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The precision detection of dense small targets in orchards is critical for the visual
perception of agricultural picking robots. At present, the visual detection algorithms
for plums still have a poor recognition effect due to the characteristics of small plum
shapes and dense growth. Thus, this paper proposed a lightweight model based
on the improved You Only Look Once version 4 (YOLOv4) to detect dense plums
in orchards. First, we employed a data augmentation method based on category
balance to alleviate the imbalance in the number of plums of different maturity levels
and insufficient data quantity. Second, we abandoned Center and Scale Prediction
Darknet53 (CSPDarknet53) and chose a lighter MobilenetV3 on selecting backbone
feature extraction networks. In the feature fusion stage, we used depthwise separable
convolution (DSC) instead of standard convolution to achieve the purpose of reducing
model parameters. To solve the insufficient feature extraction problem of dense targets,
this model achieved fine-grained detection by introducing a 152 × 152 feature layer.
The Focal loss and complete intersection over union (CIOU) loss were joined to balance
the contribution of hard-to-classify and easy-to-classify samples to the total loss. Then,
the improved model was trained through transfer learning at different stages. Finally,
several groups of detection experiments were designed to evaluate the performance
of the improved model. The results showed that the improved YOLOv4 model had
the best mean average precision (mAP) performance than YOLOv4, YOLOv4-tiny,
and MobileNet-Single Shot Multibox Detector (MobileNet-SSD). Compared with some
results from the YOLOv4 model, the model size of the improved model is compressed
by 77.85%, the parameters are only 17.92% of the original model parameters, and the
detection speed is accelerated by 112%. In addition, the influence of the automatic data
balance algorithm on the accuracy of the model and the detection effect of the improved
model under different illumination angles, different intensity levels, and different types of
occlusions were discussed in this paper. It is indicated that the improved detection
model has strong robustness and high accuracy under the real natural environment,
which can provide data reference for the subsequent orchard yield estimation and
engineering applications of robot picking work.
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INTRODUCTION

Plum is a characteristic fruit in South China. Its fruit is small,
densely distributed, and easily blocked by other plums or
branches and leaves. Plum maturity identification and picking
tasks are completed manually in the current plum orchards. At
present, labor costs have unprecedentedly increased, and the
proportion of labor costs in total costs is also increasing, with
the increase reaching up to 12–15% in 2019 (Fu et al., 2020a). In
precision agriculture, labor shortage and aging labor have posed
barriers to the development of the fruit industry. Considering the
above, mechanized and intelligent intensive plum picking is an
indispensable part of the development of the whole fruit industry.

In recent years, relevant scholars have carried out a series of
research on recognizing and detecting fruits, such as apples and
citrus in precision orchards (Liao et al., 2017; Wajid et al., 2018;
Gurubelli et al., 2019; Mo et al., 2021). Lin G. et al. (2020) adopted
partial shape matching and probabilistic Hough transform to
detect fruits in the natural environment. Fu et al. (2019) achieved
the fine detection of bananas by combining color, texture features,
and Support Vector Machine classifier. He et al. (2020) put
forward a green citrus detection method based on the deep
boundary box regression forest by fusing multiscale features of
color, shape, and texture. Zhao et al. (2016) combined AdaBoost
classifier and color analysis to detect tomatoes in the greenhouse
scene. In summary, these studies discussed previously mainly
combined the traditional image processing methods and the
basic characteristics of fruit color and texture. However, the
data processing required a comprehensive analysis of multiple
features, complex processing procedures, and poor real-time
detection, which were difficult to meet the requirements of
orchard information management and robotic picking.

With the rapid development of machine learning, the deep
convolutional neural network (CNN) has shown excellent
performance in fruits detection. Its high extraction of high-
dimensional targets features makes it possible to recognize in
complex environments. There are two-stage detection methods,
such as Fast RCNN (Girshick, 2015) and Faster R-CNN (Ren
et al., 2016). These target detection models based on the region
suggestion method adopt the final layer of the CNN to predict.
Xiong et al. (2018) employed the Faster R-CNN method to
detect green citrus under different illumination and sizes, and
the accuracy rate reached 77.45%. Zhang et al. (2020) developed
three apple recognition algorithms based on Faster R-CNN,
with mean average precision (mAP) of up to 82.4%. Fu et al.
(2020b) established an algorithm that is composed of ZFNet and
VGG16 of Faster R-CNN architecture to detect apples in dense-
leaf fruit wall trees, and the results showed that the removal of

Abbreviations: YOLO, you only look once; CSP, center and scale prediction;
DSC, depthwise separable convolution; PWC, pointwise convolution; PANet, path
aggregation network; SPP, spatial pyramid pooling; FPN, feature pyramid network;
F1, the harmonic mean of the precision and recall; AP, average precision of A
category; mAP, average precision of multiple categories; IOU, intersection over
union; CIOU loss, complete intersection over union loss; FIOU loss, focal IOU
loss; FPS, frame per second; SSD, single shot multibox detector; MobileNet-SSD,
MobileNet-single shot multibox detector; UAV, unmanned aerial vehicle.

background trees with a depth filter improved fruit detection
accuracy by 2.5%.

