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Species Distribution Models (SDMs) are fundamental tools in ecology for predicting the

geographic distribution of species based on environmental data. They are also very

useful from an application point of view, whether for the implementation of conservation

plans for threatened species or for monitoring invasive species. The generalizability

and spatial accuracy of an SDM depend very strongly on the type of model used

and the environmental data used as explanatory variables. In this article, we study a

country-wide species distributionmodel based on very high resolution (VHR) (1m) remote

sensing images processed by a convolutional neural network. We demonstrate that this

model can capture landscape and habitat information at very fine spatial scales while

providing overall better predictive performance than conventional models. Moreover, to

demonstrate the ecological significance of the model, we propose an original analysis

based on the t-distributed Stochastic Neighbor Embedding (t-SNE) dimension reduction

technique. It allows visualizing the relation between input data and species traits or

environment learned by the model as well as conducting some statistical tests verifying

them. We also analyze the spatial mapping of the t-SNE dimensions at both national and

local levels, showing the model benefit of automatically learning environmental variation

at multiple scales.

Keywords: species distribution model, convolutional neural network, ecological interpretation, plant functional

traits, t-SNE, very fine scale prediction, remote-sensing imagery

1. INTRODUCTION

Understanding and predicting the spatial distribution of species is a crucial issue in
theoretical and applied ecology. In particular, Species Distribution Models (SDMs)
are used to characterize the ecological niche of species, i.e., the environmental
conditions that explain their presence (Elith and Leathwick, 2009). The ecological
niche is inherently multi-dimensional and can involve a large number of factors
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articulated in a complex manner (i.e., a non-linear system)
and at multiple spatial scales. Modern SDMs are generally
correlative methods that link known species occurrence data
to environmental predictors via statistical learning methods
(Guisan and Zimmermann, 2000; Guisan and Thuiller, 2005;
Peterson, 2011). Among the most popular methods, we can
mention MAXENT (Phillips et al., 2006; Phillips and Dudik,
2008) used in a very large number of studies or methods from
the machine learning field such as random forest (Cutler et al.,
2007) or boosted trees (De’ath, 2007; Elith et al., 2008). The latter
generally allow substantial gains in predictive performance, but
sometimes at the expense of weaker ecological interpretability.
More recently, SDMs based on deep neural networks have
emerged to try to better characterize the high complexity of how
the environment shapes ecological niches (Chen et al., 2016;
Benkendorf and Hawkins, 2020). These deep learning models
have several advantages: (i) they can efficiently capture complex
relationships from a very large number of predictors, (ii) they
can extract ecological features common to a large number of
species and thus capture fundamental ecological patterns, and
(iii) they can significantly improve the prediction quality of
species compositions (Botella et al., 2018; Christin et al., 2019).

A particular type of neural network initially proposed by
LeCun et al. (1989), named convolutional neural networks
(CNN), has recently been introduced for the modeling of species
distribution (Botella et al., 2018; Deneu et al., 2018; Gillespie
and Exposito-Alonso, 2020). The main added value of these
CNN-SDMs models compared to non-convolutive deep neural
networks and other machine learning methods is that they are
based on spatial environmental tensors rather than on point
values of environmental variables. These tensors capture the
spatial dimension of the environmental variables around each
point in addition to their value. Unlike classical SDMs, the
great strength of CNN-SDMs is to be able to extract relevant
spatial-environmental patterns from such complex input data
(Deneu et al., 2021). CNNs were originally designed for image
classification, inspired by convolution operators used in signal
processing. For a long time, their use remained limited because
their training requires significant hardware resources and large
volumes of training data. For nearly 10 years, they have been
recognized as undeniably more efficient than any other method
for tasks requiring the extraction of information from images
(especially multi-channel images). Therefore, within a few years,
CNNs have become increasingly popular in the field of ecology
for various tasks such as identifying species, classifying animal
behavior, or estimating biodiversity in camera-trap images,
videos, and audio recordings (Christin et al., 2019).

