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Elucidation of the composition, functional characteristics, and formation mechanism of 
wheat quality is critical for the sustainable development of wheat industry. It is well 
documented that wheat processing quality is largely determined by its seed storage 
proteins including glutenins and gliadins, which confer wheat dough with unique rheological 
properties, making it possible to produce a series of foods for human consumption. The 
proportion of different gluten components has become an important target for wheat 
quality improvement. In many cases, the processing quality of wheat is closely associated 
with the nutritional value and healthy effect of the end-products. The components of wheat 
seed storage proteins can greatly influence wheat quality and some can even cause 
intestinal inflammatory diseases or allergy in humans. Genetic and environmental factors 
have great impacts on seed storage protein synthesis and accumulation, and fertilization 
and irrigation strategies also greatly affect the seed storage protein content and 
composition, which together determine the final end-use quality of wheat. This review 
summarizes the recent progress in research on the composition, function, biosynthesis, 
and regulatory mechanism of wheat storage proteins and their impacts on wheat 
end-product quality.

Keywords: wheat quality, fertilization, watering regime, regulatory mechanism, sulfur deficiency

INTRODUCTION

Wheat (Triticum aestivum) is one of the largest grain crops in the world, and its quality 
mainly comprises processing and nutritional quality. The term “wheat quality” usually refers 
to the processing quality, which is mainly dependent on the content and characteristics of 
storage proteins in wheat grains (Shewry and Halford, 2002; Ma et  al., 2019) and directly 
determines wheat’s market price and end-use value. Since storage proteins contain some 
components that can cause human intestinal inflammatory diseases or allergy, the concept of 
wheat “protein quality” is often used to cover the scope of the processing and nutritional 
quality (Scherf et  al., 2016a).

Wheat processing quality is represented by the physical and chemical characteristics of the 
dough, which make it possible to process wheat into a variety of food products (Payne, 1987; 
He et  al., 2005; Don et  al., 2006; Zhang et  al., 2007, 2014b, 2021; Li et  al., 2015; Gao et  al., 
2016b; Chen et  al., 2019; Jiang et  al., 2019). Dough properties are mainly determined by 
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gluten proteins, glutenins, and gliadins (Shewry and Halford, 
2002). Glutenins can be subdivided into high molecular weight 
glutenin (HMW-GS) and low molecular weight glutenin 
(LMW-GS; Shewry et al., 2002; Veraverbeke and Delcour, 2002). 
HMW-GS is the main factor determining gluten elasticity, 
which is encoded by the Glu-1 genes including Glu-A1, Glu-
B1, and Glu-D1 loci on the long arm of chromosomes 1A, 
1B, and 1D, respectively. Each locus comprises two linked 
genes encoding two different types (X type and Y type) of 
HMW-GS subunits (McIntosh et  al., 1991; Liu et  al., 2003; 
Sun et  al., 2006; Zheng et  al., 2011; Peng et  al., 2015; Yu 
et  al., 2019). Gliadins are mainly monomer proteins, including 
ω-, α/β-, and γ-gliadins (Kasarda et  al., 1984; Zhou et  al., 
2022). According to the Chinese National Standard (Wang 
et  al., 2013), wheat can be  divided into four categories based 
on the usage and gluten strength: (1) Strong gluten wheat: 
the endosperm is hard and the wheat flour produces very 
strong gluten, which is suitable for baking bread; (2) Medium 
strong gluten wheat: the endosperm is hard and the gluten 
is rather strong and is suitable for making instant noodles, 
dumplings, steamed bread, noodles, and other foods; (3) Medium 
gluten wheat: the endosperm is hard and the gluten strength 
is moderate and is suitable for making noodles, dumplings, 
steamed bread, and other foods; and (4) Weak gluten wheat: 
the endosperm is soft and the gluten is weak and is suitable 
for making cake, biscuit, and other foods. Strong gluten dough 
has high ductility resistance and can maintain stability (Ma 
et  al., 2019). The dough can retain the gas produced during 
fermentation in discrete cells evenly distributed in the dough 
(Don et  al., 2006). A lower gluten strength can cause the 
excessive expansion of gas cells during baking, resulting in 
the collapse of cell walls and aggregation of cells, and thereby 
a rough bread texture (Don et  al., 2006). Therefore, strong 
gluten wheat has always been an important goal of wheat 
breeding programs.

