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Paris L. section Axiparis H. Li (Melanthiaceae) is a taxonomically perplexing taxon
with considerable confusion regarding species delimitation. Based on the analyses of
morphology and geographic distribution of each species currently recognized in the
taxon, we propose a revision scheme that reduces the number of species in P sect.
Axiparis from nine to two. To verify this taxonomic proposal, we employed a genome
skimming approach to recover the plastid genomes (plastomes) and nuclear ribosomal
DNA (nrDNA) regions of 51 individual plants across the nine described species of P
sect. Axiparis by sampling multiple accessions per species. The species boundaries
within P sect. Axiparis were explored using phylogenetic inference and three different
sequence-based species delimitation methods (ABGD, mPTP, and SDP). The mutually
reinforcing results indicate that there are two species-level taxonomic units in P. sect.
Axiparis (Paris forrestii s.I. and R vaniotii s.I.) that exhibit morphological uniqueness, non-
overlapping distribution, genetic distinctiveness, and potential reproductive isolation,
providing strong support to the proposed species delimitation scheme. This study
confirms that previous morphology-based taxonomy overemphasized intraspecific and
minor morphological differences to delineate species boundaries, therefore resulting in
an overestimation of the true species diversity of P sect. Axiparis. The findings clarify
species limits and will facilitate robust taxonomic revision in P sect. Axiparis.

Keywords: plastome, ribosomal DNA, taxonomy, Paris Linn., species delimitation

INTRODUCTION

Species delimitation is the crucially important first step for designing research in many fields of
biology (Mace, 2004). Traditionally, species boundaries are defined by taxonomists based on the
analysis of morphological variation (Lewin, 1981; Henderson, 2005), which has resulted in massive
disagreements over species identification and delimitation due to either phenotypic plasticity or
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lack of taxonomically robust morphological characters at the
species level (Hebert et al., 2003; De Queiroz, 2007). To
compensate, additional data types, such as molecular and
ecological profiles, are needed to explicitly decipher species
boundaries (Sites and Crandall, 1997; Sites and Marshall, 2003;
Ellis et al., 2006; Bickford et al., 2007; Duminil and Michele,
2009; Su et al., 2015; Eisenring et al., 2016; Lambert et al., 2017;
Sukumaran and Knowles, 2017; Cheng et al., 2020; Ma et al,
2020).

Analysis of DNA sequence variation can provide useful
information for identifying and delineating species (Brower
et al.,, 1996; Hebert et al., 2003; Kress et al., 2005; Pons et al,,
2006; Hollingsworth et al., 2009, 2011, 2016; Hollingsworth,
2011; Duminil et al., 2012; Puillandre et al., 2012). With next-
generation DNA sequencing (NGS) technologies, genome-wide
sequence variation has begun to replace one or a few sequence
loci for the identification and delimitation of plant species (Li
et al,, 2015; Coissac et al., 2016; Hollingsworth et al., 2016). The
genome skimming approach, which uses NGS technologies to
generate multi-copy and highly repetitive genome components,
such as whole plastid genomes (plastomes) and nuclear ribosomal
DNA (nrDNA) clusters via relatively low coverage genome
sequencing (Straub et al., 2012), has been increasingly used for
species identification and delimitation in recent years (Nock
et al,, 2011; Kane et al,, 2012; Dodsworth, 2015; Li et al., 2015;
Ruhsam et al., 2015; Firetti et al., 2017; Fu et al., 2019, 2021;
Ji et al, 2019a, 2020, 2021; Knope et al., 2020; Slipiko et al.,
2020; Su et al., 2021). Compared with restriction-site associated
DNA sequencing (RAD-seq; Miller et al., 2007; Baird et al.,
2008), another NSG-based technique that is extensively used
to generate genomic data for plant species identification and
delimitation (e.g., Wu et al., 2018; Donkpegan et al., 2020; Ma
et al.,, 2020; Zhou et al.,, 2020; Li et al., 2021), the promising
advantage of using genome skimming for species identification
and delimitation is the avoidance of problems encountered with
RAD-seq (Kane et al., 2012; Hollingsworth et al., 2016), such
as only applying to diploids and generating asymmetric data
between distinctly related taxa.

