved structure (Figure 2D), but inter-chromosomal
recombination can also generate various intermediates including
the translocation of gfp to homologous chromosome (Figures
2E,F). Embryogenic calluses of the F1 heterozygotes were
then transformed with a cre-expressing construct through
Agrobacterium infection.

To detect possible chromosome recombination, CRS-PCR and
overlapping PCR were used to create a restriction site for the
PCR product from TS537-1, but not from TS*537* (Figure 2H
and Supplementary Figure 1). Beginning with a template from
primers h + e or h + f, primers m + i were then used to change
the WT sequence to create an Asel site near S2210 (Figure 2H and
Supplementary Figure 1A). Primers n and m overlap by 23 bp,
and the h-n and m-i fragments were templates for primers h + i,
which would, therefore, have an Asel site if copied from TS537-
I, but not from TS*537*. Indeed, the ~0.61 kb h-i fragment
(Figure 2I) was cleaved by Asel into 0.35 and 0.26 kb products
if from TS537-1 DNA, but not from TS*537* DNA (Figure 2],
lanes 3 and 4). Likewise, primers o + k were used to create an
Agel site near S4678 (Figure 2L, Supplementary Figure 1B) from
template e-k or f-k (Figure 2H). Primers p and o overlap by
20 bp, and the j-p and o-k fragments were templates for primers

j + k. The j-k fragment would have an Agel site if copied from
TS537-1, but not from TS*537*. As shown in Figure 2M, the
~1.2 kb j-k fragments (Figure 2L) were cleaved by Agel into 0.5
and 0.7 kb fragments from TS537-1 DNA, but not from that of
TS*537* DNA (lanes 3 and 4).

From the F1 + cre genome, primers h + f and e + k should
reveal whether gfp is linked to WT or mutated DNA (Figure 2G)
as primers e and f were anchored to gfp. However, since gfp
could also be inverted, primers & + e and f + k were also tested.
These PCR products were then used as templates for nested
PCR to amplify h-i and j-k as described above, followed by Asel
or Agel treatment to detect mutated sites at S2210 and S4678,
respectively (Figure 2H). As shown in the representative data
of a 60-day-old F1 + cre plant from TS537-1d" x TS*537*#109Q,
some h-i products derived from h-e and h-f templates were
immune to Asel cleavage (Figure 2], lanes 1 and 2). Likewise,
some j-k products derived from e-k and f-k templates resisted
Agel (Figure 2M, lanes 1 and 2). Assuming that the gfp-anchored
primer sets amplified TS537-1 and TS*537-1* equally, and that
what translocated across can translocate back, at most 50% of
gfp DNA would be linked to mutated sites. Based on band
intensity, ~20% of the gfp DNA was linked to mutations of the
TS*537* genome. The h-i and j-k fragments that were immune
to Asel and Agel cleavage (upper bands from Figures 2J,M,
lanes 1 and 2) were gel-purified for DNA sequencing. As shown
in Figures 2K,N, the predominant peaks show the TS*537*#10
sequence. As these h-i and j-k fragments were derived from h-
f, h-e, f-k, and e-k templates, with primers e and f anchored
to gfp, this demonstrates that the $2210 and S4678 mutations in
TS*537*#10 were each linked to gfp.

Since recombination could generate at 8 genotypes, namely,
TS537-1 and TS*537* parental types, TS537 and TS*537-
I* from cassette exchange, and TS*537-1, TS537*, TS537-
I*, and TS*537 from single crossovers, primers h + k
were used to preferentially amplify the smaller ~4.4 kb size
products from TS*537* x TS537-1 F1 + cre genomic DNA
(Figure 3B). Although lox-flanked DNA could invert, the
regions corresponding to mutated sites should remain constant.
In competing reactions, primers h + k amplified only the
~4.4 kb h-k band with the attP site, but not the longer
~7.5 kb fragment containing gfp (Figure 3), and the segments
corresponding to the four CRISPR mutations were sequenced.
The major peaks were consistent with the TS*537* sequence
(CRISPR-mutated sequence) before translocation. Minor peaks
were also found that correspond to WT sequence in TS537
or TS537-1 (Figure 3C). This would be consistent with
translocation of the attP site from TS*537* to its homologous
chromosome from TS537-1.