Generally, the protein content in wheat grains ranges from 
10 to 18% (Qi et  al., 2012; Liu et  al., 2018). To some extent, 
the protein content is positively correlated with wheat processing 
quality, particularly dough strength. However, the protein content 
and grain yield are usually negatively correlated with each 
other (Kibite and Evans, 1984). In real production, a large 
amount of nitrogen fertilizer is often applied in order to promote 
wheat yield and protein content, which tends to reduce the 
nitrogen use efficiency and cause negative impacts on the 
environment (Justes et  al., 1994). In recent years, multiple 
methods have been developed with the aim to simultaneously 
improve wheat yield and protein content, such as the utilization 
of new genes and optimization of water and fertilization regimes 
(Alhabbar et  al., 2018; Balotf et  al., 2018; Roy et  al., 2018, 
2020, 2021; Yang et  al., 2018; Yu et  al., 2018a,b; Li et  al., 
2021a). However, the effect of protein content on wheat quality 
is rather complex due to the presence of gliadin components 
in the storage protein. Gliadins have an odd number of cysteine 
residues and a negative effect on wheat processing quality 
(Lindsay and Skerritt, 1999; Wieser, 2007; Rasheed et al., 2014). 
Therefore, high-quality wheat should be  characterized by a 
higher content of glutenins and a lower content of gliadins, 

and wheat processing quality is not necessarily related to the 
grain protein content.

In Australia, researchers have been pursuing the breeding 
goal of wheat varieties with low-protein content but high quality 
since 2000, targeting at the improvement of wheat quality by 
optimizing the gluten composition, namely, a higher glu/gli 
ratio (Roy et  al., 2018, 2020, 2021). In this approach, the 
protein content is no longer a target. Since there is a negative 
correlation between the grain protein content and yield, a 
low-protein content naturally means a higher yield without 
sacrificing the quality. However, considering the nutritional 
value of protein, the breeding goal of low-protein and high-
quality wheat is not suitable for some developing countries. 
Therefore, “three-high wheat” (high quality, high yield, and 
high protein) should be  the breeding goal for most countries.

GENETICS AND APPLICATIONS IN 
RELATION TO WHEAT QUALITY 
BREEDING

Wheat quality can be  improved by manipulation of the main 
storage protein genes. As a matter of fact, many effective genes 
have been efficiently utilized for decades, such as GluD1 (5 + 10) 
and GluB1 (17 + 18; Payne et  al., 1981, 1987; Payne, 1987; 
Altpeter et  al., 2004; Mohan and Gupta, 2015). The common 
HMW-GS alleles have been assigned with quality scores to 
facilitate their application in breeding (Payne et  al., 1987). 
Although there are six HMW-GS genes in the wheat genome, 
most hexaploid wheat varieties only have three to five HMW 
glutenin subunits due to the silencing of some genes (Ma 
et  al., 2003), such as the genes encoding the Ay subunit (Yu 
et  al., 2019). Roy et  al. (2018, 2020, 2021) found that the 
expression of Ay subunit has positive effects on grain protein 
content, grain yield, and quality. A new storage protein family 
consisting of the avenin-like proteins has also been identified 
to have great breeding value for the improvement of wheat 
quality (Chen et  al., 2016). Since the genetic control of wheat 
quality has been comprehensively reviewed (Shewry and Tatham, 
1997; Vasila and Anderson, 1997; Gras et  al., 2001; She et  al., 
2011; Ortolan and Steel, 2017; Ma et  al., 2019; Sharma et  al., 
2020; Wang et al., 2020), this review will not focus on this aspect.