In addition, single-stage target detection methods, such as SSD
(Liu et al., 2016) and YOLO (Redmon et al., 2016; Redmon and
Farhadi, 2017, 2018), have been widely used because of their high
accuracy and detection efficiency. Xue et al. (2018) adopted the
YOLOv2 network to identify immature mango, which improved
the detection rate while maintaining accuracy and generalization
capability. Some researchers (Liu and Wang, 2020; Wang and Liu,
2021a,b) proposed the improved network models of YOLOv3
to detect the diseases and pests of greenhouse tomatoes. The
proposed detection algorithm had strong robustness and high
accuracy in complex orchard scenes. Tian et al. (2019) designed
an improved YOLOv3 model to detect apple at different growth
stages in the orchard. Kuznetsova et al. (2020) proposed a
YOLOv3 apple detection algorithm with special pre-processing
and post-processing. Li et al. (2020) employed the MobileNet-
YOLOv3 model to detect dragon fruit in the orchard. Wu
et al. (2021) proposed an improved YOLOv3 model based on
clustering optimization. Liu et al. (2021) proposed a YOLOv3-
SE improved method for winter jujube fruit recognition under
natural environment. The mAP of the improved model increased
by 2.38∼4.81% through the analysis of detection effects under
different lighting conditions, occlusion, and maturity. Ji et al.
(2021) proposed an apple detection method based on the
improved YOLOv4, which could accurately locate and detect
apples in various complex environments. Although the YOLO
series networks have shown excellent performance in fruit
recognition, it is difficult to detect small targets in deep feature
maps due to the loss of spatial and detailed feature information.
Due to the large number of model parameters, it is a very
challenging task to deploy on the devices with limited resources
and achieve the goal of real-time reasoning.

Compared with apple, citrus, mango, and other fruits, plum
trees are mostly planted on hillsides, and their fruit growth
environment is full of complexity and uncertainty. In modern
precision orchards, it is more difficult to detect small targets
owing to the presence of complex noise disturbance, such as
changing illumination and branch and leaf occlusion. In addition,
the cluster growth of the plum itself and the mixing of different
maturity lead to the poor performance of existing algorithms
in plum detection (Gao X. et al., 2021). Jang et al. (2021) tried
to use 3D images and MATLAB R2018a to detect plums and
size estimation, and this method achieved an average recognition
rate of 61.9%. Pourdarbani et al. (2019) established different
classifiers and majority voting rules to compare the effects of
12 different light intensities on plum images segmentation in
the natural environment, and the experimental results showed
that the correct classification results of the majority voting
method excluding LDA were better than those of the composition
method. Brown and Sukkarieh (2021) presented two datasets
gathered during a robotic harvesting trial on 2D trellis plums
and used them to benchmark on the four deep learning object
detection architectures. Although many researchers have done
extensive work on the detection of plums, the accuracy and
robustness in different scenes still need to be further improved.
So far, no study has been conducted on deep learning methods
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to detect dense plums in natural environments. The resources
that fruit-picking robots can use in the orchard are limited.
Therefore, it is necessary to explore an efficient and accurate plum
recognition algorithm according to actual needs.

Aiming at the growth characteristics of plum fruit, this paper
took advantage of the YOLOv4 network in target detection
and combined it with the MobileNetV3 lightweight network.
In the feature fusion structure, deep separable convolution
was introduced to replace standard convolution, and a new
convolution layer was introduced to increase the recognition
performance of the model for dense small targets. Meanwhile,
the Focal loss function was added to balance the contribution
of different samples to the total loss. The proposed method is
compared and evaluated with the other three target detection
networks in different scenes to provide a reference for the yield
estimation of plum and the rapid recognition of picking robots.

MATERIALS AND METHODS

Materials
Image and Data Acquisition
The experimental collection site is located in a plum orchard
(23.55N, 113.59E) in Conghua District, Guangzhou City,
Guangdong Province, China. The geographical location of
the image acquisition is shown in Figure 1. The sampling
device in this study is a high-resolution smartphone with
a camera parameter of 40 million pixels, the exposure
parameter is automatic, and the objective focus system is set
to autofocus mode.

The sampling objects were plums. To collect as much
information about plums in the natural environment as possible,
the experimenter simulated the image capture module of the
picking robot, and the handheld collection device continuously
changed the shooting angle and shooting distance, hoping
to collect RGB images of different colors, postures, sizes,
backgrounds, and density. The experimental samples were
obtained in two batches. The photographs were taken on April
24, 2021, which was a sunny day. The weather changed from

light rain to cloudy from May 3 to 4, 2021. The plums were
in the middle of maturity during these sessions. Most mature
plums’ color is red, and some immature plums’ color is cyan. In
total, 1,890 original images were collected under different scenes.
Mature and immature plums were included in the photographs.
The overall quality of the image could meet the requirements
of target detection by making a visual quality assessment on the
collected image data.