This study focuses on Paris Linn. section Axiparis H. Li
(Melanthiaceae), a taxonomically perplexing plant group that
includes nine described species distributed from Central China
to the Himalayas (Li, 1998; Ji et al., 2006, 2019b; Huang et al.,
2016). Since the description of the first two species (Paris
vaniotii and P. forrestii) of the section (Léveill¢, 1906; Takhtajan,
1983), a total of four (P. axialis, P. guizhouensis, P. lihengiana,
and P. variabilis) and three (P. dulongensis, P. rugosa, and
P. tengchongensis) species whose morphologies are similar to
P. vaniotii and P. forrestii respectively have been described (Li,
1984, 1992; He, 1990; Ji et al., 2017; Xu et al., 2019; Yang et al.,
2019). The rapid accumulation in the number of species over
the last 40 years has led to considerable taxonomic confusion
in P. sect. Axiparis. After critical examination of types and
specimens assigned to these species, it was found that, except
for slight differences in leaf shape and size (Figure 1), these
recently described species exhibit high levels of similarity in
flower, fruit, and seed morphology with P. vaniotii and P. forrestii
(Ji, 2021). Remarkably, leaf shape and size of foliar displays

have high levels of intraspecific variation that sometimes far
exceeds the divergence used for species diagnosis (Ji, 2021).
Also noteworthy, we found that P. dulongensis, P. rugosa,
and P. tengchongensis share the morphological similarity of
stamens numbering twice as many as the sepal number
(two-whorled stamens), and being geographically distributed
from the Hengduan Mountains (Southwestern China) to the
Himalayas (Figure 2). Comparatively, P. axialis, P. guizhouensis,
P. lihengiana, P. vaniotii, and P. variabilis, have stamens
numbering three times that of the sepal number (three-whorled
stamen), and these species are distributed from Central China
to the Wumeng Mountains in Southwestern China (Figure 2).
The overlap of morphological features and species ranges implies
that (1) P. dulongensis, P. rugose, and P. tengchongensis are likely
conspecific with P. forrestii, and (2) P. axialis, P. guizhouensis,
P. lihengiana, and P. variabilis may belong to P. vaniotii.
Accordingly, previous morphological-based taxonomic studies
(Li, 1984; He, 1990; Li, 1992; Ji et al., 2017; Xu et al., 2019; Yang
et al., 2019) may have overemphasized intraspecific and minor
morphological variations to establish species, therefore led to the
proliferation of synonyms in P. sect. Axiparis.

Due to the above-mentioned aspects, P. sect. Axiparis is in
great need of taxonomic revision. In this study, we attempt
to use genome skimming to establish a basic understanding
of species boundaries in this taxonomically perplexing taxon.
Specifically, we generated complete plastomes and nrDNA
sequences by sampling multiple accessions per species within
P. sect. Axiparis via low coverage genome sequencing. Based
on phylogenetic inference and multiple sequence-based species
delimitation methods, we aim to test our taxonomic proposal that
reduces the number of species in P. sect. Axiparis from nine to
two (Paris forrestii s.I. and P. vaniotii s.l.).

MATERIALS AND METHODS

Plant Samples, lllumina Sequencing,
Assembly, and Annotation

In total, we sampled 51 individual plants including
representatives of each of the nine described species of P.
sect. Axiparis, in which 46 accessions were newly sequenced
in the present study (Table 1). Voucher specimens and leaf
tissue were collected from the field. For each taxon, multiple
individuals within a species representing different localities were
included, and at least one accession was harvested from the type
locality. The sampling strategy entirely covers the nine species’
distribution ranges and allows robust exploring of species-level
monophyly and species boundaries within P. sect. Axiparis to
critically test for our taxonomic proposal.

Total genomic DNA for each accession was isolated
from ~10 mg silica gel dried leaf tissues using
cetyltrimethylammonium bromide (CTAB; Doyle and Doyle,
1987). Approximately 5 pg of purified genomic DNA was used
to construct PCR-free shotgun libraries with a TruSeq DNA
Sample Prep Kit (Illumina, Inc., San Diego, CA, United States)
according to the manufacturer’s instructions. Paired-end (150 bp)
sequencing was performed on the Illumina HiSeq 2500 platform
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FIGURE 1 | Nine nominal species within Paris section Axiparis, showing their leaf size and shape variations. Paris axialis (A), P dulongensis (B), P. forrestii (C),
P, guizhouensis (D), P, lihengiana (E), P. rugosa (F), P. tenchongensis (G), P vaniotii (H), and P, variabilis ().

