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Light-triggered transcriptome reprogramming is critical for promoting

photomorphogenesis in Arabidopsis seedlings. Nonetheless, recent studies have shed

light on the importance of alternative pre-mRNA splicing (AS) in photomorphogenesis.

The splicing factors splicing factor for phytochrome signaling (SFPS) and reduced

red-light responses in cry1cry2 background1 (RRC1) are involved in the phytochrome

B (phyB) signaling pathway and promote photomorphogenesis by controlling pre-

mRNA splicing of light- and clock-related genes. However, splicing factors that serve

as repressors in phyB signaling pathway remain unreported. Here, we report that

the splicing factor SWELLMAP 2 (SMP2) suppresses photomorphogenesis in the

light. SMP2 physically interacts with phyB and colocalizes with phyB in photobodies

after light exposure. Genetic analyses show that SMP2 antagonizes phyB signaling

to promote hypocotyl elongation in the light. The homologs of SMP2 in yeast and

human belong to second-step splicing factors required for proper selection of the

3’ splice site (3’SS) of an intron. Notably, SMP2 reduces the abundance of the

functional REVEILLE 8 a (RVE8a) form, probably by determining the 3’SS, and thereby

inhibits RVE8-mediated transcriptional activation of clock genes containing evening

elements (EE). Finally, SMP2-mediated reduction of functional RVE8 isoform promotes

phytochrome interacting factor 4 (PIF4) expression to fine-tune hypocotyl elongation in

the light. Taken together, our data unveil a phyB-interacting splicing factor that negatively

regulates photomorphogenesis, providing additional information for further mechanistic

investigations regarding phyB-controlled AS of light- and clock-related genes.
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INTRODUCTION

As one of the most essential environmental factors for plants, light modulates various
developmental processes of plants throughout their life cycles. Seedlings undergo
skotomorphogenesis when grown in darkness, which is characterized by elongated
hypocotyls, closed cotyledons and curved apical hooks. While grown in the light,
seedlings possess short hypocotyls, expanded cotyledons and developed chloroplasts. This
seedling photomorphogenesis process is vital for the survival and autotrophic growth
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of plants. Plants have evolvedmultiple photoreceptors to perceive
different wavelength of sunlight (Galvão and Fankhauser, 2015;
Paik and Huq, 2019). Among these, phytochromes (phyA-phyE
in Arabidopsis) are responsible for the perception of red (R)
and far-red (FR) light. Phytochromes harbor two functional
modules: the N-terminal photosensory module (PSM) which
perceives light through the chromophore, and the C-terminal
output module (OPM) responsible for dimerization, nuclear
localization as well as signal transduction (Cheng et al., 2021).
Phytochromes exist as two photo-convertible forms, the active
Pfr form absorbing FR light and the inactive Pr form absorbing
R light (Burgie and Vierstra, 2014; Burgie et al., 2014). After
exposure to R light or high R/FR ratio light conditions, the
phytochromes (Pr form) will rapidly convert to Pfr form and
translocate from cytosol into the nucleus, after which nuclear
speckles called photobodies will appear (Klose et al., 2015; Cheng
et al., 2021). The size and number of photobodies tightly correlate
with the activity of phytochromes (Huq et al., 2003; Chen and
Chory, 2011; Klose et al., 2015). In the past decades, numerous
case studies have been reported for signaling transduction
from phytochromes to transcriptional factors. Photo-activated
phytochromes globally regulate transcriptome reprogramming
by modulating stability or activity of many key transcription
factors, such as PHYTOCHROME-INTERACTING FACTORS
(PIFs) and ELONGATED HYPOCOTYL 5 / HY5-HOMOLOG
(HY5/HYH) (Al-Sady et al., 2006; Shen et al., 2008; Legris et al.,
2019; Cheng et al., 2021). Interestingly, recent evidences have
shown that phytochromes also regulate alternative pre-mRNA
splicing in response to red light (Shikata et al., 2014; Xin et al.,
2017, 2019; Dong et al., 2020).