Dataset Production
The collected plum images have 3, 968 × 2, 976 pixels. However,
the high pixel will prolong the training and processing time. This
study adopted a bicubic scaling algorithm to scale image pixels
to 1, 920 × 1, 440.

The Label Img, an image annotation tool, was used for manual
annotation to obtain the ground truth for subsequent training.
As shown in Figure 2, the wholly exposed plums are marked
by cutting the outer part to the inside of the rectangular frame.
For occluded or conglutinated plums, only the exposed parts of
the image are marked. The unmarked processing was performed
when the part of the image boundary or the degree of occluded
plums was less than 10%. The annotation information was saved
in the format of the PASCAL VOC dataset. The maturity was
manually judged and marked as two types of plums, mature
(plum) and immature (raw_plum).

For the marked 1,890 plum images, the original dataset was
divided into the training set, validation set, and test set, where
the ratio of training set to test set is 8:2. The validation set
is randomly selected from 10% of the training set and does
not participate in training. The training set was divided into
three sub-datasets according to different collection times. Among
them, sub-dataset 1 was composed of 368 image data collected
on April 24, 2021, sub-dataset 2 was composed of 400 images
collected on May 2, 2021, and sub-dataset 3 was composed of
744 image data collected on May 3, 2021. Table 1 shows the data
before data balance.

According to the number of plums in 1,890 labeled images,
there are 10,441 mature and 4,754 immature plums labels. The
proportion between the two is close to 2.2:1. It can be found

FIGURE 1 | Location of images acquisition site.
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that there is a larger data imbalance between the number of
mature plums and immature plums. If the network model is
trained directly, it will have poor recognition performance for
immature plums, resulting in the degradation of model detection
ability. Therefore, it is necessary to take some measures to balance
the dataset to improve the recognition ability of the model
for immature plums.

Data Augmentation Method Based on Category
Balance
Automatic Data Balancing Method Based on Category
Aiming at the imbalance mentioned above, this paper proposed
an automatic data balancing method based on category to
optimize the dataset so that the number of categories before the
network model training is the same as possible (Gao J. et al.,
2021). This method needs to obtain the quantitative values of all
categories first, compare and select the category with the largest
amount of data, and then sequentially expand the quantitative
values of other categories to approach the largest category. The
specific steps are as follows:

i. Suppose there is a dataset
S = [M1,M2, ,Mi] [N1,N2, ...,Nj]

T , where Mi denotes
the number of types of samples in the dataset, and
Nj denotes the number of samples in each category;

ii. Compare the sample quantity values of all categories in the
dataset MiN j and find the maximum value MiN jmax;

iii. Use MiN jmax to divide by the sample quantity value MiN j
of the remaining category in turn, and then division C is
obtained. The calculation is given in Equation 1:

C =
MiN jmax

MiN j
= [{c1, c2, ..., ci−1}] (1)

iv. Choose a data quantity expansion method, and the data
quantity of residual categories become large according to
division C so that the number of samples of all categories is
expanded to the maximum value, and MiN

′

j is obtained,
and finally, the quantity proportion of each category is
close to 1;

v. The final output is the expanded dataset
T = [M1,M2, ,Mi] [N

′

1,N
′

2, ,N
′

jmax]T.

According to the automatic data balancing algorithm, the
number of mature groups is divided by the number of immature
groups in the whole dataset, and the remainder is rounded down
to get 2. Since there are different proportions of mature plum
and immature plum labels in each sub-dataset, it is necessary
to balance the whole sub-dataset in data balancing. Therefore,
only one data amplification of sub-dataset 1 can ensure that
the overall proportion of immature and mature plums in the
dataset is close to 1.

Data Augmentation
To prevent overfitting or non-convergence phenomenon caused
by too little training data, this study randomly combines common
data augmentation methods and performs data augmentation
processing on the train set, such as Gaussian blur, random

FIGURE 2 | Data annotation example: the blue box represents mature plums,
and the purple box represents immature plums.

rotation, random cutting off part of the image, histogram
equalization, random brightness adjustment, salt, and pepper
noise (Huang et al., 2020; Wu et al., 2020). The dataset is
enhanced five times through the multiple random combinations
of the above methods. The enhanced dataset is shown in Table 1.
At the same time, thanks to the data balance method adopted,
the proportion of mature and immature plums in the training set
has changed from 2.2:1 to 1.2:1 so that the number of different
categories of the dataset is similar.

Methodologies
YOLOv4 Model
The YOLO series target detection models are widely used in
industry and scientific research due to their excellent speed
and detection accuracy performance. Bochkovskiy et al. (2020)
proposed the YOLOv4 model based on YOLOv3, which has
better recognition performance and faster speed. It can carry
out end-to-end object prediction and classification. It is one of
the most high-performance target detection methods at present.
Compared with the YOLOv3 network, the main improvements
of YOLOv4 include: (1) The Mosaic data augmentation method
is designed, and the input images are merged by random clipping,
scaling, and spatial arrangement. At the same time, training
techniques, such as the learning rate cosine annealing attenuation
method are used. (2) The new backbone network and activation
function are used to enhance the feature learning ability of
the network. Meanwhile, DropBlock regularization is used to
alleviate the overfitting problem. (3) The Spatial Pyramid Pooling
(SPP) module and Path Aggregation Network (PANet) structure
are introduced. The PANet structure is used to transfer semantic
features from top to bottom, and the feature pyramid is designed
to transfer location features from bottom to top and aggregated
through the backbone layer to improve the ability of network
feature extraction. (4) The CIOU loss function is introduced to
increase the width-to-height ratio information of the bounding
box and enhance the robustness. The DIOU_nms prediction
box screening mechanism is used to improve the screening
performance of overlapping targets.
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TABLE 1 | The number of datasets before and after augmentation.