F. forrestii (C)

(lumina, Inc., San Diego, CA, United States) to generate
approximately two giga base pairs (Gbp) of raw data for each
sample. Remarkably, Paris is a fairly distinctive angiosperm
genus in possessing giant genomes (Pellicer et al., 2014; Ji,
2021), and the minimum documented genome size in the genus
(P. bashanensis, 1C = 28.73 Gbp; Ji, 2021) is much larger than the
mean genome size of angiosperms (1C = 5.7 Gbp; Pellicer et al.,
2014). Due to the relatively low sequencing coverage and lack
of nuclear genome reference, it is difficult to recover a sufficient
number of unlinked and single-copy nuclear loci from the
genome skimming data. Therefore, only complete plastomes and

nrDNA sequences were assembled in this study for phylogenetic
reconstruction and species delimitation analyses.

Shotgun reads of each sample were deposited in NCBI short-
read archive (SRA), with accession numbers being shown in
Supplementary Table 1. Trimmomatic v0.40 (Bolger et al,
2014) was used to remove low-quality reads and adaptors from
the Illumina raw reads with default parameters. The filtered
reads were assembled into complete plastomes and nrDNA
clusters with the GetOrganelle pipeline v1.7.5.0 (Jin et al., 2020)
on a Linux system, using the previously published complete
plastome (MN125565) and nrDNA sequence (MN174877) of
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FIGURE 2 | Distribution of the nine nominal species within Paris section Axiparis.
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P. forrestii (Ji et al, 2019b) as the reference. The assembled
plastomes were annotated using the online software Geseq v2.03
(Tillich et al., 2017), with default parameters. The transfer
RNA (tRNA) genes were further verified using tRNAscan-
SE v2.0 (Lowe and Chan, 2016) with default parameters. For
nrDNA annotation, the ribosomal RNA genes (26S, 18S,
and 5.8S ribosomal RNA genes) and boundaries with the
intergenic transcribed spacer (ITS) regions were annotated and
defined by comparison with the reference in Geneious v10.2.3
(Kearse et al., 2012).

Data Analyses

The complete plastome and entire nrDNA clusters (including
18S rRNA, ITS1, 5.8S rRNA, ITS2, and 26S rRNA) were
aligned using MAFFT v7.450 (Katoh and Standley, 2013). The
alignments of sequences were deposited the online database
Treebase,' and only single nucleotide polymorphisms (SNPs)
were included in phylogenetic and species delimitation analyses.
Partition homogeneity tests (Farris et al., 1994) were performed
with PAUP* 4.0b10 (Swofford, 2002) to determine the degree
of congruence between the concatenated plastome and nrDNA
matrices, as well as between coding (18S rRNA, 5.8S rRNA,
and 26S rRNA) and non-coding regions (ITS1 and ITS2)
of nrDNA sequences, using a heuristic tree search algorithm
for 500 replicates.

Thttp://purl.org/phylo/treebase/phylows/study/TB2:529422

Phylogenetic relationships were inferred using both maximum
likelihood (ML) and Bayesian inference (BI) methods, based on
which we tested whether the nine described species within P.
sect. Axiparis are monophyletic units. Previous studies revealed
that ancient intergeneric hybridization may have occurred
between Trillium and P. sect. Paris (resulting in the speciation
of P. japonica: P. sect. Kinugasa), and past intersectional
hybridization likely took place between P. sect. Axiparis and P.
sect. Euthyra (Ji et al., 2019b; Ji, 2021). Given that such reticulate
relationships may result in phylogenetic errors (Philippe et al.,
2011), we selected P. thibetica (complete plastome: MN125569;
nrDNA: MN174890; Ji et al., 2019b) as the outgroup, which
represents P. sect. Thibeticae, the closest relative of P. sect.
Axiparis (Ji et al., 2006, 2019b; Ji, 2021). The best-fit sequence
substitution model (GTR + G for concatenated plastome matrix,
and GTR + I + G for concatenated nrDNA matrix) were
determined by Modeltest v3.7 (Posada and Crandall, 1998) using
the Akaike information criterion (Posada and Buckley, 2004).
The ML analysis was performed with RAxML-HPC BlackBox
v8.1.24 (Stamatakis, 2006). The best-scoring ML tree for each
dataset was produced with 1,000 bootstrap (BS) replicates to
provide support values for each node. The BI tree was inferred
using MrBayes v3.2 (Ronquist et al., 2012). Two independent
Markov chain Monte Carlo (MCMC) runs were performed with
one million generations, sampling every 100 generations, with the
initial 25% of the sampled trees as burn-in. Posterior probability
(PP) values were computed based on the remaining trees.
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TABLE 1 | Plant samples used in this study with voucher information and GenBank accession numbers.