In eukaryotes, intron-containing pre-mRNA need to undergo
a splicing process which removes the introns and joins
the flanking exons together to make a mature mRNA. A
large dynamic ribonucleoprotein complex called spliceosome
accomplish the splicing process through recognizing four loosely
conserved nucleotide sequences (Lorković et al., 2000; Wahl
et al., 2009; Kornblihtt et al., 2013; Shi, 2017). They are the
5’ splice site (5’SS) with a conserved GU nucleotides, the 3’SS
with a conserved AG, a branch point (BP) with a conserved
adenosine residue and a polypyrimidine tract upstream of the
3’SS (Lorković et al., 2000; Kornblihtt et al., 2013). Themajor core
spliceosome complex is composed of five uridine-rich (U-rich)
small nuclear ribonucleoproteins (snRNPs), including U1, U2,
U4, U5, and U6 (Wahl et al., 2009; Lee and Rio, 2015; Shi, 2017).
Mandatory inclusion of exons and exclusion of introns in mRNA
is termed constitutive splicing (CS). By contrast, alternative
splicing (AS) events involve the selective inclusion of introns
or exons from pre-mRNA into mature mRNA, and different
mRNA isoforms from a single gene will be produced. There are
four major types of AS events in plants, including exon skipping
(ES), intron retention (IR), alternative 5’ splice site (A5’SS) and
alternative 3’ splice site (A3’SS) (Marquez et al., 2012; Reddy et al.,
2013). The subtle regulation of AS is rather complicated. Splicing
factors (SFs), such as heterogeneous nuclear ribonucleoproteins
(hnRNPs) and serine–arginine repeat proteins (SRs), are essential
for regulating AS through binding to cis-regulatory elements
(silencers or enhancers) (Kornblihtt et al., 2013; Lee and Rio,
2015). The interaction between SFs and snRNPs can also change

the splice sites determination in pre-mRNA (Kornblihtt et al.,
2013; Lee and Rio, 2015). In addition, the chromatin-based
effects, such as recruitment of SFs by “adaptors” of histone
modifications and transcriptional elongation rate, also play roles
in changing the splicing patterns (Kornblihtt et al., 2013; Lee and
Rio, 2015).

Genome-wide analyses have revealed that a large scale of AS
profiles changed in response to light in Arabidopsis thaliana
(Shikata et al., 2014; Hartmann et al., 2016). Gene ontology (GO)
analyses show that numerous genes regulated by light-controlled
AS are involved in “response to light stimulus,” “circadian clock”
and “photosynthesis” biological processes (Shikata et al., 2014;
Xin et al., 2017, 2019). To better understand the molecular
mechanism by which light regulates these AS patterns, numerous
studies have focused on this in the past few years. It is reported
that light-triggered nuclear AS is regulated by a chloroplast
retrograde signal (Petrillo et al., 2014). Moreover, light-increased
transcriptional elongation rate modulates AS decisions (Godoy
Herz et al., 2019). Recently, it is shown that photosynthesized
sugars, a shoot-to-root mobile signal, coordinate AS responses
to light throughout the whole plant in a TOR kinase-dependent
manner (Riegler et al., 2021). Phytochromes are the best studied
photoreceptors involved in the regulation of red light-mediated
AS till date (Shikata et al., 2012, 2014; Wu et al., 2014; Shih
et al., 2019; Lin et al., 2020; Kathare and Huq, 2021). Photo-
activated phyB induces a specific intron retention in 5’ UTR of
PIF3 mRNA, thereby inhibits PIF3 protein synthesis to promote
photomorphogenesis (Dong et al., 2020). REDUCED RED-
LIGHT RESPONSES IN CRY1CRY2 BACKGROUND1 (RRC1)
and SPLICING FACTOR FOR PHYTOCHROME SIGNALING
(SFPS) are identified as the two splicing factors which can
directly interact with phyB in Arabidopsis (Xin et al., 2017,
2019). These two SFs can form a complex and coordinate pre-
mRNA splicing of a subset of light- and clock-associated genes
to promote photomorphogenesis (Xin et al., 2017, 2019). For
instance, RRC1/SFPS can directly associate with clock regulator
EARLY FLOWERING 3 (ELF3) pre-mRNA to regulate its proper
splicing. Moreover, PIFs are reported to act downstream of
RRC1/SFPS in the regulation of photomorphogenesis (Xin et al.,
2017, 2019).