Collection date Dataset Processing method Number of
pictures

Mature labels Immature
labels

April 24, 2021 Sub-dataset 1 Before augmentation 368 1,353 3,287

After augmentation 4,416 16,236 39,444

May 2, 2021 Sub-dataset 2 Before augmentation 400 2,347 258

After augmentation 2,400 9,388 1,548

May 3, 2021 Sub-dataset 3 Before augmentation 744 4,634 317

After augmentation 4,464 27,804 1,902

Total Before augmentation 1,512 8,334 3,862

After augmentation 11,280 53,428 42,894

A YOLOv4 network model mainly consists of the backbone,
neck, and head networks. The backbone network is the
CSPDarknet53 network, composed of 5 modules from Center
and Scale Prediction 1 (CSP1) to CSP5, and each module
is alternately stacked with CSPX and synthesis module of
convolution, batch regularization, and Mish activation function
(CBM) modules. After the input picture passes through the
backbone network, the feature maps with three scales of
52 × 52 × 256, 26 × 26 × 512, and 13 × 13 × 1, 024 are
obtained. The feature maps of different scales contain semantic
information of different dimensions. For the 13 × 13 × 1, 024
feature layer, the maximum pooling of different scales is
performed in the SPP structure to increase the receptive field of
the network. After that, the three feature layers obtained are input
into the PANet for a series of feature fusion, and finally, three
detection heads of 13 × 13, 26 × 26, and 52 × 52 are output,
respectively. Through decoding and non-maximum suppression
of the detection head, the final prediction box is generated to
detect the objects of different scales.

Depthwise Separable Convolution
Depthwise separable convolution is a lightweight convolution
method, which can effectively reduce the amount of calculation
compared with standard convolution. For the feature map with
an input size of (Dx,Dy,M), the principle of depthwise separable
convolution is to first separate Channel-by-channel convolve M
convolution kernels of size (Dk,Dk) and each channel of the
input feature map, and then, obtain a feature map where the input
channel is equal to the output channel. Finally, N convolution
kernels with size (1, 1) are used to pointwise convolution the
feature map, and a new feature map (Dw,Dh,N) is obtained.
Under the premise that the convolution characteristics are similar
to the standard convolution performance, depthwise separable
convolution can effectively reduce the network model’s parameter
amount and calculation amount. Furthermore, the speed of
model training and reasoning is significantly accelerated.

Backbone Network
To pursue the model’s high accuracy and better performance,
many scholars have deepen the number of layers of the network
model. However, this scheme has some drawbacks, such as
increasing the number of parameters of the model, aggravating
the calculation of the model, and reducing the operation
efficiency of the model, which make it difficult to deploy on
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FIGURE 3 | Structure diagram of Bneck.

devices with limited computing resources. In picking robot
operation, real-time performance is one of the most critical
performance indicators, so it is necessary to lightweight the
network reduce the calculation amount of the model. Although
the CSPDarknet53 network used in the YOLOv4 model has
strong feature extraction performance, the model is complicated
and requires more computation.

The MobileNetV3 network (Howard et al., 2019) combines
deep separable convolution, MobileNetV2’s inverted residual
structure with linear bottleneck (Howard et al., 2018), and
MnasNet’s lightweight attention model based on the squeeze and
excitation structure (Hu et al., 2018). MobileNetV3 constructs
the network by combining these layers as construction Bneck,
which successively passes through 1 × 1 ascending convolution,
3 × 3 depthwise separable convolution, and 1 × 1 dimension
reduction convolution. The structure is shown in Figure 3.
Moreover, the lightweight attention mechanism of the SE
structure is introduced further to improve the feature extraction
ability of the model. Eventually, the whole network structure is
composed of Bneck stacks. Wherein CBL and CBH represent
the synthesis modules of convolution, batch regularization, and
LekeyReLU or h-swish activation functions; BN represents Batch
Normalization; FC represents Full Connection; SE represents
squeeze-and-excitation.