Taxa Locality Voucher* GenBank accessions
Complete plastome Ribosomal DNA

Paris axialis Daguan, Yunnan, China Ji YH 2019049 MW229127 MW202302
P axialis Shuifu, Yunnan, China Ji YH and Yang CJ 042 MWw229087 MW202314
P, axialis Yilang, Yunnan, China Ji YH and Yang CJ 047 MW229099 MwW202318
P, axialis Zhenxiong, Yunnan, China Ji YH and Yang CJ 052 MW229086 MW202317
P, dulongensis Gongshan, Yunnan, China Yang CJ and Zhou GH 001 MW229123 MW202303
P, dulongensis Gongshan, Yunnan, China Yang CJ and Zhou GH 004 MW229126 MW202313
P, dulongensis Lushui, Yunnan, China Ji YH 2016521 MW229091 MwW202284
P, dulongensis Tengchong, Yunnan, China JiYH 2016527 MW229115 MW202285
P, dulongensis Tengchong, Yunnan, China Ji YH 2016528 MW229103 MW202286
P, dulongensis Tengchong, Yunnan, China Ji YH 2016529 MW229090 MW202287
P, dulongensis Gongshan, Yunnan, China LiH and Ji YH 056 MW229094 MwW202301
P, dulongensis Gongshan, Yunnan, China LiH 57 MN125566 MN174887
P, forrestii Tengchong, Yunnan, China Wang ZM 001 MW229119 MW202306
P, forrestii Tengchong, Yunnan, China Wang ZM 002 MW229117 MwW202307
P, forrestii Jumla, Nepal Zhou GH 002 MW229121 MW202308
P, forrestii Chayu, Tibet, China Yang CJ and Zhou GH 014 MW229124 MW202309
PR, forrestii Chayu, Tibet, China Yang CJ and Zhou GH 015 MW229122 MW202311
P, forrestii Jumla, Nepal LidXs. n. MW229125 MW202312
P, forrestii Changning, Yunnnan, China JiYH 2016557 MW229111 MW202290
P, forrestii Changning, Yunnnan, China Ji YH 2016560 MW229088 MW202291
P, forresti Gongshan, Yunnan, China Zhou GH s. n.** MN125565 MN174877
P, forrestii Fugong, Yunnan, China LiFRs. n. MW229106 MW202293
P, guizhouensis Shuicheng, Guizhou, China Ji'YH 2016032 MW229093 MW202322
P guizhouensis Daozhen, Guizhou, China Ji YH 201603901 MW229085 MW202296
P, guizhouensis Dafang, Guizhou, China Ji YH 2016046 MW229096 MwW202297
P lihengiana Weixin, Yunnan, China Ji YH 2016052 MW229114 MW202298
P lihengiana Yanjin, Yunnan, China Ji'YH 2018031 MW229107 MW202324
P, lihengiana Daguan, Yunnan, China Ji'YH 2018041 MW229108 MW202300
P, rugosa Fengaing, Yunnan, China Ji YH 2016530 MW229082 MwW202288
P, rugosa Fengaing, Yunnan, China Ji YH 2016531 MW229083 MW202289
P rugosa Changning, Yunnan, China JiYH 2016524 MW229084 MW202292
P rugosa Changning, Yunnan, China Ji YH 2016525** MN125570 MN174872
P, rugosa Tengchong, Yunnan, China Ji YH 2019033 MW229120 MW202304
P, rugosa Tengchong, Yunnan, China Ji YH 2019034 MW229128 MW202305
P, rugosa Gongshan, Yunnan, China Ji YH 2019067 MW229118 MW202310
P, rugosa Longyang, Yunnan, China Yang FJ s. n. MW229092 MwW202282
P, tengchongensis Tengchong, Yunnan, China JiYH 2017211 MW229098 MW202279
P, tengchongensis Tengchong, Yunnan, China JiYH 2017212 MW229089 MW202280
P, tengchongensis Tengchong, Yunnan, China Ji YH 2016038 MW229095 MW202244
P, tengchongensis Tengchong, Yunnan, China Ji YH 201603902** MN125584 MN174889
P, tengchongensis Tengchong, Yunnan, China Ji YH 2016040 MW229113 MW202278
P, tengchongensis Tengchong, Yunnan, China JiYH 2017013 MW229112 MW202281
P, tengchongensis Tengchong, Yunnan, China Ji'YH 2016391 MW229116 MW202283
P vaniotii Guangyuan, Sichuan, China JiYH 2016671 MW229109 MW202299
P, vaniotii Xin Ning, Hunan, China Li H 052 MW229102 MN174901
P, vaniotii Nanchan, Chongging, China Ji YH 2016693 MW229104 MW202321
P vaniotii Guanyang, Guangxi, China Ji YH 2016652 MW229110 MW202295
P vaniotii Weining, Guizhou, China Ji YH and Yang CJ 028 MW229097 MW202319
PR, variabilis Shuifu, Yunnan, China Ji YH and Yang CJ 039 MW229105 MW202315
P, variabilis Yanjin, Yunnan, China Ji YH and Yang CJ 049 MW229100 MW202316
P, variabilis Zhenxiong, Yunnan, China Ji YH and Qiu Bin 004 MW229101 MwW202320

