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The trait-based approach in plant ecology aims at understanding and classifying the diversity 
of ecological strategies by comparing plant morphology and physiology across organisms. 
The major drawback of the approach is that the time and financial cost of measuring the traits 
on many individuals and environments can be prohibitive. We show that combining near-
infrared spectroscopy (NIRS) with deep learning resolves this limitation by quickly, 
non-destructively, and accurately measuring a suite of traits, including plant morphology, 
chemistry, and metabolism. Such an approach also allows to position plants within the well-
known CSR triangle that depicts the diversity of plant ecological strategies. The processing 
of NIRS through deep learning identifies the effect of growth conditions on trait values, an 
issue that plagues traditional statistical approaches. Together, the coupling of NIRS and deep 
learning is a promising high-throughput approach to capture a range of ecological information 
on plant diversity and functioning and can accelerate the creation of extensive trait databases.

Keywords: Arabidopsis thaliana, near-infrared spectroscopy (NIRS), multivariate analysis, machine learning, 
functional traits, metabolomics, trait-based ecology

INTRODUCTION

In trait-based ecology, the comparison of plant phenotype across multiple species aims at identifying 
general trends of variation to describe the biodiversity of plant forms and functions (Grime, 
1988; Keddy, 1992; Díaz et  al., 2016; Garnier et  al., 2016). Ecological strategies are characterized 
qualitatively and quantitatively from the measurement of key functional traits, i.e., morphological, 
physiological, and phenological parameters that determine plant growth and reproduction (Violle 
et  al., 2007). However, our understanding of plant diversity with comparative approaches is 
impeded by three main limitations. First, measuring the traits that describe ecological strategies 
on many individuals remains laborious. Second, intraspecific trait variability and plasticity to 
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the environment still remain largely unconnected to traditional 
cross-species studies (but see Albert et al., 2010; Anderegg et al., 
2018). Third, we  need to clarify if and how plant (“soft”) traits 
used classically to describe ecological strategies are connected 
to plant metabolism and physiology (“hard” traits).

The development of near-infrared spectroscopy (NIRS) has 
provided a unique, fast, and reliable tool enabling the collection 
of a myriad of traits non-destructively (Foley et al., 1998; Cozzolino 
et  al., 2001; Pasquini, 2018; Silva-Perez et  al., 2018). NIRS 
measures the light reflected from a sample after irradiating it 
with wavelengths ranging from visible (VIS, 400–700 nm), near-
infrared (NIR, 700–1,100 nm), to shortwave infrared (SWIR, 
1100–2,500 nm). This provides a signature of the physical and 
chemical characteristics of the sample (Box  1). NIRS has been 
widely used for determining chemical traits in various fields. 
For instance, it is extensively used to characterize chemical 
products in pharmaceutical, agricultural, and food sectors 
(Shepherd and Walsh, 2007; Wójcicki, 2015; Biancolillo and 
Marini, 2018; Pasquini, 2018). In plant science, NIRS takes an 
increasingly important place as a high-throughput, cost-efficient 
method for the characterization of biodiversity (Arslan et  al., 
2018; Silva-Perez et  al., 2018; Burnett et  al., 2021; Kothari et  al., 
2021). For instance, it is widely used to predict differences in 
leaf palatability, digestibility, and decomposability—through lignin 
and fiber content—between species (Birth and Hecht, 1987; 
Andrés et al., 2005). The advantages of this method are numerous: 
spectral measurements are extremely rapid, taking only a few 
seconds, a single spectral measurement simultaneously captures 
multiple diverse plant traits (Petit Bon et  al., 2020), minimal 
or no sample preparation is required, and the measurements 
are non-destructive which allows to track trait changes over 
time and avoids interfering with the organism.

While NIRS data are simple to acquire and rapidly generate 
a very large amount of information, they also require extensive 
post-processing, via chemiometric and multivariate statistical 

BOX 1 | Principle of near−infrared spectroscopy (NIRS) for plant 
characterization