To examine whether PCR template switching had been a factor
in our analysis, we tested a simulated experiment mixing 1:1
the genomic DNA of TS*537*#8 and TS537-1 before PCR with
primers /1 + x (Supplementary Figure 2). Primer x lies within
the ampicillin resistance gene in donor vector pZH210B, and
the h-x band should be ~3.3 kb, as primer h is separated from
TS537 by ~2 kb of genomic DNA. If template switching occurred
at a significant rate, S2066 and S2210 mutations should appear
as minor peaks. Despite conducting this test under various PCR
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FIGURE 3 | Sequencing results after gene exchange between allelic target sites. (A) Sequences of regions corresponding to CRISPR mutation sites. PCR product
h—-k containing gfp before (B) or after translocation (C) was too long (~7.5 kb) for amplification (dashed red line) in competing reaction with shorter (~4.4 kb) attP

fragment (solid red line) without gfp. Blue lines depict the four regions sequenced, respectively. (D) Sequencing data from the ~4.4 kb h-k fragments from different
F1 + cre genomes. Major peaks consistent with the TS*537*-derived sequence before translocation (B); minor peaks consistent with the TS537-derived sequence
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CCGCGCGCGACGT
CCGCCGAGTTTG CCGCGCAGCGACG
CCGCCGAGTTTG CCGCGCAGCGACG

CCGCCGTGTTTG CCGCGCAGCGACG

conditions, minor peaks corresponding to mutations were below
detection (Supplementary Figure 2).

Future Prospects

In practice, the F1 plant in this exercise would represent a
hybrid between a lab cultivar with a newly integrated transgene
and a field cultivar previously introgressed with a target site
containing already inserted transgenes. To use the Cre-mediated
recombination to break genetic linkage on one or both sides
of the transgene, the field cultivar must also have a target site.
This can be done by conventional breeding (Figures 4A-C) of
the target locus with or without a first transgene. Subsequent
stacking of additional transgenes would be into the laboratory
line (Figure 4D), which can then be crossed with the transgenic
field cultivar (Figures 4C,D). Introduction of Cre recombinase
would most likely be through a genetic cross, and preferably by a
cre line already introgressed into elite genotype. Cre would then
translocate the new transgenic locus from the lab line to the field

line at the same chromosome position (Figure 4E), or optionally,
to a different chromosome with a target locus introgressed
into a field line (Figures 4F,G). This may be necessary if non-
elite traits on either side of the transgene are too close to the
target locus to obtain a suitable field target line by conventional
breeding. In short, the first introgression is by conventional
breeding, while subsequent introgression is facilitated by Cre-
lox-mediated recombination. This linkage breakage strategy may
not be universally applicable, but is suitable for the particular
in planta gene-stacking method we described (Hou et al., 2014),
and this principle can be adapted for other in planta gene-
stacking schemes.

It is interesting that inter-chromosomal recombination was
detected in the F1 generation that had not gone through
gamogenesis. This could mean that homologous chromosome
synapsis was not a factor, and whether it could further increase
the translocation rate remains to be tested. We admit that
the sequence data were derived from a population of PCR
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FIGURE 4 | Cre-mediated transgene translocation to break linkage drag.

(A) Transgenic lab line created by gene transfer, with or without a first
transgene (not shown), is crossed repeatedly to a field line (B) to introgress
the transgenic locus into transgenic field line (C) with the combination of elite
traits. Subsequent stacking of additional transgenes to the same target site
(D) can be crossed with the transgenic elite line (C). Introduction of Cre
recombinase translocates the new transgenic locus from lab line to field line at
the same chromosome position (E). Optionally, Cre translocates the
transgenic locus in line (D) to a different chromosome (F) with a target locus
introgressed into a field line (G), which might be necessary if the non-elite
traits a and/or b are too close to the target locus and fail to segregate away.
A, B represent elite traits; a, b non-elite traits.

products; hence, we could not exclude the possibility that some
or all fragments had undergone intermolecular recombination
on only one side of the donor target site. Nonetheless,
breaking linkage drag does not require a cassette exchange
reaction if it were between the same homologous chromosome
locations, but merely the inter-chromosomal recombination
between the transgene and nearby DNA. Beying et al. (2020)
reported chromosome arm exchange frequencies at ~0.01% in
Arabidopsis somatic cells through the use of CRISPR/Cas9. It
is not clear whether the CRISPR/Cas9 reaction is reversible,
but Cre definitely catalyzes reversible recombination. Since
what translocates across can also translocate back, 100%

recombination efficiency would translate to 50% transgene
translocation. In this study, transgene translocation reached
~20%, which ought to be a sufficient rate for recovering progeny
with genetic linkages broken. This study did not proceed to
the stage of recovering progeny, but since transmission of
recombination events and segregation of the cre locus have been
documented in many previous studies, there is no a prior reason
to think these would not be possible.

In summary, this study demonstrates in principle that
introducing Cre recombinase into a F1 hybrid serves not only
to remove unnecessary DNA such as marker genes and plasmid
backbone as previously shown in many studies but could also
break genetic linkage on either or both sides of the transgenic
locus. Naturally, Cre activity has to be sufficiently efficient in
germline cells to insure transmission of recombination events,
which means practical implementation of this method would
still require the tedious task of testing many different germline-
specific promoters for any given crop species.
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