MANIPULATION OF FERTILIZATION AND 
WATERING REGIMES

Seed storage proteins can account for 40–60% of wheat processing 
quality (Békés et  al., 2006), and those unaccounted quality 
variations can be  attributed to environmental factors. In wheat 
production, fertilization and watering strategies are also often 
considered for quality improvement (Li et  al., 2018, 2019b; 
Yu et  al., 2018a, 2021). As nitrogen (N) is one of the most 
important and essential elements for wheat, N fertilizer is 
usually the most efficient input for simultaneously increasing 
grain protein content and grain yield in wheat production 
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(Zebarth et  al., 2007; Malik et  al., 2013; Zhen et  al., 2018, 
2020; Zhong et  al., 2018, 2020; Ding et  al., 2020; Xia et  al., 
2020; Hermans et  al., 2021; Landolfi et  al., 2021; Lyu et  al., 
2021; Dong et  al., 2022; Liu et  al., 2022; Ma et  al., 2022). 
Kichey et  al. (2007) demonstrated that 50–95% of nitrogen in 
mature grains is derived from the remobilization of nitrogen 
stored in the tissues before anthesis. However, nitrogen applied 
later in the growth period, namely, at anthesis or during grain 
filling, often increases grain protein content (Gooding and 
Davies, 1992; Sultana et  al., 2017; Zhong et  al., 2018, 2020). 
Li et al. (2018, 2019b) reported that nitrogen application during 
the grain filling period in winter wheat can significantly increase 
the uptake and accumulation of nitrogen. Yu et  al. (2018a) 
reported that apart from the influence of genotype, grain yield 
and protein content have similar responses to nitrogen availability, 
with the former being slightly more sensitive than the latter. 
Furthermore, Yu et  al. (2018a) proposed an N-mediated 
mechanism for protein polymerization in wheat grains: N 
promotes PPIase SUMOylation by interacting with SUMO1, 
facilitating the transport of PPIase into cytoplasm to support 
the formation of protein polymers (Yu et  al., 2018a; Figure  1). 
Zhong et al. (2018, 2020) reported that at the same N application 
rate (240 kg ha−1), N topdressing can better promote the protein 
content and quality of wheat grains at the emergence of the 
top first leaf than at the emergence of the top third leaf of 
the main stem. The timing of N topdressing can significantly 
regulate γ-gliadins and HMW-GSs, while has almost no effect 
on the LMW-GS level, leading to a higher HMW-GS/LMW-GS 
ratio (Zhong et al., 2018). Furthermore, a delay of N topdressing 
was found to alter the grain hardness and flour allergenicity 

(Zhong et  al., 2019). Ding et  al. (2020) found that an increase 
in total N provision (210–270 kg ha−1) in the Yangtze River 
basin of China could enhance wheat grain yield, grain protein 
content, and nitrogen efficiency, with the appropriate topdressing 
timing and N application dose depending on the environment. 
Moreover, the biotic and abiotic stresses during wheat growth 
also significantly affect the quality of wheat (Duan et al., 2020). 
Among various stresses, drought has been identified to have 
a severe negative impact on wheat quality, particularly at the 
early grain filling stage (Gu et  al., 2015). Usually, drought can 
cause stomatal closure, inhibit photosynthesis, increase 
respiration, and ultimately reduce starch biosynthesis, thereby 
leading to low yield of plants (Deng et  al., 2018; Zhu et  al., 
2020). However, on the other hand, drought can enhance the 
content of wheat storage proteins to contribute to improved 
baking quality (Dong et  al., 2012; Gu et  al., 2015; Zhou et  al., 
2018). Different watering conditions were found to result in 
significant differences in the phosphorylation level of 
corresponding phosphoproteins in wheat grains (Zhang et  al., 
2014a). The changes in protein and starch synthesis during 
drought may be  ascribed to post-translational protein 
modifications such as phosphorylation (Zhang et  al., 2014a; 
Xia et  al., 2018).

To reduce the yield loss caused by drought, moderate to 
high amounts of nitrogen fertilizer is often applied during 
wheat growth. A recent study showed that high-nitrogen 
fertilization under drought can increase the enzymatic protein 
synthesis for nitrogen and carbohydrate metabolism (Duan 
et  al., 2020). Liu et  al. (2022) reported that high-nitrogen 
treatments under drought conditions can either independently 

FIGURE 1 | Proposed N-regulated mechanism for wheat grain protein polymerization in the cytoplasm. ER: endoplasmic reticulum, BIP2: luminal-binding protein 2 
precursor, SUMO1: small ubiquitin-related modifier 1, and PPIase: peptidyl-prolyl cis-trans isomerase.
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or coordinately facilitate the accumulation of wheat storage 
protein and gluten macropolymer, as well as improve lipid 
accumulation and protein secondary structure. The content of 
random coils and β-sheets of gluten proteins was also increased 
(Liu et  al., 2022). These changes can contribute to the 
improvement of baking quality. Moreover, irrigation strategies 
under drought conditions have great impacts on crop yield 
and quality (Flagella et  al., 2010; Xu et  al., 2018b; Jha et  al., 
2019; Li et  al., 2019b, 2021a). Li et  al. (2021a) proposed an 
irrigation method that integrates micro-sprinkling irrigation 
and fertilizer, which could synergistically improve the grain 
yield and protein content of winter wheat. Compared with 
conventional irrigation, this method can reduce the total amount 
of water use and provide water and nitrogen at later growth 
stages, making more water and nitrogen available to wheat 
plants after flowering, which can reduce the canopy temperature 
and significantly delay leaf senescence and finally enhance the 
grain yield and protein content simultaneously.