In this article, we study an SDM based on a convolutional
neural network trained with very high resolution (VHR, 1 m)
remote sensing images as one of the input variables. Its fitting
on millions of plant and animal occurrences (coming from
citizen science) required several weeks of computation on aGPU-
equipped super-computer. The evaluation of its performance on
several thousand species shows that it is superior to a state-
of-the-art environmental SDM while its spatial resolution is
several orders of magnitude higher. Beyond the raw predictive
performance, we then focus on the ecological interpretation of

this unusual SDM. Therefore, we employed a t-SNE (Maaten
and Hinton, 2008), a non-linear dimension reduction method
widely used to visualize the feature space learned by deep learning
models. Specifically, we use t-SNE to construct a low-dimensional
(2-dimensional and 3-dimensional) embedding of the high-
dimensional representation space learned by the CNN (i.e., of
the 2,048-dimensional feature vectors used as the input of the
final species classifier). These low-dimensional representations
are then exploited in three ways: (i) to visualize in geographic
map form the spatial patterns of habitats and landscapes learned
by the model, (ii) to visualize in graphical form the relationships
between learned features, environment, and species traits, and
(iii) to quantitatively verify these relationships using statistical
tests. This interpretability study demonstrates that our CNN-
SDM trained onVHR remote sensing data captures the landscape
and habitat information at fine spatial scales while providing
better overall predictive performance than conventional models.
This offers the possibility to produce large-scale distribution
maps for a large number of species simultaneously and at a spatial
resolution rarely equalled. Moreover, it opens the possibility to
analyze their consistency with the fine ecological knowledge of
each species, which is almost impossible with coarser approaches.
The conducted statistical tests also clearly demonstrate that
the model is able to capture meaningful environmental and
ecological patterns from the input data. This is particularly
remarkable in the sense that none of these data were used as
input variables during the training of the model. In addition,
statistical tests show that the features learned by the model are
significantly related to the environment and species traits. The
model is able to extract this high-level information directly from
the raw data used as input (the spatial-environmental tensors
coupled to species occurrences).

2. MATERIALS AND METHODS

2.1. CNN-SDM Model Training and
Validation
2.1.1. Training Dataset
For this study, we use the GeoLifeCLEF 2020 dataset, a detailed
description of which is provided in Cole et al. (2020). This
dataset covering France and the USA consists of 1,921,123
observations (8,23,483 in France and 1,097,640 in the USA)
belonging to 31,435 different species, mainly plants and animals.
Each observation is coupled to a tensor extracted from remote-
sensing data (at high or VHR) at the position of the occurrence,
refer to Figure 1. The four remote-sensing data used are, RGB
and Near-IR imagery (from the 2009-2011 cycle of the National
Agriculture Imagery Program (NAIP) in the United States1, and
the BD-ORTHO R© 2.0 and ORTHO-HR R© 1.0 from IGN2 in
France), land-cover (National Land Cover Database (NLCD)
(Homer et al., 2015) for the United States and CESBIO3 for
France), and elevation (Shuttle Radar Topography Mission

1National Agriculture Image Program, https://www.fsa.usda.gov
2https://geoservices.ign.fr
3http://osr-cesbio.ups-tlse.fr/~oso/posts/2017-03-30-map-s2-2016/
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FIGURE 1 | (A) Observations distribution (training data in blue, test data in red) in France. (B) Example of a very high-resolution (VHR) tensor of 256 × 256 m square

with, respectively, RGB images (native colors), Near-IR images (artificial colors), land cover (artificial colors), and altitude (artificial colors). Artificial colors are from purple

(lowest values) to yellow (highest values).

TABLE 1 | Summary of data sources.

Name Description Native resolution

NAIP RGB and Near-IR imagery (US) 1 m

BD-ORTHO® 2.0 RGB and Near-IR imagery (France) 0.5 m

ORTHO-HR® 1.0 RGB and Near-IR imagery (France) 0.2 m

NLCD Land-cover (US) 30 m

CESBIO Land-cover (France) 10 m

SRTM Elevation 1 arcsec (≈30 m at equator)

(SRTM)4 for both France and USA).Table 1 summarizes the data
sources and native resolution. These different remote-sensing
data have been standardized to a spatial scale of 1 m per pixel.
The finest data were downsampled (including for example the
ORTHO-HR data which was up to 20 cm resolution) and the
elevation and land-cover were oversampled. The oversampling
of the elevation data is done using a bilinear interpolation that
smoothes the interpolated data to avoid sharp edges to which the
CNN can be sensitive (note that the data provided is itself already
interpolated). On the contrary, the oversampling of categorical
land cover data is done without interpolation for obvious reasons
of data degradation (only the nearest neighbor allows us to keep
the classes intact). The final tensors are 256× 256 pixels covering
256 × 256 m for each data and centered on the position of each
observation. An example is given in Figure 1B.