The Proposed Algorithm
To effectively identify dense plums, this paper chose 608 × 608 as
the input size of the YOLOv4 model, and MobileNetV3 was used
to replace the CSPDarknet53 backbone network of the original
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model, which could effectively reduce the number of parameters
of the model backbone network. The depthwise separable
convolution was employed to replace the standard convolution
in the original PANet to further reduce the number of model
parameters. The model convolution module can obtain higher
feature information through multiple down-sampling. However,
when the feature layer with higher semantic information in the
feature fusion network is up-sampled and fused, the convolution
module will lose a certain amount of information, so the
detection accuracy of small targets will be reduced. Therefore,
this paper introduced the 152 × 152 × 24 layer to obtain more
abundant shallow information to achieve fine-grained detection
of small target objects. Due to the small pixels of plums in the
whole image, the model will pay too much attention to the simple
training samples and ignore the samples that are difficult to
classify. Therefore, this paper introduced the Focal loss function
to measure the contribution of difficult classification and easy
classification to the total loss. The combined loss function of
Focal loss and CIOU loss was designed as the loss function
of the improved model. On this basis, this paper used transfer
learning to train the model. Through the two-stage learning, the
model’s generalization performance can be further improved, and
the dense plums can be identified quickly and accurately. The
improved YOLOv4 model structure is shown in Figure 4. Among
them, Conv means convolution, and DSC means depthwise
separable convolution. DSC × 5 indicates that five depthwise
separable convolution operations are required.

Multiscale Fusion Network Structure
In this study, the YOLOv4 algorithm was improved to solve
the problem of insufficient feature extraction in dense plums
recognition. When the input image size selected by the YOLOv4
model is 608 × 608, the feature layer responsible for predicting
dense small targets is 76 × 76, and each feature grid’s
corresponding receptive field size is 8 × 8. When the input
picture resolution is 1, 920 × 1, 080, the corresponding long
edge is 25 through YOLO grid compression. That is to say; when
the target feature size is less than 25 × 25 pixels, the target
feature information cannot be effectively learned.

To extract the feature information of dense plums as much
as possible, this study improved the network model of YOLOv4.
Four feature layers were output from the backbone network
MobileNetV3, namely P1 (152 × 152), P2 (76 × 76), P3
(38 × 38), and P4 (19 × 19). Among them, the P4 feature
layer has the largest receptive field, which is suitable for large-
scale target detection, and the receptive field of the P3 feature
layer is suitable for medium-scale target detection. P2 is up-
sampled and fused with the P1 feature layer, a relatively rich
shallow layer can be obtained, which enables to achieve the fine-
grained detection of small target objects. In the process of feature
propagation, P4 is still obtained through the SPP structure.
This study combines the feature layers P4, P3, P2, and P1 with
different pyramid-level feature maps through up-sampling in the
feature pyramid network (FPN) structure. Each feature layer is
transformed by convolution and up-sampling to obtain the same
scale and channel number as the previous feature layer and then
stacked and fused with the previous feature layer to obtain a

feature map with more abundant information. The improved
network structure is shown in Figure 4.

The four feature layers from the FPN feature fusion output
were pruned to prevent the network from being too redundant.
The specific operation was that the 152 × 152 scale feature layer
output by FPN is no longer the predicted output and directly
up-sampled in the PANet structure. Therefore, the improved
algorithm maintains the prediction YOLO head of three scales,
namely P2’ (76 × 76), P3’ (38 × 38), and P4’ (19 × 19).

Furthermore, the depthwise separable convolution was
introduced into the PANet structure to replace the partial
convolution of the original network. The improvement can
effectively compress the number of network parameters and the
amount of calculation.

Improvement of the Loss Function
The loss function of YOLOv4 consists of CIOU bounding box
loss, classification loss, and confidence loss. The calculation
method is shown in Formula (2)–(6):

L = LCIOU + Lclass + Lconf (2)

LCIOU = 1− IOU (A,B)+
ρ2 (Actr,Bctr)

c2 + αν (3)

ν =
4
π2

(
tan−1 w

gt

hgt
− tan−1 w

h

)2
(4)

α =
ν

(1− IOU)+ ν
(5)

IOU =
|A
⋂

B|
|A
⋃

B|
(6)

Among them, A and B represent the area of the prediction frame
and the actual frame, and the range of IOU is [0,1]; wgt represents
the width and height of the actual frame; w and h represent the
width and height of the prediction frame; Actr and Bctr represent
the coordinates of the predicted box’s center points and the
actual box; ρ represents the Euclidean distance; c is the diagonal
length of the smallest bounding box C composed of A and B; ν

represents the penalty term.
Owing to the small physical size of plums and fewer pixels

occupied in the image, when there are single, occluded, and
densely stacked plums in an image, the model will automatically
pay attention to and train single or easy-to-recognize simple
samples, ignoring adhesion, and other difficult to classify
samples. Therefore, it is necessary to find an appropriate loss
function to balance the contribution of hard-to-classify and easy-
to-classify samples to the total loss.

The Focal loss focused on hard-to-classify samples during the
training process without affecting the original detection speed.
Formula (7) of this function is as follows (Li et al., 2020; Long
et al., 2021; Zhao et al., 2021):

FL(pt) =
{
−αt

(
1−pt

)γln
(
pt
)
, if y = 1

− (1−αt) ptγln
(
1−pt)

}
, otherwise

(7)
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FIGURE 4 | The structure diagram of improved YOLOv4.