Also, studies of glutamine synthetase activity in wheat developing 
grains and flag leaves have demonstrated that high-nitrogen 
availability facilitates the participation of glutamine in biological 
processes (Yu et  al., 2018a, 2021; Zhong et  al., 2018, 2020). A 
number of studies have revealed that application of sulfur fertilizer 
can significantly improve wheat quality (Zhao et  al., 1999a,b; 
Luo et  al., 2000; Yu et  al., 2021). Based on the differences in 
the distribution of cysteine residues among wheat gluten subunits, 
wheat storage proteins can be  categorized into three types of 
subunits, including sulfur-poor subunits (ω-gliadins), sulfur-
medium subunits (HMW-GS and α/β-gliadins), and sulfur-rich 
subunits (LMW-GS and γ-gliadins; Shewry et  al., 1995). It is 
worth noting that this classification is based on the number of 
cysteine residues within each subunit instead of the total sulfur 
amount (Lindsay and Skerritt, 1999; Wieser, 2007; note: apart 
from cysteine, methionine is another sulfur containing amino 
acid). Since the disulfide bond is believed to be  the foundation 
of gluten rheological properties, for a long time, it has been 
generally believed that sulfur’s positive effects on wheat quality 
are implemented through mediating the gluten component ratios 
based on their sulfur or cysteine contents (Ma et  al., 2019). 
However, Yu et al. (2021) recently proposed a different regulatory 
mechanism through proteomics, transcriptomics, metabolomics, 
and field experiments (Figure  2). It clearly demonstrated that 
sulfur does not mediate the gluten component ratios based on 
their sulfur or cysteine contents (Yu et  al., 2021). Their study 
showed that the application of sulfur enhances the accumulation 
of free glycine at the beginning of grain filling and then promotes 
the participation of glycine in glutenin biosynthesis. Glycine 
belongs to aspartate acid family, and its content disparity between 
gliadins (1.75%) and glutenins (13.33%) marks the main difference 
of the two gluten components (Yu et al., 2021). A higher content 
of free glycine under sulfur fertilizer treatment can more 
significantly promote the biosynthesis of glutenins than that of 
gliadins, resulting in a high glu/gli ratio (Yu et  al., 2021). The 
gene network regulating the biosynthesis and accumulation of 
glutenin components is mediated by S-adenosylmethionine (SAM; 
Yu et  al., 2021). In addition, a high concentration of SAM 
indicates that more secondary metabolites are involved in the 

final development of grains. Chen et  al. (2014) found that the 
downregulation of SAM decarboxylase genes would reduce the 
rice grain length, pollen viability, seed setting rate, grain yield 
per plant, and abiotic stress (salinity, drought, and chilling) 
tolerance, indicating a positive effect of SAM on rice yield.