Here we identify another splicing factor SWELLMAP
2 (SMP2) that can physically interact with phyB. SMP2
genetically acts downstream of phyB, and promotes A3’SS
of key clock regulator RVE8 to negatively regulate seedling
photomorphogenesis in Arabidopsis.

MATERIALS AND METHODS

Plant Materials and Growth Conditions
The ecotype of Arabidopsis thaliana used in this study
was Columbia-0 (Col-0). T-DNA insertion mutant smp2-1
(Salk_022202) was from Arabidopsis Biological Resource Center
(ABRC), smp2-3 mutant was generated by CRISPR/Cas9 (Wang
et al., 2015). phyB-9 mutant, phyB-CFP and PIF4-ox transgenic
plants were reported previously (Reed et al., 1993; Chen et al.,
2005; Lee et al., 2020). Seeds were sterilized with 20% (v/v)
bleach containing 0.1% Triton X-100 for 10min, washed at least
five times with sterile water, and sown on 1× Murashige and
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Skoog (MS) medium supplemented with 1% sucrose and 0.8%
agar. After 3 days of stratification at 4◦C in darkness, seeds
were transferred into the plant growth chamber (PERCIVAL)
maintained at 22◦C.

Measurement of Hypocotyl Length
To measure the hypocotyl length of seedlings, seeds were sown
on plates and stratified in darkness at 4◦C for 3 d, followed
by incubation in continuous white light for 12 h to induce
synchronous germination. The plates were then transferred to
continuous dark (D), white (W), red (R), far-red (FR), and blue
(B) light conditions and incubated at 22◦C for 5 days and the
hypocotyl length of seedlings were measured by ImageJ software.

Plasmid Construction
To generate pLexA-phyB constructs for yeast two-hybrid assay,
N-terminal (1-651 aa) and C-terminal (652-1172 aa) fragments
of phyB CDS were amplified by Super-Fidelity DNA Polymerase
(Vazyme) and inserted into the EcoR I/Xho I sites of pLexA vector
(Clontech). For pB42AD-SMP2 plasmid, full-length SMP2 CDS
was inserted into EcoR I/Xho I sites of pB42AD (Clontech).

For firefly luciferase complementation imaging (LCI) assays,
the full-length phyB CDS were inserted into the Kpn I/Sal I sites
of pCambia1300-nLUC, and SMP2 CDS were inserted into the
BamH I/Sal I sites of pCambia1300-cLUC.

To generate overexpression of YFP-SMP2 construct, the
Gateway cloning technology was used. Full-length SMP2 open
reading frame was cloned into the pDONR-223 vector using
Gateway BP Clonase Enzyme mix (Invitrogen), and introduced
into the plant binary vector pEarley Gateway 104 under the
control of the 35S promoter using Gateway LR Clonase Enzyme
mix (Invitrogen).

Generation of Transgenic Plants
The pEarley Gateway-YFP-SMP2 construct was transformed into
Agrobacterium tumefaciens GV3101 by the freeze-thaw method
and introduced into Col-0 via the floral dip method (Clough
and Bent, 1998). Transgenic plants were selected on MS medium
containing 20 mg/L Basta.

Yeast Two-Hybrid Assay
Yeast two hybrid assays in the LexA system were performed
according to the Yeast Protocols Handbook (Clontech). Yeast
strain EGY48 containing p8op-LacZ plasmid is used in the
study. Transformants were first selected and grown on minimal
synthetic defined (SD) base supplemented with -His-Trp-
Ura dropout at 30◦C, and then transferred to SD/-His-
Trp-Ura dropout plates containing 80 mg/L X-gal for blue
color development.

LCI Assay
LCI assays were performed as described previously (Chen
et al., 2008). The nLUC- and cLUC-fused plasmids were
transformed into Agrobacterium strain GV3101, and the
indicated transformants were mixed and infiltrated into
Nicotiana benthamiana leaves. The plants were grown in
darkness for 2 d followed by 24h red light exposure. After that,
the luciferase signals were measured using NightShade LB985

(Berthold Technologies). The experiments were performed with
three biological replicates.