The leaf spectral reflectance is based on the low reflectivity in the visible part 
of the spectrum (400–700 nm), due to a strong absorption by photosynthetic 
pigments, and the high reflectivity in the near infrared (700–1,100 nm) 
produced by a high scattering of light by the leaf mesophyll tissues (Knipling, 
1970). For instance, in the SWIR part of the spectrum (1100–2,500 nm), the 
reflectance intensity is affected by the water, cellulose, protein, and lignin 
content of plant tissues (Rascher et al., 2010). Healthy leaves emit radiation 
in the thermal infrared band (≈10 μm) according to their temperature, 
because of their high water content (emissivity between 0.97 and 0.99). The 
leaves appear green because the green light band (550 nm) is reflected 
relatively efficiently when compared with the blue, yellow, and red bands, 
which are absorbed by photoactive pigments. This absorption at different 
wavelength produces a spectrum of light reflectance (Figure I), which can 
be treated as a “signal” of the leaf physical and chemical properties.
The physical association between leaf properties and light reflectance is 
particularly useful to investigate leaf composition, functioning, and diversity. 
Different leaves will have different spectral signatures depending on their 
structure and chemical composition. For example, leaf nitrogen concentrations 
are associated with wavelengths absorbed by chlorophyll a and b in the visible 
part of the spectrum (400–700 nm), the spectral red edge (700–760 nm), and 
proteins in the SWIR (1,300–2,500 nm; Gitelson and Merzlyak, 1997; Kokaly, 
2001). In the SWIR (SWIR; 700–1,300 nm), structures such as palisade cell 
density are important determinants of the spectral reflectance because of the 
very low effective photon penetration distance at these wavelengths.

BOX 2 | The promise of deep learning to analyze NIRS

Chemometrics, the science of extracting information from chemical 
systems, faces multiple challenges while studying the link between samples 
near infrared spectra and desired traits. Partial least square regression 
(PLSR), the reference method, is well designed to address many of these 
but still exhibit some weakness that native properties and tools associated 
with deep learning may allow to tackle.
First, the inherent and unwanted variability associated with the 
spectrometric measure result in a highly noisy signal (e.g., environmental, 
machine, or sample variability). To deal with it, reference methods rely on 
pretreatment (i.e., filtering) of the signal and removal of the spectral 
outliers. Pretreatment works by removing noise and linearizing the 
response of a variable. As the number of possible pretreatments increases 
with research progress, finding the optimal solution empirically becomes 
more and more a challenge. Moreover, pretreatment development is 
optimized for its suitability to filter spectra in combination with a reference 
model (i.e., PLSR in most situations). This may result in suboptimal 
solution and loss of information. Conversely, some deep learning 
algorithms are particularly efficient in filtering input signals. Cui and Fearn 
(2018) illustrated how the convolutional layer can continually tune the 
variables in the filter, until it finds the best form of preprocessing. This 
means the spectroscopic preprocessing done by the convolutional layer 
is more flexible and saves a lot of effort when building new calibrations. In 
addition, because PLSR is highly sensitive to outliers, a common 
technique aims to remove spectra based on distance metrics and arbitrary 
threshold (Wadoux et al., 2021). This normative procedure could lead to 
the loss of informative spectra, particularly while dealing with small 
datasets.
In deep learning, many techniques (e.g., robust loss function and early 
stopping) allow us to deal with noise. This includes original signal noise but 
also artificially added noise allowing for data augmentation and 
regularization in order to minimize overfitting and increase robustness. 
Deep learning allows keeping all spectra without questioning the 
representativeness of a highly complex and spatially explicit signal (i.e., the 
spectra) based on a simple global distance.
Second, wavelength range and resolution of the actual spectrometer allow 
for a highly multivariate signal. Reference methods to deal with this often 
imply dimension reduction (e.g., PLSR), leading to a loss of information. The 
ability of multilayer networks trained with gradient descent to learn complex 
high dimensional non-linear mappings makes them obvious candidates. 
Indeed, deep networks proved to have the theoretical guarantee that they 
can avoid the curse of dimensionality for many problems (Poggio et  al., 
2017). Among deep learning algorithms, convolutional neural networks 
(CNN) are known to efficiently take care of variable selection. And as already 
mentioned, deep learning algorithms come with multiple useful techniques to 
deal with the overfitting risk (e.g., batch normalization, dropout, early 
stopping, and noise generation).
Finally, one of the main challenges for chemometrics is to infer traits values 
based on the reflectance of a limited number of chemical bonds that may 
be shared by multiple compounds (i.e., molecules). Therefore, the prediction of 
the compound’s content relies on a large number of very indirect relationships 
between reflectance values. This is already true for chemical composition (e.g., 
most carbohydrates exhibit only limited differences in their chemical 
composition) but it is even more obvious while working on functional traits 
resulting from multiple physiochemical changes. Moreover, the functional 
properties potentially arise from non-linear relationship or threshold, 
compensatory, moderator, and mediator effects at tissue, molecule, and 
chemical bounds scales. These multiscale non-linear relationships are hardly 
modeled by reference methods such as partial least squares regression 
(PLSR). The multilayer nature of deep learning algorithms allows for the 
identification of multiscale patterns and easily tackles non-linearity.
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analyses. Usually, spectral information can be  exploited through 
the development of calibration models relating spectra and 
reference trait data. Calibration models are built with a 
representative subsample of a complete data set, in terms of the 
range of spectral variation treated (Foley et  al., 1998). After 
building and validating models linking plant spectra to 
independently measured traits in the calibration dataset, the trait 
values of new samples are predicted from their spectra using 
these models. For that, different statistical methods are commonly 
used to predict trait data from spectra, including partial least 
squares regression (PLSR; Wold et al., 1983), principal components 
analysis (Dreccer et  al., 2014), and 2D correlation plots 
(Darvishzadeh et  al., 2008). However, the performance of these 
methods, and especially PLSR, in estimating plant traits has 
been shown to vary significantly across species and growth 
conditions (Fu et  al., 2020). In recent years, machine learning 
approaches have become widespread in multiple fields due to 
their better predictive performance. Machine learning and more 
particularly deep learning techniques—specific machine learning 