GENE NETWORKS REGULATING 
STORAGE PROTEIN BIOSYNTHESIS

The wheat storage protein genes have spatiotemporal specific 
expression, and generally function at the middle and late stage 
of seed development (Diaz et  al., 2002; Dong et  al., 2007; Gao 
et al., 2021). Although wheat storage protein synthesis is regulated 
by many factors, it is mainly regulated at the transcriptional 
level (Gao et  al., 2021). In recent years, important progress 
has been achieved in research on the regulation of wheat storage 
protein synthesis (Table  1). A series of conserved cis-elements 
in the promoter region of wheat seed storage protein genes 
have been identified, including the bZIP binding sites (GCN4-
like motifs, ATGAG/CTCAT and G-box motif, TTACGTGG), 
DNA binding with one finger (DOF) binding sites (PB-box, 
TGTAAAG), R2R3MYB-binding sites (AACAAC), RY repeat 
sites (RY-box, CATGCA), and other basal promoter elements 
(Aryan et  al., 1991; Juhasz et  al., 2011; Ravel et  al., 2014; Guo 
et  al., 2015; Makai et  al., 2015). Thirty conserved motifs and 
three conserved cis-regulatory modules (CCRMs) were found 
within the 1-kb region upstream of the start codon of Glu-1: 
CCRM3 (−950 to −750), CCRM 2 (−650 to −400), and CCRM 
1 (−300 to −101; Li et al., 2019a). All three CCRMs can regulate 
the expression of wheat storage proteins and the 300 bp promoter 
(−300 to −1) can ensure the precise initiation of Glu-1 gene 
expression in the endosperm at 7 days after flowing and maintain 
its expression pattern during seed development. Further analysis 
revealed that CCRM1-1 (−208 to −101) is the core region for 
maintaining the endosperm-specific expression of Glu-1 genes 
(Li et al., 2019a). In addition, various transcription factors (TFs) 
involved in gluten gene regulation have been identified, such 
as bZIP, DOF, MYB (myeloblastosis), and B3. A bZIP transcription 
factor SPA (storage protein activator) can bind to the GCN4-
like motif (GLM and ATGAG/CTCAT) in the promoters of 
HMW-GS genes to enhance their expression in common wheat 
(Albani et  al., 1997; Conlan et  al., 1999; Ravel et  al., 2014). 
Averagely, the expression intensity of SPA-B is 10- and 7-fold 
that of SPA-A and SPA-D, respectively (Ravel et  al., 2009). SPA 
markers are associated with dough viscoelasticity such as dough 
strength, extensibility, and tenacity (Ravel et  al., 2009). As a 
bZIP transcription factor, the SPA Heterodimerizing Protein 
(SHP) prevents the binding of SPA to the cis-motifs and represses 
the synthesis of both LMW-GS and HMW-GS (Boudet et  al., 
2019). Thus, the glu/gli ratio is decreased in common wheat 
(Boudet et al., 2019). Wheat prolamin-box binding factor (WPBF), 
a DOF transcription factor, was first identified from wheat as 
a homolog of barley prolamin-box binding factor (BPBF; Dong 
et  al., 2007). WPBF binds the prolamin box of the gliadin 
promoter region and interacts with TaQM (cloned from the 
wheat root cDNA library; QM, initially found as a putative 
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tumor suppressor gene) to activate the expression of LMW-GS 
and gliadin genes during wheat grain development (Dowdy 
et  al., 1991; Mena et  al., 1998; Dong et  al., 2007). TaPBF-D, 
another DOF transcription factor, binds in vitro the prolamin 

box of Glu-1By8 and Glu-1Dx2 promoters and decreases their 
C-methylation level, and its overexpression was found to enhance 
HMW-GS accumulation in wheat grains (Zhu et  al., 2018). 
TaGAMyb, a TF of the R2R3MYB family, binds to a C/TAACAAA/

FIGURE 2 | Sulfur-mediated regulation network of wheat gluten component biosynthesis (modified from Yu et al., 2021).

TABLE 1 | The identified transcription factors regulate seed storage protein synthesis in wheat.

Transcription factor Function Target gene Cis motif Sequence Reference

SPA Transcriptional activation glutenin promoters G-box; GLM ATGAG/CTCAT; ACGTG Albani et al., 1997; 
Ravel et al., 2014

SHP Transcriptional repression glutenin promoters G-box; GLM ATGAG/CTCAT; ACGTG Boudet et al., 2019
WPBF Transcriptional activation gliadin gene promoters P-box TGTAAAG Mena et al., 1998; 

Dong et al., 2007
TaPBF-D Transcriptional activation HMW-GS gene promoters P-box TGTAAAG Zhu et al., 2018
TaGAMyb Transcriptional activation HMW-GS gene promoters unnamed C/TAACAAA/CC Diaz et al., 2002; Guo 