Where y is the number of sample labels; pt represents the
probability of belonging to the plum category; αt is the
coefficient of balancing the weight of positive and negative
samples, 0 < αt < 1; γ is the modulation parameter for
complex samples.

This paper employed Focal Loss to replace class loss in the
original loss function. Taking the prediction of simple mature
plum as an example, when the pt value is small, and the

(
1−pt

)γ
value is close to 1, and its loss is almost unaffected. When pt is
large and close to 1, it indicates that the classification prediction
result is better. If it is not corrected, it will easily interfere with
the optimization direction of the model. After introducing Focal
Loss, when pt is larger,

(
1−pt

)γ is smaller. With the increase of
γ, the faster the rate of simple sample reduction is adjusted, and
the lower the proportion of simple samples in the total loss value.
Therefore, the network model can focus more on hard-to-classify
samples by introducing Focal Loss.

Plum Model Training Based on Transfer Learning
The hardware and software platform for model training was
configured as follows: CPU is AMD R5-5600X 3.7 GHz, memory
is 32 GB, storage SSD is 512 GB, display card is NVIDIA
RTX2060S, display memory is 8 GB, the operating system is

Windows10, CUDA version is 10.1, Python version is 3.7, and the
PyTorch version is 1.6.

In this experiment, the input image pixels are 1, 920 × 1, 440.
The K-means algorithm was used to generate the anchors’
coordinate frame iteratively, and the Adam optimizer was used.
The improved loss function was used to train the model.
In addition to offline augmentation methods, Mosaic data
augmentation was used in the training process to enrich the
background of the detected objects further, strengthen the
cognition of the network model on plum characteristics, and
enhance the robustness and generalization performance of the
model. The initial value of the learning rate was set to 10−4, and
the cosine annealing learning rate was optimized and updated
during the training process.

To speed up the convergence of the model, this paper adopted
the transfer learning method for training. The training was
divided into two stages, and the whole stage was trained for 100
epochs. For the first half of the stage, the pre-training weight
of the MobileNetV3 network was loaded, and the backbone
feature extraction network of the model was trained 50 epochs
by freezing. The initial value of the learning rate was set to
1 × 10−3, and the batch size was set to 16. This operation can
accelerate the convergence speed and prevent the pre-training
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FIGURE 5 | Loss curve during training process.

weight from being destroyed. For the second half of the stage, the
backbone feature extraction network was unfrozen, and the entire
model was further trained for 50 epochs with an initial learning
rate of 1 × 10−4, and the batch size was set to 8. The convergence
of the entire model was accelerated through two stages, and the
training time of the model was shortened. In the training process,
validation is performed after each epoch of training, and there is
no overlap of the validation and test set. The weight file of each
round of training was saved, and the loss values of the training set
and validation set were saved. The loss value curves of the training
set and validation set of the improved model in this paper are
shown in Figure 5.

EXPERIMENTAL RESULTS AND
COMPARATIVE ANALYSIS

Model Evaluation Indicators
To objectively measure the target detection effect of the model on
dense plums, the precision (P), recall (R), harmonic average F1
value (F1), average precision (AP), mAP, the number of network
parameters, the size of the weight, and the detection speed were
used to evaluate the trained model. The Intersection over Union
(IoU) value was 0.5 in the experiment. The calculation formulas
of P, R, F1, AP, and mAP are shown in formulas (8–12).

P =
TP

TP + FP
(8)

R =
TP

TP + FN
(9)

F1 =
2PR
P + R

(10)

AP =
∫ 1

0
P(R)dR (11)

TABLE 2 | Comparison of recognition effect of the improved model before and
after data balance.

Dataset types Types Name Plum AP Raw_plum AP mAP

Unbalanced data A dataset 91.77% 80.23% 86.00%

Balanced data B dataset 91.10% 86.34% 88.72%

mAP =

∫ Q
q = 1 AP(q)

Q
(12)

Among them, TP represents the number of correctly detected
plums; FP represents the number of misclassified plums; FN
represents the number of missed plums; F1 represents the
harmonic average of accuracy and recall. When F1 is closer to 1,
the model is better optimized. AP represents the area composed
of the PR curve and the coordinate axis. The higher the AP value
is, the better the performance of the target detection algorithm
is. The mAP represents the AP average of multiple categories,
and its value represents the general detection performance of the
algorithm for different categories.

Detection speed refers to the length of the model detection
time, which was used to evaluate the real-time performance of
the detection models. It is usually measured by the number of
frames per second (FPS). The larger the FPS, the faster the model
detection speed. FPS refers to the number of images processed per
second in this paper.

Data Balance Comparison Experiments
This study selected the improved model based on YOLOv4 to
train the plum data before and after the data balance. The
same test set was selected to detect, and the evaluation index
results are shown in Table 2. The data balance had little effect
on the recognition rate of mature plums, which were both
remained above 90%. Compared with the recognition rate of
plums before data balance, the recognition rate of immature
plums after balance increased by 6.11%, and the mAP of the test
set also increased from 86 to 88.72%, with an increase of 2.72
percentage points. Overall, the recognition gap of plums with
different maturity levels is alleviated, and the robustness of the
model is enhanced.