Co-IP Assay
For Co-IP assay, YFP-SMP2, Col-0 and phyB-9 seedlings were
used. The total proteins were extracted by Lysis buffer [50mM
Tris-HCl pH7.5, 150mM NaCl, 10% glycerol, 0.05% Tween
20, 1mM PMSF, 1×protease inhibitor cocktail (Roche)]. Four
hundred µg total proteins were incubated with 10 µL GFP-
Trap agarose (Chromotek) and rotated at 4◦C for 4 h. After
incubation, the agarose was washed five times with wash buffer
[50mM Tris-HCl pH7.5, 300mM NaCl, 10% glycerol, 1mM
PMSF, 1×protease inhibitor cocktail (Roche)]. The precipitates
were boiled in 1× SDS loading buffer for 10min, and then the
supernatants were analyzed by western blot using anti-GFP and
anti-phyB antibodies, respectively.

Immunoblot Analysis and Antibodies
Five-day-old Arabidopsis seedlings were homogenized in a
protein denatured extraction buffer (100mM NaH2PO4 pH8.0,
10mM Tris-HCl pH8.0, 200mM NaCl, 8M urea, 1mM
PMSF, 1×protease inhibitor cocktail). Antibodies used in this
study were anti-phyB (PhytoAB), anti-GFP (Abmart) and anti-
Actin (Sigma-Aldrich).

Confocal Microscopy
Subcellular localization observation of YFP-SMP2 and PHYB-
CFP were performed using a confocal laser scanning microscope
Zeiss LSM880 (Carl Zeiss). For YFP fluorescence detection, the
excitation wavelength was 514 nm and the emission spectra were
collected from 519 to 620 nm. For CFP fluorescence detection,
the excitation wavelength was 405 nm and the emission spectra
were collected from 410 to 513 nm.

RNA Isolation and Quantitative Real-Time
PCR Analysis
Total RNA was extracted from Arabidopsis whole seedlings with
indicated treatments using the Plant RNA kit (Omega). First-
strand cDNAs were synthesized from 2 µg of total RNA using
5×All-In-One RT Master Mix (Applied Biological Materials)
according to the manufacturer’s instructions. Real-time qPCR
was performed using QuanStudioTM 6 Flex Real-Time PCR
detection system (Applied Biosystems) and Hieff qPCR SYBR
Green Master Mix (YEASEN). The expression levels were
normalized to that of PP2A gene. The primers used in this study
were listed in Supplementary Table 1.

RESULTS

phyB Physically Interacts With SMP2
Using the C-terminal output module of phyB as bait, we
performed a yeast two-hybrid screen to look for additional
splicing regulators involved in light signaling. We found
that a protein called SWELLMAP 2 (SMP2), whose homolog
Slu7/hSlu7 is a second-step splicing factor required for proper
3’ splice site selection (Frank and Guthrie, 1992; Chua and Reed,
1999; Clay andNelson, 2005), interacted with C-terminal of phyB
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in yeast (Figures 1A,B). To further verify the interaction between
phyB and SMP2 in vivo, we first carried out split-luciferase
complementation assay. As shown in Figure 1C, an appreciable
bioluminescence signal was detected only when phyB-nLUC
and cLUC-SMP2 were co-expressed in tobacco leaf. We further
performed co-IP assay using transgenic plant overexpressing
YFP-SMP2 (Supplementary Figure 1), and the data show that
endogenous phyB protein could be co-immunoprecipitated by
YFP-SMP2 in red-light condition (Figure 1D), suggesting that
phyB was associated with SMP2 in vivo. What’s more, to
investigate whether SMP2 and phyB colocalized with each other
in vivo, we crossed YFP-SMP2 with phyB-CFP transgenic plants.
As shown in Figure 1E, YFP-SMP2 distributed mainly in the
nucleus when transgenic plants were grown under continuous
red light, and some YFP-SMP2 could colocalize with phyB-CFP

in photobodies. Taken together, these results demonstrate that
phyB physically interacts with SMP2 in vitro and in vivo.