et al., 2015
TaFUSCA3 Transcriptional activation HMW-GS gene promoters RY-box CATGCA Sun et al., 2017
TaNAC019 Transcriptional activation glutenin promoters unnamed [AT]NNNNNN[ATC][CG]A[CA]GN[ACT]A Gao et al., 2021
TaNAC100 Transcriptional repression HMW-GS gene promoters unnamed CATGT Li et al., 2021b
TaSPR Transcriptional repression SSP gene promoters unnamed CANNTG Shen et al., 2021
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CC-like motif in the HMW-GS gene promoter, recruits the 
histone acetyltransferase TaGCN5, and activates the expression 
of the Glu-1Dy by facilitating the acetylation of histones H3K9 
and H3K14 (Diaz et  al., 2002; Guo et  al., 2015). TaFUSCA3 
is a wheat B3-superfamily TF specifically binding to the RY 
motif of the Glu-1Bx7 promoter region to activate the Glu-1Bx7 
expression (Sun et  al., 2017). TF interactions between TaSPA 
and TaFUSCA3 were discovered (Sun et  al., 2017). It is well 
known that NAM-ATAF-CUC (NAC) TFs participate in a series 
of biological processes, including abiotic and biotic stress responses 
and organ development (Uauy et  al., 2006; Xue et  al., 2011; 
Liang et  al., 2014; Borrill et  al., 2017; Guerin et  al., 2019). 
Recently, some NAC TFs (TaNAC019, TaNAC100, and TaSPR) 
in wheat have been identified to regulate grain storage protein 
synthesis (Gao et  al., 2021; Li et  al., 2021b; Shen et  al., 2021). 
TaNAC019, a wheat endosperm-specific NAC TF, binds to the 
motif ([AT]NNNNNN[ATC][CG]A[CA]GN[ACT]A) in the 
promoter region of Glu-1 genes. In coordination with TaGAMyb, 
it directly activates the expression of HMW-GS genes and 
indirectly modulates that of TaSPA (Gao et  al., 2021). In a 
wheat natural population, two allelic variations of TaNAC019-B, 
TaNAC019-BI, and TaNAC019-BII were identified (Gao et  al., 
2021). TaNAC019-BI can improve flour processing quality and 
is an important candidate gene for wheat quality improvement 
(Gao et  al., 2021). However, two recent studies demonstrated 
that both TaNAC100 and TaSPR function as repressors of seed 
storage protein expression in common wheat, indicating that 
further research is needed for better utilization of such TFs in 
breeding (Li et al., 2021b; Shen et al., 2021). The TaDME (wheat 
DEMETER) gene encoding 5-methylcytosine DNA glycosylase 
on the long arm of group  5 chromosomes suppresses the 
LMW-GS and gliadin gene expression by activating the 
demethylation of their promoters in the endosperm (Wen et al., 
2012). It is worth noting that these studies have been mainly 
focused on the molecular regulatory mechanism of HMW-GS, 
LMW-GS, gliadins, or the total seed storage protein, and future 
research should be  targeted at the regulatory mechanism for 
each subtype of gluten components, including different LMW-GSs 
(i-, m-, s-,α-, ω-, and γ-types) and gliadin components (α/β-, 
ω-, and γ-gliadins), so as to fine-tune wheat processing quality 
and improve the quality of wheat products for human consumption 
(Rasheed et  al., 2014; Ma et  al., 2019).

HEALTH EFFECTS OF WHEAT GRAINS 
AND THE UNDERLYING REGULATORY 
MECHANISM

Gluten can cause human diseases related to digestion of wheat 
flour products, such as celiac disease, non-celiac gluten sensitivity, 
and gluten allergy (Scherf et  al., 2016a). The intake of too 
much proline-rich gluten can reduce pepsin activity in the 
gastrointestinal tract, resulting in the accumulation of flour 
polypeptides rich in Pro and Gln in the small intestine (Scherf 
et  al., 2016a). Previous studies have demonstrated that gliadins 
are the most toxic wheat protein components related to celiac 

disease, and glutenins are classified as non-toxic or weakly 
toxic (Barone and Zimmer, 2016; Scherf et  al., 2016a,b). In 
order to reduce the toxicity of wheat gluten, a variety of flour 
treatment methods have been developed, including chemical, 
physical, and enzymatic methods (Buddrick et al., 2015; Scherf 
et  al., 2018; Xue et  al., 2019; Abedi and Pourmohammadi, 
2021). In addition, some genetic methods have also been used 
to knock out or silence gliadin coding genes. Generally, RNAi 
can reduce the content of total gliadin in wheat gluten by 
60–80% (Gil-Humanes et  al., 2010). However, some negative 
effects on the processing quality were observed in RNAi wheat 
lines (Gil-Humanes et al., 2010, 2014). For instance, CRISPR-Cas9 
editing was applied to silence the α-gliadin gene to reduce 
immune reactivity by 85%, but the treatment also greatly 
reduced the gluten content by 85% and led to an obvious 
decline in processing quality (Sánchez-León et  al., 2018). At 
present, the greatest challenge is to find a technical solution 
to reduce wheat gliadin and increase gluten content with high 
yield and high total protein.