4https://lpdaac.usgs.gov/products/srtmgl1v003/

2.1.2. Deep Convolutional SDM Architecture
Our deep convolutional neural network is the composition of
non-linear transformations (including the convolutional layers)
of the input space z = φ(x) with a linear classifier ψ(z) which is
trained in a similar way to a multinomial logistic regression, i.e.,
by minimizing the negative log likelihood of:

P(Y = k|X = x) = σk(ψ(z)) =
eψk(z)

∑

j e
ψj(z)

(1)

where σ is the softmax function that maps the logit ψk(z)
of a particular species to its relative probability. The vector z

is called the feature vector (or representation vector) of the
input tensor x. Here, the size of the feature space is 2,048, it is
defined by the architecture of the model. We use the Inception
V3 (Szegedy et al., 2016) model architecture adapted in the same
way introduced in Deneu et al. (2020b) to fit the format of the
input data and the number of output classes (species). The model
is trained using the cross-entropy loss and so the outputs of the
model can be interpreted as relative probabilities of occurrence
of species for input data x.

2.1.3. Environmental and Trait Data
In this study, we also use environmental and species trait data.
These data are not used for training the CNN but are used
to study the ability of the model learned on VHR data to
extract information related to the ecology of species. We use 19
bio-climatic rasters [30 arcsec2/pixel (above 1 km2/pixel) from
WorldClim (Hijmans et al., 2005)] and 8 pedologic rasters [250
m2/pixel, from SoilGrids (Hengl et al., 2017)]. The detailed list
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TABLE 2 | Summary of environmental rasters.

Name Description Res.

bio_1 Annual Mean Temperature 30 arcsec

bio_2 Mean Diurnal Range [Mean of monthly (max temp - min temp)] 30 arcsec

bio_3 Isothermality (bio_2/bio_7) (* 100) 30 arcsec

bio_4 Temperature Seasonality (standard deviation *100) 30 arcsec

bio_5 Max Temperature of Warmest Month 30 arcsec

bio_6 Min Temperature of Coldest Month 30 arcsec

bio_7 Temperature Annual Range (bio_5-bio_6) 30 arcsec

bio_8 Mean Temperature of Wettest Quarter 30 arcsec

bio_9 Mean Temperature of Driest Quarter 30 arcsec

bio_10 Mean Temperature of Warmest Quarter 30 arcsec

bio_11 Mean Temperature of Coldest Quarter 30 arcsec

bio_12 Annual Precipitation 30 arcsec

bio_13 Precipitation of Wettest Month 30 arcsec

bio_14 Precipitation of Driest Month 30 arcsec

bio_15 Precipitation Seasonality (Coefficient of Variation) 30 arcsec

bio_16 Precipitation of Wettest Quarter 30 arcsec

bio_17 Precipitation of Driest Quarter 30 arcsec

bio_18 Precipitation of Warmest Quarter 30 arcsec

bio_19 Precipitation of Coldest Quarter 30 arcsec

bdticm Absolute depth to bedrock in cm 250 m

bldfie Bulk density in kg/m3 at 15 cm depth 250 m

cecsol Cation exchange capacity of soil in cmolc/kg 15 cm depth 250 m

clyppt Clay (0-2 micro meter) mass fraction at 15 cm depth 250 m

orcdrc Soil organic carbon content (g/kg at 15 cm depth) 250 m

phihox Ph x 10 in H20 (at 15 cm depth) 250 m

sltppt Silt mass fraction at 15 cm depth 250 m

sndppt Sand mass fraction at 15 cm depth 250 m

and resolutions are presented in Table 2. This environmental
data is also used to train an environmental random forest in order
to compare this more classical approach and its performance to
our model (refer to Section 2.1.4).

We also use data related to the ecology of the species, more
precisely Ellenberg indicator values (EIVs, refer to Table 3)
(Ellenberg, 1988) from Julve (1998). These data are available
for more than 1,400 plant species that we have in our dataset.
These variables consist of an ordinal classification of ecological
strategies with respect to major environmental constraints and
essential resource use (Bartelheimer and Poschlod, 2016).

2.1.4. Environmental Random Forest
For performance comparison purposes, we also train an
environmental random forest model. This more classical model
is trained using environmental rasters of climate and soil data
(refer to Section 2.1.3). We extract the environmental realization
(the value taken by the environmental variables) at the point of
each occurrence, which associates an environmental vector of size
27 with each occurrence. Similar to CNN, the random forest is
learned on all the training occurrences over France and the USA,
with the exception of some occurrences in Florida which are out
of the coverage of the provided raster and are removed (there is
no such problem on the test occurrences). We use the random

TABLE 3 | Summary of Ellenberg’s plant species traits data.