algorithms using a series of neural networks (Box  2)—are 
promising methods to improve the statistical analysis of  
high-throughput data (Mishra and Passos, 2021).

Spectral predictions of functional traits have been used to 
screen interspecific diversity across individual leaves, canopies, 
and biomes (Doughty et  al., 2011; Roelofsen et  al., 2014; Serbin 
et  al., 2016; Wu et  al., 2016; Chavana-Bryant et  al., 2017). Yet, 
investigating intraspecific variability is crucial to connect global 
trait diversity to the underlying mechanisms of selection, genetic 
differentiation, and evolutionary adaptation (Violle et  al., 2014). 
In this context, the model species Arabidopsis thaliana is an 
interesting model to test the predictive power of plant diversity 
with NIRS. Indeed, this species exhibits a large range of functional 
trait variation across its geographic range (Lasky et  al., 2012; 
May et  al., 2017; Price et  al., 2018; Takou et  al., 2018; Sartori 
et  al., 2019), and hundreds of natural ecotypes have been fully 
sequenced to examine the genetic determinism of this variation 
(1001 Genomes Consortium, 2016). Ecological studies have taken 
advantage of this feature to examine the evolution of plant strategies 

FIGURE I | Leaf reflectance as a function of light wavelength. All spectrum available in the database used to analyze the ability of spectral reflectance to predict 
trait values and plant categories are represented here and colored according to the experiment they come from (see Supplementary Table S1 and 
Supplementary Material for details about experiments, conditions, as well as number of spectra per experiment). Colored lines represent the mean absorbance 
spectra, light grey lines represent the median absorbance spectra, dark shaded area represents spectra with absorbance ranging between the 5 and 95th 
percentiles, and light shaded area represents the entire absorbance range covered by the spectra.
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in response to climate (Price et  al., 2018; Vasseur et  al., 2018a,b; 
Exposito-Alonso et  al., 2019; Exposito-Alonso, 2020; Lorts and 
Lasky, 2020). In addition, this model species has been widely 
used to examine metabolic and physiological features (Chan et al., 
2010; Tohge et  al., 2018; Wu et  al., 2018). Advanced molecular 
techniques—“omics” approaches—allow accurate quantification of 
transcriptome, proteome, metabolome profiles, and fluxome (Beale 
et  al., 2016).

On the one hand, we  need to increase sample size across 
species, genotypes, and environments to obtain sufficient statistical 
power for broad generalization and predictions. On the other 
hand, the time-consuming careful methods required to measure 
physiologically meaningful (“hard”) traits limit studies to small 
sample sizes. We  argue that a promising avenue to avoid this 
trade-off between generality and feasibility is to combine NIRS 
and deep learning computation. In this perspective article, 
we  document how NIRS and deep learning paves the way for 
a quick and accurate quantification of plant trait diversity, ecological 
strategies, and physiological adaptation. In addition to examples 
from the literature, we  compiled 21,032 spectra and 108 trait 
measurements from published and unpublished datasets 
(Supplementary Table S1) across 5,683 Arabidopsis thaliana plants 
grown in various conditions. Using this database and examples 
from the literature, we first show that NIRS can accurately predict 
leaf functional traits and identify major plant ecological strategies. 
Second, we  show that NIRS predicts the growth conditions and 
the plant phenotypic response to stress. Finally, we provide evidence 
that NIRS can give access to new traits and functions, notably 
those related to plant life history, physiology, and metabolism.