*Voucher specimens are deposited at the Herbarium of Kunming Institute of Botany, Chinese Academy of Sciences (KUN), **The complete plastomes and nrDNA
sequences of these samples were sequenced in previous studies (Ji et al., 2019b, 2020).
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Relying on reciprocal monophyly alone to delineate species
boundaries likely under-represents true species-level diversity
(Ence and Carstens, 2011; Rannala and Yang, 2013). The
development of some coalescence-based species delimitation
methods, such as Bayesian Phylogenetics and Phylogeography
(BPP; Rannala and Yang, 2013), and spedeSTEM (Ence and
Carstens, 2011), provide the solution to this issue since these
methods do not require reciprocal monophyly of any species
in a given gene tree. Both BPP and spedeSTEM are only
suitable for processing genomic segments no longer than 500 or
1,000 bp (Ence and Carstens, 2011; Rannala and Yang, 2013),
and thus cannot be used to analyze either complete plastomes
or entire nrDNA sequences. Accordingly, we used the following
approaches to explore species boundaries within P. sect. Axiparis
based on each dataset (concatenated plastome and nrDNA
matrices): (1) the distance-based method automatic barcode gap
discovery (ABGD; Puillandre et al., 2011), (2) the tree-based
method multi-rate Poisson tree processes model (mPTP; Kapli
et al, 2017), and (3) the coalescence-based method species
delimitation plugin (SDP; Masters et al., 2011) in Geneious
v.10.2.3 (Kearse et al, 2012). The outgroup (P. thibetica)
sequences were removed from the species delimitation analyses.

The ABGD analyses were conducted with the online server’
with default settings (Pmin = 0.001, Pmax = 0.1, Steps = 10,
X = 1.5, Nb = 20). All three genetic distance models (JC69,
K2P, and uncorrected P-distances) specified by the program
were used. Next, we used the mPTP v0.2.3 algorithm (Kapli
et al, 2017), an improvement to PTP (Zhang et al, 2013),
to delineate species boundaries and to estimate the posterior
probability (PP) values for the putative species. The mPTP
analyses were performed on the web server® with standard default
settings (The MCMC algorithm was conducted for 0.1 million
generations, sampling every 100 generations and a 10% burn-
in), using the inferred ML trees of plastome and nrDNA as
inputs since the branch lengths of ML tree represent expected
numbers of substitutions per site. Based on ML and BI trees of
the concatenated plastome and nrDNA matrices, we performed
SDP analyses to generate species delimitation scheme in P. sect.
Axiparis. The distinctiveness of these candidate species proposed
by SDP analyses was estimated using Rosenberg’s P(4p): the
probability of reciprocal monophyly under a random coalescent
model (Rosenberg, 2007), and Rodrigo’s P(rpy: the probability
that a clade has the observed degree of distinctiveness due to a
random coalescent process (Rodrigo et al., 2008).

RESULTS

Genome Skimming

The summary of low coverage genome sequencing and
assembly of plastome and nrDNA sequences is presented
in Supplementary Table 1. Plastome assembly generated the
complete plastome of all samples, which possess a typical

Zhttps://bioinfo.mnhn.fr/abi/public/abgd/abgdweb.html; the latest access date:
July 9, 2020.

3http://species.h-its.org/ptp/; the latest access date: August 14, 2020.

quadripartite structure, with the sequence length varying from
156,061 to 157,653 bp. The plastomes identically contain 114
genes, including 80 protein-coding genes, 30 tRNA genes, and
four plastid rRNA genes (Supplementary Table 2). In addition,
the assembly of nrDNA entirely covered 18S, ITS1, 5.8S, ITS2,
and 268 regions in all accessions, with the sequence length being
either 5,851 or 5,852 bp. DNA sequences of the newly generated
plastomes and nrDNA sequences in this study were deposited in
GenBank, with accession numbers being shown in Table 1.