Figure 6 shows the comparison of detection results before
and after data balancing in different scenes, where A dataset
represents the plum detection effect before data augmentation
and B dataset represents the plum detection effect after data
augmentation. By comparing the detection results before and
after the data augmentation, we used the yellow frames to find
out the missing plums in the (B, E, and H) image and marked
the specific area in the original and the two types of detection
images. Similarly, we used the blue frames to mark the specific
areas where the plum was mistakenly detected.

A comprehensive comparison shows that the model after
data balance has significantly improved the detection accuracy
of immature plums, which indicates that the model’s ability
to identify small sample features has been strengthened by
improving the ratio of mature and immature plums. Meanwhile,
the data-balanced model has improved the misdetection
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FIGURE 6 | The comparison of detection effect of plum images before and after improved data balance.

TABLE 3 | Comparison of detection results of different architectures.

Architecture Plum AP Raw_plum AP mAP Model size Parameters FPS

YOLOv4 88.99% 83.95% 86.47% 244 MB 61.38 M 20.03

YOLOv4-tiny 87.51% 81.71% 84.61% 22.4 MB 5.77 M 112

MobileNet-SSD 87.12% 79.23% 83.18% 24.7 MB 5.98 M 82.84

Improved YOLOv4 90.58% 86.54% 88.56% 54.05 MB 11.00 M 42.55

detection and missed detection of plums in scenes occluded by
leaves and branches. In conclusion, the experimental results show
the effectiveness of the data balance method.

TABLE 4 | Evaluation results of plum test set under different light conditions.

Light conditions Classes P R F1 mAP

Natural light plum 90.32% 88.19% 0.89 94.53%

raw_plum 89.41% 91.69% 0.91

mean value 89.87% 89.94% 0.9

Side light plum 88.29% 89.09% 0.89 94.86%

raw_plum 93.07% 92.61% 0.93

mean value 90.68% 90.85% 0.91

Back light plum 90.14% 80.33% 0.85 86.75%

raw_plum 92.36% 81.46% 0.87

mean value 91.25% 80.90% 0.86

Comparative Experiments of Different
Detection Methods
To evaluate the detection superiority of the improved model,
the dataset made in this paper was trained by different target
detection algorithms. After the training was completed, the test
work was performed on the same testing sample sets. The AP,
mAP value, model size, and detection speed of the four methods
are shown in Table 3. Overall, the four models all had higher
mAP for plums. Significantly, the improved YOLOv4 model was
1.59, 3.07, and 3.46 percentage points higher than the original
YOLOv4, YOLOv4-tiny, and MobileNet-SSD, respectively, in the
detection results of mature plums. Compared with the other
three models, the improved YOLOv4 model increased by 2.59,
4.83, and 7.31 percentage points in the detection results of
immature plums. Compared with the original YOLOv4 model,
the improved YOLOv4 network model has a relatively simple
structure, the model size of the improved YOLOv4 is compressed
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FIGURE 7 | Plum detection effect pictures under different light conditions.

by 77.85%, which is only slightly more than two times the
combined model size of the YOLOv4-tiny and MobileNet-
SSD. Moreover, the parameters is only 17.92% of the original
YOLOv4’s. The improved YOLOv4 network model is 112%
faster than the original one in the terms of detection speed. In
summary, the improved method presented in this paper shows
the optimal detection performance for dense plums among the
compared methods.

Comparative Experiment Under Different
Light Conditions
The visual system of the fruit picking robot is susceptible to
the influence of different lighting conditions in the natural
environment when it collects videos or images, which affects
the change of recognition accuracy. Under natural lighting
conditions, the image is bright and dark, and plum contours

are clear. Under backlight conditions, the overall image is dark,
and plum contours are not evident. Under sidelight conditions,
plums have uneven brightness. Therefore, 40 additional plum
images were randomly selected under natural light, side light, and
backlight to form a new test set C. The evaluation performance
index results are shown in Table 4, and the detection results are
shown in Figure 7.

TABLE 5 | The detection results of different density in four architectures.

Evaluation
indicator

YOLOv4 YOLOv4-tiny MobileNet-SSD Improved
YOLOv4

Moderately dense
mAP value

89.19% 87.12% 87.28% 89.30%

Highly dense mAP
value

83.01% 80.03% 77.16% 84.75%
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FIGURE 8 | Plum detection effect pictures under different dense conditions.

FIGURE 9 | The detection effect of unmanned aerial vehicle (UAV) images.

It can be seen from Table 4 that the improved model
maintains a high accuracy rate for plum detection results under
different light, but the detection results are discrepant under
different angle light conditions. Among them, the model has
a slight decrease in performance under backlight conditions.
Compared with natural light and side light conditions, the mAP
value of the backlight is lower by 7.78 and 8.11%, respectively.
Thanks to the clear texture of the plum under the conditions
of natural and sidelight, the improved model can obtain higher
recognition accuracy. However, the backlight condition has a
certain interference effect on image feature extraction.