SMP2 Negatively Regulates Seedling
Photomorphogenesis
To investigate whether SMP2 is involved in light-controlled
morphogenesis, a smp2 null mutant, smp2-3, was generated
by the Clustered Regulatory Interspaced Short Palindromic
Repeats (CRISPR)/Cas9 technique. Smp2-3 contained a 519-bp
deletion within the SMP2 genomic DNA and could produce
a truncated 62-amino-acid protein resulting from a premature
stop codon (Supplementary Figure 2). Additionally, the T-
DNA insertion mutant smp2-1 (SALK_022202) (Clay and
Nelson, 2005; Liu et al., 2016) was also used in this study.
Both smp2 mutants showed a similar etiolated phenotype

FIGURE 1 | phyB physically interacts with SMP2 in vitro and in vivo. (A) Schematic diagram of phyB fragments. Numbers indicate the amino acid positions in phyB

protein. (B) The interaction of SMP2 and phyB in yeast. AD, activation domain; BD, DNA-binding domain. (C) Firefly luciferase complementation imaging (LCI) assay

showing interaction between phyB and SMP2 in tobacco leaf. nLUC, the N-terminal fragment of firefly luciferase (LUC); cLUC, the C-terminal fragment of LUC.

Full-length phyB and SMP2 were fused to the nLUC and cLUC, respectively. (D) Co-IP assay showing the association between SMP2 and phyB. Seedlings grown in

the dark were transferred to red light (145 µmol/m2
·s) for 1 h. YFP-SMP2 proteins were pulled down with GFP-trap beads. α-GFP, anti-GFP antibody; α-phyB,

anti-phyB antibody. (E) Colocalization analysis of SMP2 and phyB in vivo. Transgenic plants co-expressing YFP-SMP2 and phyB-CFP were grown in continuous red

light (145 µmol/m2
·s) for 5 days. The images of nucleus came from a hypocotyl cell. YFP-SMP2 fusion proteins were excited by laser at 514 nm, and the emitted

fluorescence signaling was collected from 519nm to 620 nm; phyB-CFP were excited by laser at 405 nm, and the emitted fluorescence was collected from 410 nm to

513 nm. Scale bar, 5µm. White arrowheads indicate SMP2 and phyB colocalized in photobodies; Red arrowheads indicate the SMP2-specific nuclear speckles.
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as Col-0 (wild-type) when grown in the dark (Figure 2;
Supplementary Figure 3). However, both smp2-1 and smp2-
3 displayed significantly shorter hypocotyls compared to Col-
0 when grown in continuous white, red, far-red and blue
light conditions (Figure 2; Supplementary Figure 3). These data
indicate that SMP2 promotes hypocotyl elongation of seedlings
in the light.

SMP2 Genetically Acts Downstream of
phyB to Regulate Hypocotyl Elongation
As shown in Figure 1, the biochemical evidences show that SMP2
physically interacts with phyB. To further explore the genetic
relationship between phyB and SMP2, we respectively generated
the double mutant smp2-1 phyB-9 and smp2-3 phyB-9 through
genetic crossing (Supplementary Figure 4). Given that phyB
plays prominent role in red light signaling, these mutants were
grown in red light and hypocotyl lengths were measured. phyB-
9 exhibited extremely long hypocotyl in red light as previously
reported, while both smp2-1 phyB-9 and smp2-3 phyB-9mutants
showed significantly shorter hypocotyl compared with phyB-9
in red light (Figure 3; Supplementary Figure 5). This genetic
analysis indicates that SMP2 genetically acts downstream of phyB
to promote hypocotyl elongation in red light.

SMP2 Regulates AS of Circadian Clock
Gene RVE8
Previous transcriptome analyses have revealed that several
circadian clock regulators are subject to light-induced alternative
splicing (Shikata et al., 2014; Mancini et al., 2016). In