Phylogenetic Inferences

Alignment of the plastome sequences yielded a matrix of
160,681 positions, in which we identified 1,724 variable sites
(1.07%) with 1,192 (0.74%) being parsimoniously informative
(Supplementary Table 3). The ML (Figure 3A) and BI
(Figure 3B) analyses of the concatenated plastome matrix
produced similar tree topologies except that several shallow
nodes with low BS support collapse in BI tree. Two diverging
clades were recovered in P. sect. Axiparis: Clade I (BS = 100%,
PP = 1.00) comprises accessions of P. dulongensis, P. forrestii,
P. rugosa, and P. tengchongensis, and Clade II (BS = 100%,
PP = 1.00) includes accessions of P. axialis, P. guizhouensis,
P. lihengiana, P. vaniotii, and P. variabilis. Strikingly, none of the
nine nominal species within P. sect. Axiparis were recovered as a
monophyletic unit in either ML or BI phylogeny.

Although partition homogeneity tests detected significant
conflicts (p < 0.01) between the nrDNA and plastome
phylogenies, the coding (18S rRNA, 5.8S rRNA, and 26S rRNA)
and non-coding regions (ITS1 and ITS2) of nrDNA sequences
are congruent with each other in the tree topology (p > 0.05).
Therefore, we concatenated both coding and non-coding regions
of nrDNA sequences for phylogenetic and species delimitation
analyses. The concatenated nrDNA matrix possessed 193 variable
sites (3.30%) with 112 (1.91%) being parsimoniously informative
(Supplementary Table 3). ML (Figure 4A) and BI (Figure 4B)
analyses generated congruent tree topologies despite that some
weakly supported shallow nodes in ML tree collapse in BI
phylogeny. The nrDNA trees recovered two major clades within
P. sect. Axiparis, corresponding to those inferred from the
plastomes but with slightly lower support values (clade I:
BS = 98%, PP = 1.00; clade II: BS = 97%, PP = 1.00). Similar to
the plastome phylogeny, analyses of nrDNA sequences failed to
resolve any of the nine nominal species within P. sect. Axiparis as
a monophyletic unit.

Species Delimitation Scenarios

Overall, ABGD, mPTP, and SDP analyses of the concatenated
plastome and nrDNA matrices produced highly congruent
results that are reflected in the phylogenetic trees (Figures 3, 4).
The ABGD analyses of the concatenated plastome (Table 2) and
nrDNA (Table 3) matrices resulted in a stable count (n = 2)
of species division with a range of prior intraspecific values
(plastomes: P = 0.001000-0.004642; nrDNA: P = 0.002000-
0.007573) with JC69, K2P, and P-distances initial and recursive
partitions. One proposed species includes individuals of
P. dulongensis, P. forrestii, P. rugosa, and P. tengchongensis, while
the other comprises individuals of P. axialis, P. guizhouensis,
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P. lihengiana, P. vaniotii, and P. variabilis (Figures 3, 4). The
mPTP analyses yielded the same delimitation proposal as ABGD:
all individuals were grouped into two species-like entities that
coincide with the two clades recovered by our phylogenetic
analyses (Figures 3, 4), and both received strong posterior
support (Table 4). Similarly, the SDP analyses showed that either
plastome or nrDNA matrix, excluding the outgroup, comprised
two putative species (corresponding to Clade I and Clade IT in the
inferred phylogenetic tree; Figures 3, 4), which were distinctive
with P(rp) < 0.05, and significant with P4, < 10> (Table 5).

DISCUSSION

The advancement of molecular-based approaches has brought
about great progress in species delimitation (Wiley and

Mayden, 2000; Sites and Marshall, 2003; De Queiroz, 2007).
Concomitantly, a wide variety of species delimitation methods
have been developed, especially over the past 20 years (Yang
and Rannala, 2010; Ence and Carstens, 2011; Masters et al,,
2011; Puillandre et al., 2011; Rannala and Yang, 2013; Zhang
et al, 2013). However, no method is perfect and each has
specific weaknesses. For instance, ABGD is problematic when
species are represented with only a few specimens (Puillandre
et al, 2011, 2012). In some cases, mPTP may lead to an
overestimation of species numbers (Song et al., 2018; Huang
et al., 2020). Given that factors such as recent diversification,
radiative speciation, and restricted intraspecific gene flow may
result in the absence of reciprocal monophyly among closely
related species (Ruhsam et al., 2015; Hollingsworth et al,
2016); SDP may yield biased delimitation schemes since it
primarily relies on reciprocal monophyly to explore species
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boundaries (Masters et al., 2011). Accordingly, multiple methods
should be simultaneously employed to develop a robust species
delimitation framework, given that using different delimitation
approaches allows accommodations for the weaknesses of each
approach (Hebert et al., 2004; Fujita et al., 2012; Aguilar et al,,
2013; Kekkonen and Hebert, 2014; Mutanen et al., 2015).
However, previous studies using a single or few sequence regions
have indicated that employing multiple methods on the same
dataset always produced incongruent delimitation proposals
(Camargo et al., 2012; Mutanen et al., 2015; Jacobs et al., 2018;
Jirapatrasilp et al., 2019) likely due to the inadequacies of available

genetic information to properly delineate species boundaries
(Carstens and Satler, 2013; Jacobs et al., 2018).