Name Description Ranges of values (Nb species)

EIV L Light availability 2–9 (1,423)

EIV T Temperature 1–9 (1,413)

EIV K Climatic continentality 1–8 (1,411))

EIV AirH Air humidity 1–9 (1,405)

EIV F Soil humidity 1–12 (1,405)

EIV R Reaction (soil acidity / pH) 1–9 (1,410)

EIV TroL Trophic level 1–9 (1,412)

EIV S Salt (soil salinity) 0–9 (1,416)

EIV SoiT Soil texture 1–9 (1,416)

EIV N Nitrogen (soil fertility) 1–9 (1,422)

forest classifier of scikit-learn (Pedregosa et al., 2011). The
optimization of the parameters is done using a validation set of
occurrences made of 0.5% of the occurrences randomly extracted
from the training set. The final parameterization consists of a
forest of 100 trees with a maximum depth of 10, the other
parameters are left at their default values. The predictive power
of random forests generally increases with the number of trees
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and the depth. However, the memory size of the model increases
exponentially with the depth. Due to the size of the dataset, a
depth of 10 was a limit with the resources we had available and
using the scikit-learn implementation.

2.1.5. Models Evaluation
Both models (CNN and random forest) were evaluated in the
context of the GeoLifeCLEF 2020 challenge (Deneu et al., 2020a;
Joly et al., 2020). The main metric used for evaluation is the top-
k accuracy index, i.e., the probability that the true species of the
observation belongs to the set of k species predicted as most likely
by the model. This metric is well-adapted to classification models
that return relative probabilities such as the CNN or the random
forest classifier. It also has the advantage of not requiring absence
or pseudo-absence data. For an observation i ∈ D, we defined as
ri the rank of the true species of i in the sorted list of the estimated
probabilities ŷs(i). Additionally, for k ≥ 1, we defined the top-k
accuracy as:

Ak =

∑n
i Ak(i)

n
(2)

with n is the number of occurrences in the test set and

Ak(i) =

{

1 if ri ≤ k
0 else

(3)

To avoid giving too much weight to the most frequent species, it
is preferable to evaluate the models in terms of scores per species
and not per occurrence. Therefore, we defined the species-wise
top-k accuracy for a particular species s as:

SAk,s =

∑j
i Ak(i)

j
(4)

With j the number of occurrences of species s in the test set. Then
we defined themean top-k accuracy per species by:

MSAk =

∑n
s SAk,s(m)

n
(5)

with n the number of species in the test set.
For the comparison of the two models, we choose to set k to
30. Models are evaluated using a spatial block holdout procedure
(i.e., test occurrences are contained in 5× 5 km quadrats with no
train occurrences and represent 2.5% of the overall set).

In addition, we also evaluate the models with the Area Under
Curve metric (AUC), more commonly used by the ecology
community. For that, it is necessary to establish a method for
selecting pseudo-absences. As the data we use are provided only
at the points of occurrences, the pseudo-absences of a species
must be drawn among the occurrences of other species. A naive
draw of pseudo-absences could then be simply to draw randomly
in all other occurrences uniformly. However, the distribution
of occurrences by species as well as spatially being highly
imbalanced could introduce biases in the representativeness of
habitats in the pseudo-absences. To address this problem we
propose to balance the drawing of pseudo-absences on the species
and not the occurrences. Each pseudo-absence is then chosen by

first randomly drawing a species (other than the one evaluated
and with at least 1 occurrence in the test set) and then by
randomly drawing a test occurrence of this species. For each
species, we draw at least 100 pseudo-absences or as many as
presence if the species has more than 100 occurrences in the test
set. The AUC is then computed by species and the models are
compared by their average AUC by species (MeanAUC). Note
that the outputs of the random forest are the relative probabilities
of the species. It is the score that is used to compute the AUC.
However, for the neural network, it is the activation of the last
linear layer (prior to the softmax, i.e., the logits of the species)
that is used because it is closer to habitat suitability. Contrary to
MSAk and Ak, the AUC is dependent on the pseudo-absences
and their “environmental” distance from the presences, so the
extent of the study area greatly influences the score obtained. The
models being learned on a particularly large geographical area
and covering the two countries, France and US, we also propose
to evaluate theMeanAUC for each country separately.