addition, phyB-interacting splicing factors, SFPS and RRC1,
could also modulate photomorphogenesis by controlling pre-
mRNA splicing of light signaling and clock genes such as CBK1,
ELF3, and RVE8 (Xin et al., 2017, 2019). To further investigate
whether SMP2 was involved in regulating AS of circadian clock
regulators, we harvested seedlings released to constant white light
(LL) after 6-day diurnal entrainment (Figure 4A) and monitored
the AS patterns of various circadian clock genes in Col-0 and
smp2-3 by RT-PCR and qPCR. Interestingly, we found that the
AS patterns of RVE8 (James et al., 2012; Mancini et al., 2016)
were altered in smp2-3 (Supplementary Figure 6). RVE8a was
generated by the complete exclusion of intron 7, and two extra
AS events happened within RVE8 intron 7 were also validated
by sequencing. RVE8b was generated by an alternative 3’ splice
site selection that inserted 22nt into RVE8 mRNA, whereas
RVE8c was generated by the complete retention of the intron 7
(Figure 4B). To quantify the abundance of these three isoforms,
we designed three primer pairs to amplify specific transcripts
(Figure 4B). The results showed that the expression of all three
isoforms exhibited rhythmic changes in both Col-0 and smp2-3
(Figures 4C–E). However, the peak abundance of the functional
isoform RVE8a was higher in smp2-3 than in Col-0 (Figure 4C),
whereas the isoform RVE8b was significantly lower in smp2-3
than in Col-0 (Figure 4D). In contrast, the abundance of the
isoform RVE8c was similar in smp2-3 and Col-0 (Figure 4E).
RVE8, which encodes a MYB-like transcription factor, is a
homolog of the key clock regulators CCA1 and LHY (Farinas
andMas, 2011; Rawat et al., 2011). The three transcription factors
all bind specifically to the Evening Element (EE) promoter motif

FIGURE 2 | smp2 mutants are hypersensitive to light. (A) Visual phenotypes of 5-day-old wild-type (Col-0) and smp2 seedlings grown in the dark or different light

conditions. White light, 7.5 µmol·m−2
·s−1; Red light, 47 µmol·m−2

·s−1; Far-red light, 4.5 µmol·m−2
·s−1; Blue light, 3.0 µmol·m−2

·s−1. Scale bars, 5mm. (B)

Quantification of hypocotyl lengths of Col-0 and smp2 seedlings grown under conditions as indicated in (A). Error bars represent standard deviation (SD), n ≥ 25; ***P

< 0.001 (t-test); NS, not significant (t-test). Experiments were performed three times with similar results.
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FIGURE 3 | SMP2 genetically acts downstream of phyB. (A) Visual phenotypes of wild-type (Col-0), smp2-1, smp2-3, phyB-9, smp2-1 phyB-9, and smp2-3 phyB-9

seedlings grown for 5 days in continuous red-light condition (145 µmol·m−2
·s−1). Scale bars, 5mm. (B) Quantification of hypocotyl length of different seedlings as

shown in (A). Error bars represent SD, n ≥ 25. Letters above the bars indicate significant differences (P < 0.05), as determined by one-way analysis of variance

(ANOVA) with Duncan’s post-hoc analysis. Experiments were performed three times with similar results.

(Hsu et al., 2013; Shalit-Kaneh et al., 2018). The difference is
that RVE8 activates the expression of EE-containing clock genes,
while CCA1/LHY represses the expression of these genes (Hsu
et al., 2013; Shalit-Kaneh et al., 2018). To test whether increasing
RVE8a expression led to increased function of RVE8 in smp2-3,
we quantified the expression of RVE8-activated genes in smp2-3.
The results showed that consistent with the higher abundance of
the functional RVE8a isoform in smp2-3, these evening-phased
genes, including PRR5, TOC1, ELF4 and GI, exhibited increased
rhythmic amplitudes in smp2-3 than in Col-0 (Figures 4F–I).
Taken together, these data suggest that SMP2 is involved in
promoting A3’SS in RVE8 intron 7 and disturbing the expression
of RVE8-activated genes.

SMP2-Mediated Hypocotyl Elongation
Partially Depends on PIF4
To investigate whether SMP2 indeed affects the output of
circadian clock, we also performed qPCR to examine the
expression level of PIF4, whose expression exhibited diurnal
rhythm with a peak in the subjective afternoon (Figure 5A;
Nusinow et al., 2011). However, the peak amplitude of PIF4
expression was depressed in the smp2-3 mutant (Figure 5A),
which possibly resulted from the higher abundance of RVE8a
transcript in smp2-3 (Gray et al., 2017).