NIRS QUANTIFIES FUNCTIONAL TRAIT 
VARIABILITY AND SUMMARIZES PLANT 
ECOLOGICAL STRATEGIES

A key goal of trait-based ecology is to determine the physiological 
mechanisms of plant adaptation to the environment through the 
measurement of multiple traits related to resource-use, growth, 
development, and phenology. Recent efforts based on analyzing 
interspecific trait diversity have revealed functional tradeoffs at 
both local and global scales (Messier et  al., 2016), which suggests 
that plant diversity is shaped by universal constraints. For instance, 
Díaz et al. (2016) recently analyzed more than 45,000 plant species 
and demonstrated that their diversity falls along two main phenotypic 
dimensions: one related to plant size, which affects competitive 
ability and dispersal; the other related to leaf anatomy, chemical 
composition, and longevity. This second phenotypic dimension, 
called the leaf economics spectrum (Wright et  al., 2004), trades 
off traits positively related to nutrient retention—such as leaf dry 
matter content (LDMC), leaf nitrogen content (LNC), and leaf 
life span—with traits positively related to carbon acquisition—such 
as specific leaf area (SLA) and leaf photosynthetic rate. Importantly, 
the same trade-off has been observed within species (Vasseur 
et  al., 2012; Anderegg et  al., 2018; Sartori et  al., 2019).

Different theories have been proposed to categorize plant 
phenotypic diversity into ecological strategies related to plant 

adaptation to the environment. Among these theories, Grime 
(1974) proposed that the quantitative variation in plant strategies 
is expected to result from their adaptation to contrasting levels 
of resource availability and disturbance. Following this hypothesis, 
plant strategies can thus be  classified through a combination 
of three main axes, competitors (C), stress-tolerators (S), and 
ruderals (R; Grime, 1977, 1988). The “CSR” model suggests 
that the evolution of plant strategies is driven by trade-offs 
between resource capture and conservation, space occupancy, 
longevity, and dispersal. For instance, C-type plants invest 
resources into the growth of large organs to outcompete neighbors, 
S-type plants invest resources to conserve nutrients and protect 
tissues from stress damages, while R-type plants invest resources 
into rapid reproduction and propagule dispersal in highly 
disturbed environments. The CSR strategies are often depicted 
in a triangle with the primary types occupying the corners 
and intermediate forms, composed of a combination of types 
(e.g., “SR” and “CS”), arrayed within the triangle. The quantitative 
variations between CSR strategies are expected to result from 
plant adaptation to contrasting levels of abiotic stresses and 
disturbance. CSR variation has also been reported within 
species—notably in A. thaliana—and explained by evolutionary 
adaptation to the environment (May et  al., 2017; Vasseur et  al., 
2018b). However, measuring through destructive methods, the 
numerous traits that enable the quantification of ecological 
strategies within—and a fortiori across—species remains an 
obstacle for the large-scale analysis of plant populations, which 
therefore limits our ability to temporally follow the relationships 
between plant traits, strategies, and the environment.

Using convolutional neural network (CNN; Box 2, 
Supplementary Material, Supplementary Table S2) to analyze 
our database of spectra and traits in A. thaliana, we  show 
that most leaf traits were accurately predicted (Table  1). For 
instance, only leaf relative water content (RWC) and the leaf 
isotopic ratio of nitrogen (δ15N) had validation R2 below 0.65 
(Table 1). Yet, previous studies showed that δ15N can be predicted 
with NIRS (Kleinebecker et al., 2009). Here, correlations between 
measured and predicted values were the highest for leaf traits 
associated with the leaf economics spectrum (SLA, LDMC, 
and LNC, all r2 > 0.85; Table  1). Importantly, for these traits, 
the correlations calculated from the predicted data were the 
same as those calculated from the direct measurements (p > 0.05; 
Figures  1A–C). Previous studies showed that SLA can 
be accurately measured with NIRS from the level of individual 
leaves to the level of the tree canopies (Curran, 1989; Lymburner 
et  al., 2000; Asner and Martin, 2008; Asner et  al., 2009; 
Jacquemoud et  al., 2009; Kokaly et  al., 2009; Ecarnot et  al., 
2013; Singh et  al., 2015; Serbin et  al., 2016). Other LES traits 
have been shown to be  well predicted by NIRS (Ecarnot et  al., 
2013; Kattenborn et al., 2017, 2019). In addition, LNC, another 
LES trait, can also be  predicted using light reflectance at the 
individual leaf and at canopy levels (Sims and Gamon, 2002). 
Other traits related to resource-use and conservation can 
be  predicted with spectroscopy, such as leaf age and 
photosynthetic capacity (Doughty et  al., 2011; Chavana-Bryant 
et  al., 2017). Thus, NIRS can provide estimates of integrated 
properties, such as trait covariations, whole-plant traits, and 

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Vasseur et al. NIRS and Deep Learning

Frontiers in Plant Science | www.frontiersin.org 5 May 2022 | Volume 13 | Article 836488

strategies. Accordingly, traits such as plant growth rate and 
water use efficiency (estimated by δ13C; Farquhar et  al., 1989) 
were also well predicted in A. thaliana (r2 = 0.53 and 0.83, 
respectively; Table  1). By contrast, predictive performance was 
lower for plant life span here (r2 = 0.17), although previous 
studies showed that spectral profiles are able to capture key 
differences in plant life history (Ustin et  al., 2004). Plant 
ecological strategies depicted by CSR scores were highly predicted 
in our database (Table 1; Figure 1D), as were CSR intermediate 
categories (e.g., SR, R/SR, S/SC, and CS), with a prediction 
accuracy estimated at 70% (Table  2).