Yu et  al. (2021) showed that sulfur treatment can reduce 
sulfur-poor ω-gliadins (the most abundant among all gliadin 
subtypes) by up to 31.4% in the total gluten, particularly the 
ω5-gliadin known to cause WDEIA (wheat-dependent exercise-
induced anaphylaxis disease), which could be  reduced by 
83.9%. The α/β-gliadins, ω1,2-gliadins, and γ-gliadins, which 
are known to cause celiac disease, were also reduced by up 
to 25.9% under sulfur treatment. Carcinogen acrylamide is a 
processing contaminant usually formed from free asparagine 
and reducing sugars through the Maillard reaction (Mottram 
et  al., 2002; Stadler et  al., 2002; Zyzak et  al., 2003). It has 
been discovered in a range of baked, fried, roasted, and toasted 
foods, including bread, pies, cakes, biscuits, batter, and breakfast 
cereals (Raffan and Halford, 2019). Since free asparagine is 
the major precursor for the formation of acrylamide during 
food processing especially high temperature baking, its 
accumulation mechanism in wheat grains has emerged as a 
hot research topic (Mottram et  al., 2002; Stadler et  al., 2002; 
Raffan et  al., 2021). In living cells, aspartate is the substrate 
of asparagine, which is formed through enzymes that catalyze 
the ATP-dependent transfer of an amino group from glutamine 
(Gaufichon et al., 2010). Five asparagine synthetase genes have 
been found in the wheat genome, including TaASN1, TaASN2, 
TaASN3.1, TaASN3.2, and TaASN4 (Xu et  al., 2018a; Raffan 
and Halford, 2021). Among these genes, TaASN2 is seed-
specific with the highest expression in the embryo (Gao et al., 
2016a; Curtis et  al., 2019). It has been revealed that free 
asparagine is commonly present in wheat even under normal 
growth conditions (Curtis et  al., 2018). Both environmental 
factors and agricultural practice can affect its accumulation 
(Zhong et  al., 2018, 2020). In addition, adverse growing 
conditions such as sulfur deficiency and pathogen infection 
can increase asparagine concentration (Raffan and Halford, 
2019). World Health Organization1 has stated that acrylamide 
in the diet has potential cancer-causing effects. The food 
industry is in demand of available raw materials with lower 

1 https://www.who.int/
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acrylamide-forming potential. So far, numerous studies have 
been carried out to reduce acrylamide in wheat products, 
mainly by reducing the free asparagine concentration in wheat 
grains. For example, Muttucumaru et  al. (2006) reported that 
sulfur application can reduce the asparagine accumulation in 
mature wheat grains, making the wheat products healthier 
for human daily consumption. More recently, Raffan et  al. 
(2021) successfully reduced the asparagine concentration through 
CRISPR-Cas9 approach to knock out the six alleles of TaASN2, 
a seed-specific asparagine synthetase gene in wheat.

CONCLUSION

The formation mechanism of wheat processing quality has been 
extensively studied via a broad range of biological approaches. 
Sulfur deficiency in soil has been reported as a global issue, 
which has negative impacts on wheat quality. An adequate 
level of sulfur fertilization is highly recommended in modern 
wheat farming to gain high processing quality as well as 
desirable nutritional value and healthy effect of the wheat 
end-products. Nitrogen fertilization after flowering should 
be  considered for better processing quality. In the predicted 
drought season, low-protein content wheat cultivars may 
be selected for cultivation so that the grain starch can be allocated 
with more biosynthesis capacity to reduce yield loss. Molecular 
biological research has been mostly focused on the regulatory 
mechanism of the biosynthesis of various gluten components, 

which has led to the discovery of some key TFs that influence 
the quality. In future, TFs regulating specific HMW-GS subunits, 
LMW-GS types, and particularly the gliadin subtypes should 
be  focused so that the relevant molecular markers can be used 
in breeding to meet a broad range of consumer needs.
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