High variability of key diagnostic morphological characters
makes species delimitation a particularly difficult task, and
thus has led to considerable taxonomic confusion in P. sect.
Axiparis. This study aims to critically test our taxonomical
proposal that only recognizes two broadly defined species
(vs. nine narrowly defined species) in P. sect. Axiparis. To
achieve this goal, we employed genome skimming to recover
complete plastomes and nrDNA sequences that contain more
evolutionarily informative variation than a single or few sequence
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TABLE 2 | The number of putative species recognized by Automatic Barcode Gap
Discovery (ABGD) analyses among 51 complete plastomes using three
distance metrics.

Subst. model X Partition Prior intraspecific divergence (P)

0.001000 0.001668 0.002783 0.004642

P 1.5 |Initial 2 2 2 2
Recursive 2 2 2 2
JCB9 1.5 Initial 2 2 2 2
Recursive 2 2 2 2
K2pP 1.5 |Initial 2 2 2 2
Recursive 2 2 2 2

X, relative gap width; F, p-distance; JC69, Jukes-Cantor; K2R, Kimura 2-parameter.

TABLE 3 | The number of putative species recognized by Automatic Barcode Gap
Discovery (ABGD) analyses among 51 nrDNA sequences using three
distance metrics.

Subst. X Partition Prior intraspecific divergence (P)
model
0.002000 0.002790 0.003892 0.005429 0.007573

P 1.5 Initial 2 2 2 2 2

Recursive 2 2 2 2 2
JCB9 1.5 Initial 2 2 2 2 2

Recursive 2 2 2 2 2
K2P 1.5 Initial 2 2 2

Recursive 2 2 2

X, relative gap width; R, p-distance; JC69, Jukes-Cantor; K2F, Kimura 2-parameter.

TABLE 4 | Posterior delimitation probability of two putative species proposed by
mPTP analyses of complete plastomes and nuclear ribosomal DNA
(nrDNA) sequences.

Putative species Posterior delimitation probability

Plastomes nrDNA
Clade | 1.00 1.00
Clade Il 1.00 1.00

TABLE 5 | Species delimitation plugin (SDP) analyses show the distinctiveness
[Rodrigo’s P(rp)] and significance [Rosenberg’s P4p)] of the two clades
recovered by phylogenetic analyses of complete plastomes and nuclear ribosomal
DNA (nrDNA) as species-level taxonomic units.

Phylogenetic Putative = Complete plastomes nrDNA sequences
inference species

Rodrigo’s Rosenberg’s Rodrigo’s Rosenberg’s

P(rp) PB) P(rp) Pg)
Bl tree Clade | <0.05 59x10°1® <0.05 59 x 10716
Clade Il <0.05 32x10°'® <005 32x 10716
ML tree Clade | <0.05 9.1x10°% <005 9.1x 10716
Clade Il <0.05 9.1 x10° 16 <0.05 9.1 x 10716

regions for phylogenetic and species delimitation analyses. Based
on the concatenated plastome and nrDNA matrices, we not only
investigated the species-level monophyly of the nine narrowly
defined species by sampling multiple individuals per species,

but also explored species boundaries using multiple sequence-
based species delimitation methods (ABGD, mPTP, and SDP). To
determine the robustness of the delimitation proposals generated
by ABGD, mPTP, and SDP analyses, we also examined to what
extent these methods generate congruent results.