Consistent with previous studies (Le, 2020; Barradas et  al., 
2021; Mishra and Passos, 2021), our results show that NIRS 
coupled with deep learning is a powerful tool to assess phenotypic 
variations in plants. Using 15 functional and metabolomic 
traits, we show that deep learning methods outperform classical 
analytical techniques such as PLSR (Supplementary Table S3). 
Moreover, deep learning approaches have numerous advantages 
compared to PLSR (Box 2). In particular, it does not require 
preprocessing of the data (cleaning and standardization of the 
spectra and removal of outliers), which often depends on the 
user’s choice and differs from one dataset to another. Importantly, 
analyzing the spectral signature of plants with deep learning 
allows determining with reasonable accuracy the plant genotype. 
For instance here, genotype identity was correctly predicted 
for 64% of the tested accessions (Table 2), as previously observed 
in maize (Rincent et al., 2018). Such estimation opens promising 
avenues as an alternative to expensive sequencing technologies, 
as well as to combine genomics with phenomics.

MEASURING PLANT RESPONSES TO 
THE ENVIRONMENT WITH NIRS

Large-scale comparisons of ecological strategies have been performed 
with large databases of trait values measured on many species 

under various conditions, from lab benches to greenhouse, common 
garden, and field conditions (Kattge et  al., 2020). Although these 
trait databases are used to interpret plant adaptation to the 
environment, they surprisingly contain very little information about 
the response of the measured plant properties (demographics, 
growth rate, and traits) to the environment (Salguero-Gómez et al., 
2018). Indeed, comparative approaches generally focus on 
interspecific variation, considering a mean trait value per species 
and neglecting intraspecific variability and phenotypic plasticity 
(but see Albert et  al., 2010, 2011). For instance, CSR strategies, 
which should reflect environmental specialization and specific stress 
resistance, still remain largely unconnected to the plant evolutionary 
responses to biotic and abiotic stresses (Takou et  al., 2018).

Spectral measurements are widely used to design screening 
protocols for plant drought responses (Shepherd and Walsh, 2007; 
Barradas et al., 2021; Burnett et al., 2021). For example, Cabrera-
Bosquet et al. (2011) used spectra to accurately predict genotypic 
differences in the kernel and leaf water content in maize grown 
under different water treatments. In addition, spectral measurement 
is a promising method for detecting the severity of damage 
caused by pathogens, especially for those leaving no visible signs 
(Spinelli et  al., 2004; Sabatier and Rutherford, 2013). Indeed, 
healthy plants interact (absorb, reflect, emit, transmit, and fluoresce) 
with electromagnetic radiation in a manner different from that 
of infected or damaged plants (Li et  al., 2014).

To further explore the potential of NIRS as a predictive tool 
of plant stress level, we  used experimental data included in our 
database (Supplementary Material) from 30 genotypes of 
Arabidopsis thaliana subjected to water deficit combined with 
either high or low (freezing) temperatures (Estarague et al., 2021). 
All plant individuals were measured for leaf NIRS in the course 
of the treatment, and survival was visually recorded after the 
treatment. Both measured and CNN-predicted survival rates varied 
from 14 to 80% depending on the genotype, with an estimated 
accuracy of survival prediction of 91% in an external validation 
dataset (Table 2; Figure 2A). Importantly, spectral measurements 

TABLE 1 | Prediction accuracy for functional traits.

Variable n
Calibration Validation

SD R2 RMSE Bias Slope RPD

LDMC (mg g−1) 2,932 52.73 0.86 16.10 0.38 1.06 3.28
SLA (mm2 mg−1) 3,423 20.90 0.85 7.47 0.14 1.01 2.80
LNC (%) 1,961 2.18 0.93 0.53 −0.06 0.97 4.12
Leaf thickness (μm) 4,143 178.08 0.89 69.49 2.79 1.02 2.56
RWC (%) 1,421 22.06 0.17 4.52 0.40 1.27 4.88
LCC (%) 1,960 4.78 0.65 1.17 0.03 0.86 4.10
δ13C 1,222 1.59 0.83 0.62 −0.04 0.95 2.56
δ15N 1,223 3.76 0.28 1.83 −0.13 0.82 2.06
Plant lifespan (days) 1,403 10.55 0.17 8.01 −1.31 0.86 1.32
Plant growth rate (mg d−1) 701 0.01 0.53 0.00 0.00 0.96 1.94
C score (%) 2,905 10.25 0.88 3.28 −0.02 1.03 3.13
S score (%) 2,905 11.64 0.75 2.57 0.19 1.11 4.53
R score (%) 2,905 17.03 0.87 4.79 0.33 0.99 3.55