To further confirm whether PIF4 was involved in
SMP2-mediated hypocotyl elongation, we crossed an over-
expression line of PIF4 (PIF4-ox) with smp2-3 and analyzed
their phenotypes. The hypocotyls of PIF4-ox seedlings were
dramatically longer than those of Col-0 in red light as previously
described, indicating the amplification of functional PIF4
proteins in PIF4-ox lines. Furthermore, the hypocotyls of
seedlings overexpressing PIF4 in smp2-3were significantly longer
than those of smp2-3, but slightly shorter than those of PIF4-ox
in red light (Figures 5B,C; Supplementary Figure 7). Together,

these results demonstrate that SMP2-mediated hypocotyl
elongation in red light partially depends on functional PIF4.

DISCUSSION

SMP2 and its paralog SMP1 are conserved in evolution, for
example, Slu7 and hSlu7 are the homolog of SMP2 in yeast
and human, respectively (Frank and Guthrie, 1992; Chua and
Reed, 1999). Slu7/hSlu7 is a second-step splicing factor required
for proper selection of the 3’ splice site (Frank and Guthrie,
1992; Chua and Reed, 1999). The smp1smp2 double mutant in
Arabidopsis is not viable, indicating their indispensable roles
in plant development (Clay and Nelson, 2005; Liu et al.,
2016). Moreover, the interaction between SMP1/2 and SKIP, a
component of the spliceosome in Arabidopsis, is reported to
be conserved in yeast and human (Liu et al., 2016). Similar
to the splicing defect in skip mutant, knockout of SMP1/2
in Arabidopsis protoplasts leads to significant accumulation of
aberrant splicing products of certain genes (Liu et al., 2016),
suggesting that SMP1/2 are also involved in pre-mRNA splicing
in plants. In this study, we demonstrated that phyB physically
and functionally interacted with SMP2 in response to light.
SMP2 decreased the abundance of functional RVE8a, likely by
regulating the 3’SS determination, resulting in a decrease in
evening-phased genes expression and a subsequent promotion
of PIF4 expression to fine-tune seedling photomorphogenesis. In
addition, smp2 mutants also showed short hypocotyls under far-
red and blue light (Figure 2), suggesting that SMP2 might also be
involved in the phyA and cryptochromes signaling pathways to
regulate photomorphogenesis.

The key clock regulator RVE8 gene produces various mRNA
isoforms, and our work revealed that SMP2 might be involved
in the 3’SS determination of RVE8 intron 7 (Figure 4). Lack
of SMP2 resulted in a decrease in the abundance of RVE8b
isoform with a concomitant increase in the abundance of the
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FIGURE 4 | SMP2 regulates A3’SS in RVE8 and inhibits the expression of RVE8-activated genes. (A) Simplified diagram of the diurnal entrainment of seedlings.

Plants were entrained in the diurnal cycles (12 h light/12 h dark) for 6 days and then transferred to continuous white light (145 µmol·m−2
·s−1). Seedlings were

harvested at the indicated time points. (B) The schematic graph of splice variants of RVE8 in intron 7. Red arrows indicated primers used to amplify specific RVE8

transcript isoforms. Exons were depicted as black rectangles; introns were depicted as horizontal lines; alternative splicing regions were depicted as gray rectangles.

(C–E) The relative abundance of three RVE8 isoforms in Col-0 and smp2-3. Total RNA was extracted from Col-0 and smp2-3 seedlings treated as described in (A).

PP2A was used as the internal control. (F–I) The relative expressions of PRR5, TOC1, ELF4, and GI in Col-0 and smp2-3. Error bars represent SD, n = 3. All of these

experiments were performed three times with similar results.
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FIGURE 5 | PIF4 contributes to SMP2-mediated hypocotyl elongation. (A)

The relative expression of PIF4 in Col-0 and smp2-3. Seedlings were entrained

in the diurnal cycles (12 h light/12 h dark) for 6 days and then transferred to

continuous white light (145 µmol·m−2
·s−1). Seedlings were harvested at the

indicated times. The relative expression levels of PIF4 were normalized to

PP2A. Error bars represent SD, n = 3. (B) Visual phenotypes of 5-day-old

Col-0, smp2-3, PIF4-ox and PIF4-ox smp2-3 seedlings grown in continuous

red light condition (145 µmol·m−2
·s−1). Scale bars, 5mm. (C) Quantification of

hypocotyl length of Col-0, smp2-3, PIF4-ox and PIF4-ox smp2-3 seedlings

grown in continuous red light. Error bars represent SD, n ≥ 20. Letters above

the bars indicate significant differences (P < 0.05), as determined by one-way

analysis of variance (ANOVA) with Duncan’s post-hoc analysis.