Phylogenetic analyses recovered none of the nine narrowly
defined species within P. sect. Axiparis as a monophyletic unit,
suggesting that the genetic differentiation among them is low. By
contrast, both plastome and nrDNA phylogenies recovered two
well-supported clades that possess fairly distinct morphological
traits (Figures 3, 4) and distribution ranges (Figure 2). Although
members of P. sect. Axiparis represent recently diverged entities
with their origins estimated no earlier than the late Miocene
(Ji et al., 2019b), ABGD, mPTP, and SDP analyses based on
different models generated consistent proposals in delineating
species boundaries. Briefly, the ABGD analyses (Tables 2, 3)
partitioned all the samples into two clusters comprised of
individuals having two-whorled and (Clade I) three-whorled
stamens (Clade II). This implies that there are likely two distinct
species within P. sect. Axiparis with significant genetic gaps
between them (Puillandre et al., 2012). Moreover, the mPTP
analyses grouped all accessions into two putative species with
high posterior delimitation probability, coinciding with the
results found in the ABGD analyses (Figures 3, 4, and Table 4).
The putative species boundaries proposed by ABGD and mPTP
analyses are further validated by the SDP analyses: with P(rp)
value < 0.05 and the Psp) value < 10> (Table 5), both of
the two candidate species can be recognized as evolutionarily
distinctive entities (Rosenberg, 2007; Rodrigo et al., 2008). These
reciprocally reinforcing results suggest that only two species-
level taxonomic units can be recognized in P. sect. Axiparis,
providing robust support to our taxonomic proposal to reduce
P. axialis, P. guizhouensis, P. lihengiana, and P. variabilis as the
synonyms of P. vaniotii, and to expand the species boundary
of P. forrestii to accommodate P. dulongensis, P. rugose, and
P. tengchongensis.

Importantly, sequence-based delimitation results can only
be considered a hypothesis that needs to be further validated
with multiple data types, such as phenotypic and ecological
information (Sukumaran and Knowles, 2017). In addition to
morphological distinctiveness (two-whorled stamens vs. three-
whorled stamens), there is a range of evidence robustly
supporting the species delimitation scheme proposed by our
data. Within Paris, significant conflict between the plastome and
nrDNA trees was also detected in a previous study: although
the plastome phylogeny recovered P. sect. Axiparis as a well-
supported clade, it was resolved as non-monophyletic by nrDNA
phylogeny (Ji et al., 2019b). By comparing differences in plastome
and nrDNA tree topologies, ancient hybridization was proposed
to have occurred between the common ancestor of P. luquanensis
and P. mairei (P. sect. Euthyra) and that of P. dulongensis,
P. forrestii, P. rugose, and P. tengchongensis (Ji et al., 2019b). This
implies that the two broadly defined species, namely P. forrestii
s.l. (syn. P. dulongensis, P. rugose, and P. tengchongensis) and
P. vaniotii s.l. (syn. P. axialis, P. guizhouensis, P. lihengiana,
and P. variabilis), originated separately. Also noteworthy,
P. forrestii s.I. and P. vaniotii s.l. possess allopatric geographic
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distributions, between which there are great climatic differences.
From the late Miocene onward, driven by the intensification
of the East Asian monsoon in the summer (An et al., 2001),
the species range of P. vaniotii s.. has been primarily governed
by Pacific monsoon, whereas that of P. forrestii s.l. has been
mainly affected by Indian monsoon (Li et al., 2008; Yao et al.,
2011; Figure 2). The long-term environmental and ecological
heterogeneity resulted from climate differences between the two
distinct monsoon regimes would block the regional gene flow
and boosted vicariance in Paris (Ji et al., 2019b). Based on
phenology recorded in herbarium specimens and observation
of plants cultivated in common gardens, it was found that the
flowering of P. vaniotii s.l. is approximately 30-40 days earlier
than that of P. forrestii s.l, and there is little overlap between
their flowering periods (Ji, 2021). This implies that outcrossing
between P. forrestii s.l. and P. vaniotii s.l. is nearly impossible
under natural conditions, suggesting that reproductive isolation
between them may have been formed under the combined effect
of geographic isolation and habitat heterogeneity. Therefore,
recognizing P. forrestii s.. and P. vaniotii s.l. as distinct
species under the unified species concept (De Queiroz, 2007) is
reasonable, given that the species boundary proposed by our data
reflects the unity of morphological uniqueness, non-overlapping
species range, genetic distinctiveness, and reproductive isolation.

CONCLUSION

This study represents a guiding practical application of genome
skimming for exploring species boundaries in taxonomically
perplexing plant taxa, using not only phylogenetic inferences but
also multiple sequence-based species delimitation methods. The
analyses of concatenated plastome and nrDNA matrices yielded
identical schemes in delineating species boundaries in Paris
sect. Axiparis, which are highly congruent with morphological
characteristics and geographic distributions. The results robustly
support our revision proposal that reduces the number of
species in P. sect. Axiparis from nine to two, and confirm that
previous morphology-based taxonomy (Li, 1984, 1992; He, 1990;
Ji et al, 2017; Xu et al., 2019; Yang et al., 2019) overemphasized
intraspecific and minor morphological differences to establish
species, therefore resulted in over-splitting of species in P. sect.
Axiparis.
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