LDMC, leaf dry matter content; SLA, specific leaf area; LNC, leaf nitrogen content; RWC, relative water content; LCC, leaf carbon content; δ13C, fraction of 13C isotope; and δ15N, 
fraction of 15N isotope. CSR scores were estimated from leaf traits by the algorithm from Pierce et al. (2017). n is the total number of leaves used for modelling from our database 
that are associated with both trait and spectra measurements. All predictions have been obtained from convolutional neural network (CNN) models (see Supplementary Material 
for details). SD, standard deviation; RMSE, root mean square deviation; and RPD, relative percent difference.
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TABLE 2 | Prediction accuracy for five plant categories.

Calibration accuracy 
(%)

Validation accuracy 
(%)

Survival (2) 0.988 0.915
Genotypes (10) 0.831 0.640
Indoor/Outdoor (2) 0.998 1.000
CSR categories (11) 0.980 0.700
Treatment (2) 0.955 0.714

Plant survival has two categories (dead or alive), which were measured according to the 
protocol described in Estarague et al. (2021). Genotypes have 10 categories 
corresponding to the 10 natural accessions used here. Indoor/outdoor represents 
whether a plant has been grown in a greenhouse or growth chamber (indoor) or in a 
common garden (outdoor) across all the experiments included in the database used 
here. CSR categories are the intermediate CSR classes estimated from leaf traits by the 
algorithm from Pierce et al. (2017), such as R/SR, S/SC, RS, and C/CSR (see 
Supplementary Material). Treatment has two categories (control and water stress) 
from the dedicated experiments included in the database (see Supplementary 
Material). All predictions have been obtained from CNN models.

were taken during the treatment, before individuals started showing 
visible signs of death (Estarague et  al., 2021). This suggests that 
NIRS is a powerful tool to estimate stress effects leading to plant 
death early on, even before any visible sign of adverse effects.

Convolutional neural network models were able to accurately 
predict the environmental treatment in which plants were grown 
(control vs. water stress; prediction accuracy = 71%, Table  2). 
More surprisingly, CNN models reached 100% accuracy to 
predict if a plant was grown indoor (growth chamber and 
greenhouse) vs. outdoor (common garden; Figure 2B; Table 2). 
This result not only demonstrates the capacity of NIRS and 
deep learning to characterize the environmental conditions in 
which plants are cultivated but also suggests that plants grown 
indoor and outdoor have very contrasted spectral signatures. 
In turn, these questions our ability to draw conclusions about 
plant adaptation in natural conditions from experiments led 
in controlled conditions (growth chamber and greenhouse).

A B

C D

FIGURE 1 | Predictions of the leaf economics spectrum and CSR strategies. Log10 relationships between specific leaf area (SLA, mm2 mg−1) and leaf nitrogen 
content (LNC, %; A); between leaf nitrogen content (LNC, %) and leaf dry matter content (LDMC, mg g−1; B). Only predicted values in the validation dataset (1/4 of 
the whole dataset, n = 123) were plotted here. Observed trait values are colored in blue and predicted trait values are colored in red. Regression lines have been 
estimated by standard major axis (SMA). P is the p value of the SMA test of slope difference between observed and predicted relationships. (C) 3D representation of 
the leaf economics spectrum between observed and predicted trait values in the validation dataset (n = 123). (D) CSR triangle between observed and predicted trait 
values in the validation dataset (n = 699) depicting the variation of plant ecological strategies between competitive ability (C), stress-tolerance (S), and ruderalism (R). 
CSR scores (%) have been measured from leaf traits following the method from Pierce et al. (2017) (see Supplementary Material). Only measurements performed 
on fully expanded but non-senescing leaves, and only under non stressing conditions, were used here.
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METABOLOMICS AS A NEW 
PHENOTYPIC DIMENSION: FUTURE 
PERSPECTIVES FOR THE 
CHARACTERIZATION OF PLANT 
ECOLOGICAL STRATEGIES