Figure 7 shows the comparison of the detection effects of
plum images under different lighting conditions. It can be seen
from Figures 7A,D,B,E that the plum has clear texture and
uniform surface light intensity under natural light and sidelight.
The difficulty of image detection is relatively small. Even the
plum target at a distance can be detected. In the backlight, the
image clarity is insufficient, and the color of mature plum fruit is

dark red. Moreover, the color discrimination between immature
plum and background (such as, branches or leaves) decreases,
so a small amount of missing detection occurs. Overall, the
improved model still maintains a high recognition accuracy in
natural orchards.

Results and Analysis Under Dense
Occlusion in Orchards
A Comparison Experiment of Plum Images With
Different Density
We randomly selected some images with different densities
for comparative experimental detection. If an image contains
10–20 plums, it is considered a moderately dense image. If
there are more than 20 plums in the image, it is highly dense.
Four architectures methods were used to test and compare the
experimental results and detection results.

As can be known from Table 5, the accuracy of moderately
dense plum images is higher than that of highly dense plum
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FIGURE 10 | The comparison of plum detection effect under different occlusions.

images, mainly due to the severe occlusion of highly dense plums,
unclear fruit edges, and lack of texture features. By comparing the
mAP of the four target detection models, the improved YOLOv4
has the highest mAP, the moderately dense recognition mAP
reaches 89.30%, and the highly dense recognition mAP reaches
84.75%. The mAP gap between the two densities when compared
showed that MobileNet-SSD has the largest mAP gap, exceeding
10%. The mAP gap of the improved model in the paper is the
smallest, with a gap of only 4.55%. This shows that the improved
model has a better detection effect for plums with different
densities, and the improved model can narrow the detection gap
of plums with different densities. Compared with other models,
the improved model has a lower missed recognition rate and can
recognize more plums, as shown in Figure 8. The experimental
results show that the improved method in this paper has better
detection accuracy, which indicates that the improved multiscale
fusion structure can extract more valuable features under dense
occlusion conditions.

To further explore the generalization ability of the improved
model for image detection in a wide field of view, this study
discussed the plum images from unmanned aerial vehicle (UAV)
(DJI Yu2, zoom version) at a distance of 2–3 m from the tree
canopy and 1–2 m parallel to the plum tree. Then, the improved
model was employed to detect and evaluate the collected samples.
The detection effect is shown in Figure 9. For the case of dense
plums in a large field of view, plums can still be effectively
identified by the improved model, indicating that the model has
good generalization performance. The conclusion provides the
possibility for further research on cooperative picking by UAV
and ground fruit-picking robots.

A Comparative Experiment of Different Occlusion
Situations
There may be some scenes obscured by branches, leaves,
and other plums in the natural orchard. These occlusions
may affect the detection accuracy of the model. For
this reason, we also discussed the detection effect of
the improved model on plum images with different
occlusion categories.

The detection effect of the improved model for
different occlusions is shown in Figure 10. The purple
frame represents the partially enlarged image, and the
yellow frame indicates the missed plums. As shown in
Figures 10A–C, the model can efficiently recognize simple
occlusion in the image. As shown in Figure 10D, when
there is severe occlusion, plums with large area contour
hidden or severely missing texture feature information
will be missed. Nevertheless, on the whole, the improved
model still has a good recognition effect, which indicates
that the introduced Focal Loss function has a certain
effect, making the model pay more attention to the
occluded and difficult-to-recognize targets during the
training process.

CONCLUSION

This study focused on dense plums in a real and complex orchard
environment and proposed an improved YOLOv4 lightweight
model. At first, the plums image data were collected, and the
dataset was made using the automatic balancing method based
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on category and the hybrid offline augmentation method. Then,
MobileNetV3 and deep separable convolution were designed
to improve the YOLOv4 model, and 152 × 152 feature
layers were introduced to deal with the problem of insufficient
feature extraction of the dense plums. Withal, the multiscale
fusion and the joint loss function of Focal loss and CIOU
loss were added to enhance the performance of the model
against difficult-to-recognize plums. Finally, the improved model
was trained by transfer learning. The main conclusions are as
follows:

i. The accuracy of the data automatic balance algorithm
proposed in this study for the detection of immature
plum reached 86.34%, which is 6.11 percentage points
higher than before the imbalance. The mAP increased
from 86 to 88.72%, increasing 2.72 percentage points.
Overall, the recognition gap of plums with different
maturity levels is alleviated, and the robustness of the
model is enhanced.

ii. Compared with the other three target detection models,
the improved model based on YOLOv4 had the highest
mAP result. By comparing with some results from
the YOLOv4 model, the model size of the improved
model is compressed by 77.85%, the total amount
of parameters is only 17.92% of the original model
parameters, and the detection speed is accelerated
by 112%. The above data show that the improved
model has achieved better performance in recognition
accuracy and efficiency.

iii. This study discusses the detection performance of the
improved model in natural scenes, such as different
illuminations, different densities, images collected by UAV,
and different occlusion conditions. The experimental

results show that the improved model has excellent
robustness and generalization performance.
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