functional RVE8a isoform (Figures 4C,D). RT-qPCR confirmed
that expression levels of RVE8 target genes were increased in
smp2-3 mutant, suggesting that the higher expression of RVE8a
was responsible for the increased function of RVE8 in smp2-3.
However, the mechanism of how the different isoforms of RVE8
affect RVE8 function remains unclear. In general, AS events can
lead to the production of premature termination codons (PTCs)
in mRNA, which can subsequently be degraded by nonsense-
mediated mRNA decay (NMD) or produce truncated proteins
with distinct functions (Seo et al., 2012; Reddy et al., 2013;
Chaudhary et al., 2019). In addition, some AS transcripts can
be sequestered in the nucleus and spliced as needed to respond
to varying environmental conditions (Reddy et al., 2013; Petrillo
et al., 2014; Filichkin et al., 2015). Therefore, further investigation
of the fates of the different RVE8 AS isoforms is required to
unravel the biological significance of SMP2-mediated AS.

RVE8 can directly activate the expression of genes containing
EE-motif in their promoters (Hsu et al., 2013), which leads to
mis-regulation of PIF4 and PIF5 expression and modulation
of seedling photomorphogenesis (Gray et al., 2017). In this

study, we verified the PIF4 expression is lower in smp2-3 than
in Col-0, and overexpression of PIF4 in smp2-3 can restore
the short hypocotyl of smp2-3 in the light (Figure 5). These
demonstrate that PIF4 contributes to SMP2-mediated hypocotyl
elongation in the light. In addition, we also detected the rhythmic
PIF5 expression in smp2-3 (Supplementary Figure 8). Similar
to the PIF4 expression pattern, PIF5 also showed reduced peak
expression in smp2-3, this suggests that PIF5 may also play
a role in SMP2-mediated regulation of photomorphogenesis.
In this way, the slightly shorter hypocotyl of PIF4-ox smp2-
3 compared to PIF4-ox seedlings can be partially explained
(Figure 5).

To date, the question of how splicing factors are regulated by
light signal remains rather elusive. Previous studies have shown
that the transcription level and protein stability of SFPS/RRC1
are not regulated by phyB and light signal (Xin et al., 2017,
2019). However, in moss the splicing regulator PphnRNP-F1 is
reported to be stabilized by red light, which depends on PpPHY4
(Lin et al., 2020). In this study, the expression level of SMP2
was also not regulated by red light (Supplementary Figure 9).
Whether the protein stability of SMP2 is regulated by light
requires further investigation. The genetic interaction of SMP2
and phyB suggests that functional phyB contributes to the short
hypocotyl of smp2 mutants (Figure 3). The shorter hypocotyls
of smp2-1 phyB-9 and smp2-3 phyB-9 compared with the
phyB-9 single mutant suggest that the other phytochromes
(Cheng et al., 2021) may also be involved in SMP2-mediated
regulation of photomorphogenesis in red light. Given that active
phytochromes can induce phosphorylation and degradation of
PIFs (Legris et al., 2019; Cheng et al., 2021), it is likely that phyB
induces the phosphorylation of SMP2 to fine-tune its activity in
response to red light. In addition, these phyB-interacting splicing
factors, previously reported SFPS/RRC1 and SMP2 in this study,
partially co-localized with phyB in nuclear photobodies in
prolonged red light condition (Figure 1E) (Xin et al., 2017,
2019). The size and number of photobodies correlate closely
with phyB activity (Klose et al., 2015; Legris et al., 2019; Cheng
et al., 2021). And the relative concentration of splicing regulators
is crucial for splice site selection during spliceosome assembly
(Shomron et al., 2005; Saltzman et al., 2011; Kornblihtt et al.,
2013). These facts provide another hypothesis that activated phyB
may regulate the subnuclear localization of SMP2 and modulate
its functions in alternative pre-mRNA splicing of certain light-
and clock-associated genes.
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