A broader screening of the metabolic pathways involved in 
the physiological adaptation of plants to contrasting environments 
is a promising avenue for ecology in the future. So far, large 
comparative approaches remain limited by the type and 
availability of traits collected from the literature and organized 
into shared databases (Kattge et  al., 2020). This constraint 
reduces our ability to fully understand the drivers of phenotypic 
diversity, as well as to identify new and ecologically meaningful 
axes of phenotypic variation. In this perspective, NIRS allows 
us to detect a large variety of commonly measured chemical 
compounds such as phosphorus (P)—a key element of the 
leaf economics spectrum— and base cations [calcium (Ca), 
potassium (K), and magnesium (Mg)], and other micronutrients 
(Cozzolino et  al., 2001; Ortiz-Monasterio et  al., 2007; Galvez-
Sola et  al., 2015; Ercioglu et  al., 2018; de Oliveira et  al., 2019; 
Yu et  al., 2019; Prananto et  al., 2021). This opens new avenues 
to link resource-use strategies with plant elemental composition, 
fluxes, stoichiometry, and beyond, with nutrient cycling in 
ecosystems (Ustin et al., 2004). In addition, studies have shown 
that not only LNC but also chlorophyll a and b can be predicted 
using reflectance and transmittance of light from individual 
leaves and at canopy level (Sims and Gamon, 2002).

Using quantitative measurements of 67 metabolites with GC–
MS and LC–MS (Supplementary Material), we investigated whether 
NIRS can estimate variations in foliar content of sugars (e.g., 
glucose and fructose), hormones (e.g., salicylic acid, auxin, and 
abcissic acid), and secondary metabolites (e.g., phenolic compounds 
and glucosinolates). Our results show that prediction accuracy 
(estimated in an external dataset; Supplementary Material) was 
highly variable between metabolites. For instance, validation r2 
ranged from 0% for the poorest predictions (see examples in 
Table  3) to 85% for the highest (dihydro caffeoyl glucuronide; 
Table  3). For sugars, the best predictions were obtained for 
fructose, cellobiose, mannose, and raffinose (Table  3). Among 
hormones, only auxin (IAA) and jasmonic acid (JA) were 
satisfactorily predicted by NIRS (Table  3), while other hormones 
were very poorly predicted (for instance, r2 < 0.10). Glucosinolates 
are a class of metabolites produced by the Brassicaceae family, 
which are involved in plant defense against herbivores (Ratzka 
et  al., 2002). Many of them showed relatively high prediction 
accuracy (e.g., glucoraphenin and neoglucobrassicin with r2 > 0.70; 
Table  3), which paves the way for predicting plant responses to 
herbivore attack on many individuals at low cost. Finally, many 
other secondary metabolites showed substantial prediction accuracy 
(e.g., r2 > 50%; Table  3), although prediction accuracy was very 
variable between metabolites. More studies are needed to fully 
explore the potential of NIRS and deep learning to predict leaf 
chemistry and metabolisms. However, applying NIRS—coupled 
with deep learning computation—for high-throughput phenotyping 
of plants from cellular level to whole-plant level is perhaps the 
most exciting perspective of this approach.

A B

FIGURE 2 | Prediction accuracy of plant survival and growth conditions. Confusion matrices showing the classification performance for the prediction of (A) plant 
survival (positive P) and mortality (negative N), and (B) the growth condition: indoor (positive P) vs. outdoor (negative N). Precision score = true P/(false P + true P). 
Recall score = true P/(false N + true P). Accuracy Score = (true P + true N)/(true P + false N + true N + false P). F1 Score = 2*Precision score*Recall score/(Precision 
score + Recall score).
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TABLE 3 | Prediction accuracy for 67 metabolites.

Variable
Caibration validation

SD R2 RMSE Bias Slope RPD

Sugars Glucose 6764.56 0.14 1621.88 −4.49 0.95 4.17
Fructose 10240.92 0.56 1316.93 352.08 1.17 7.78
Sucrose 11380.72 0.00 2086.69 538.48 −12.55 5.45
Fucose 28.65 0.03 1.90 0.37 0.75 15.04
Isomaltose 26.02 0.16 6.58 1.44 1.41 3.95
Cellobiose 157.51 0.39 73.21 19.87 1.85 2.15
Arabinose 37.57 0.00 51.42 9.39 100.65 0.73
Galactose 293.66 0.18 304.29 82.21 1.11 0.97
Inositol 911.06 0.31 136.28 23.17 1.29 6.69
Maltose 58.40 0.02 57.31 19.37 0.86 1.02
Mannose 219.79 0.42 35.78 12.77 2.19 6.14
Raffinose 644.65 0.57 457.00 112.77 1.12 1.41
Rhamnose 68.56 0.02 95.56 17.09 −1150.74 0.72
Ribose 32.35 0.00 42.17 13.41 138.61 0.77
Palatinose 236.89 0.00 294.60 36.80 −5.60 0.80
Melezitose 15.62 0.38 7.47 1.31 1.26 2.09
Melibiose 200.00 0.09 264.69 47.47 0.69 0.76
Trehalose 176.00 0.00 146.34 23.78 −1.69 1.20
Xylose 35.75 0.13 7.09 1.54 1.32 5.04

Hormones ABA 12.54 0.06 11.25 1.43 0.57 1.12
IAA 21.37 0.26 18.16 1.84 0.95 1.18
JA 337.70 0.29 197.91 31.53 1.03 1.71
SA 799.00 0.00 495.41 147.44 −10.54 1.61
CMLX 7277.61 0.02 8086.67 2421.27 63.66 0.90

Glucosinolates Glucoalysiin 28.79 0.10 27.76 3.95 1.05 1.04
Glucobrassicin 1462.69 0.15 914.32 210.01 0.76 1.60
Glucoerucin 12.22 0.39 5.88 0.51 0.86 2.08
Gluconapin 5005.90 0.00 4703.53 2123.30 0.43 1.06
Gluconasturtiin 94.36 0.00 91.73 12.46 0.63 1.03
Glucoraphanin 1308.98 0.00 1166.48 250.14 0.22 1.12
Glucoraphenin 1.78 0.74 0.62 0.07 0.91 2.88
Epigallocatechin 210.86 0.27 163.05 2.91 0.83 1.29
Progoitrin 666.26 0.01 564.65 135.83 0.38 1.18
Epiprogoitrin 6316.22 0.09 5944.42 1814.64 0.74 1.06
Isobutyl 473.57 0.03 356.50 56.56 0.67 1.33
Glucosinalbin 10.35 0.00 7.96 1.28 2.52 1.30
Sinigrin 4445.20 0.07 4259.39 1571.86 1.04 1.04
Hexyl 49.96 0.00 45.61 12.28 0.53 1.10
Butyl 5.49 0.51 3.20 −0.24 1.07 1.72
Neoglucobrassicin Peak1 265.97 0.73 273.80 59.08 1.86 0.97
Neoglucobrassicin Peak2 1051.25 0.06 254.92 24.16 0.41 4.12
X3MTP 47.48 0.51 9.63 0.36 1.41 4.93
X5MTP 20.76 0.61 11.56 1.14 1.40 1.80
X6MSH 51.83 0.22 48.64 9.55 1.09 1.07
X7MSH 261.68 0.18 277.93 88.23 1.19 0.94
X7MTH 244.30 0.36 224.81 36.56 1.04 1.09
X8MSO 2013.33 0.31 1528.42 169.92 0.87 1.32
X8MTO 1278.38 0.17 1053.50 176.17 0.85 1.21

Other secondary 
metabolites

Apigenin rutinoside 1140.31 0.31 848.50 73.33 0.63 1.34

Caffeic Acid 30.01 0.32 0.96 −0.20 0.74 31.31
Chlorogenic Acid 29.55 0.66 16.29 1.38 1.09 1.81
Citrat 2647.54 0.44 1894.98 169.09 1.08 1.40
Cyanidin rhamnoside 1431.34 0.53 842.46 −56.16 0.81 1.70
Cyanidin sophorosid 
glucoside

674.85 0.31 387.08 88.61 1.04 1.74

Dihydro caffeoyl glucuronide 27.05 0.85 8.96 0.01 1.12 3.02
Fumarat 294.76 0.10 174.41 18.17 0.68 1.69
Kaempherol glucosyl 
rhamnosyl glucoside

989.20 0.14 518.91 97.70 0.69 1.91

(Continued)
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CONCLUSION

In this paper, we  argue that NIRS coupled with recent 
advances in deep learning approaches is a promising method 
to broadly capture various information about plant functioning, 
ecological strategies, response to environment, and metabolism. 
In particular, NIRS affords considerable time and cost savings 
(spectrum acquisition lasts only a few seconds), and without 
using hazardous chemicals. In addition, samples can 
be analyzed in neither their natural form without destruction 
nor any special sample preparation. Thus, NIRS makes it 
possible to create extensive databases of traits at different 
temporal, spatial, and taxonomic scales and facilitate the 
adoption of phenomics into ecology. It might provide a 
reliable tool for the characterization of plant populations 
across geographical ranges, specifically if combined with 
other omics approaches and deep learning computation. Of 
course, developing calibration equations takes time, but 
selecting a suitable subset of samples to use in the calibration 
equation and validating the calibration equation take only 
a matter of hours in addition to standard laboratory work 
to chemically analyze the subset. Clearly, NIRS is more 
suited for larger data sets than those containing only a few 
samples. As calibration equations keep available for future 
studies, the time and financial cost of calibrations will 
decrease. Thus, adopting NIRS in trait-based ecology would 
literally multiply the number of species, genotypes, and 
environments potentially measurable, a key point to link 
functional trait variation to plant physiology and adaptation.
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