2.2. Dimension Reduction
The learning of CNNs is done through a representation space,
also called feature space. This space is concretized as the last
layer of the CNN on which a linear model gives the final
output. Each occurrence gives an activation of the neurons of
this layer noted z = φ(x). This space then concentrates the
information captured by the model in the input data in such a
way that the species tend to be linearly separable. Analysis of
the structure of this feature space and the information it has
captured can lead to a better understanding of the explanatory
factors captured by the model and how they relate to the
ecology of the species. However, the feature space remains a
relatively high-dimensional space (2,048) which makes it difficult
to perform both qualitative and quantitative analyses on the space
as is. We, therefore, propose to project this space and thus the
vectors of activations (z) of the occurrences in a new space of
very low dimension (2 or 3 dimensions). For this, we use a
state-of-the-art non-linear dimension reduction method, the t-
SNE (Maaten and Hinton, 2008). The t-SNE algorithm is based
on a probabilistic interpretation of proximities. A probability
distribution is defined for the pairs of points in the source
space such that points that are close to each other have a high
probability of being selected while points that are far away have
a low probability of being selected. A probability distribution is
also defined in the same way for the visualization space. The t-
SNE algorithm consists of matching the two probability densities,
minimizing the Kullback-Leibler divergence between the two
distributions with respect to the location of points on the map.
The main advantage of t-SNE is that it is able to preserve the
local structure of the original space even if it is not linear. Since
t-SNEs aim to preserve local similarities, a common practice is to
perform a first dimension reduction before t-SNEs for very large
dimensionalities. This helps to preserve the global structure as
well and to improve the computation time. Here, we choose to
use a PCA as a preliminary dimension reduction step (Kobak and
Berens, 2019).
Specifically, to process the dimension reduction, we randomly
selected 32, 000 training occurrences xj and computed their

Frontiers in Plant Science | www.frontiersin.org 5 May 2022 | Volume 13 | Article 839279

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Deneu et al. Very High Resolution CNN-SDM

representations zj = φ(xj). Then, we first reduced the dimension
from 2,048 to 50 by PCA using the scikitlearn package. The
resulting 50-dimensional feature vectors were then further
reduced by t-SNE, also using the scikitlearn package. For most
experiments, the used dimension for t-SNE was set to 2 (apart
from the geographical map of Figure 6 where it was set to 3
without PCA and based on other occurrences, refer to Section
2.4). In the following, we denote as z̃ = g(z) the resulting 2-
dimensional feature vectors, where the function g denotes the
complete dimension reduction function (PCA+t-SNE).

2.3. Learned Space Visualization
We propose to illustrate the main information related to the
landscape, the environment, or the ecology of the species
captured by the model using several visualizations on the two-
dimensional t-SNE space. To do so, we discretize the two-
dimensional space as a grid of size n × n with n the number
of discretizations that can be arbitrarily chosen. On this grid,
we search in each cell with at least one occurrence for the
occurrence that is closest to the center of the cell (knn function
in scikitlearn). Thus, we associate with each cell an occurrence
(if there is one). We can then produce different visualizations
by displaying information or data related to the occurrences at
their position in the grid. Each cell, which can then be seen as a
pixel, displays the data of its associated occurrence. The first one
(Figure 3), consists in displaying the RGB image corresponding
to the input data of the occurrence (which is equivalent to
taking the tensor associated with the occurrence but keeping only
the R,G,B channels, and not the Near-IR, Altitude, and land-
cover channels). The other visualizations (Figure 8) display the
environmental realization at the point of the occurrence or the
value of a trait of the species of this occurrence.

The second representation is a projection of the t-SNE space
on the geographical space. To do this, we first applied a bilinear
color gradient on the t-SNE space (refer to Figure 5A), we then
took a grid of points covering the French territory with one point
for each kilometer. Each geographical point was associated by a
1-Nearest Neighbor algorithm to the closest occurrences used in
t-SNE. The point then took the color obtained in t-SNE space for
the corresponding occurrence and provided a pixel of the map
in Figure 5B.

2.4. Very High Spatial Resolution Analysis
In addition to the visualization of learning on the whole territory,
we demonstrate a visualization at a finer scale and VHR. To do so,
we analyzed the activation of the model in a selected geographical
area. The choice of the area was made according to two criteria.
(1) The area had to contain several distinct environments within
a small spatial extent (about 10 km). (2) The area had to be
sufficiently documented and known by the authors to draw
relevant conclusions. The result is the choice of an area of 10× 15
km on the French Mediterranean coast close to Montpellier city,
including a massif, coast line, salt ponds, garrigues, pine forests,
agricultural areas, vineyards, urban areas, and some significant
human infrastructure such as a highway. The model activation
was performed every 50m after extracting the input data for these
points following the same procedure as for the official data set

described in Cole et al. (2020). We then performed two different
visualizations on this area. The first one is a visualization of the
feature space z via a dimension reduction by t-SNE similar to
what is described in Section 2.2 with some differences. Unlike the
t-SNE described, here, we did not apply a PCA and we performed
a reduction to three dimensions instead of two. We then plotted
the 3-dimensional t-SNE on the map by re-scaling each of the
three axes such as the values felt within 0–255. Each point could
then be associated with an RGB color from its coordinates on t-
SNE space. The resultingmap was the plot of each point as a color
pixel at its geographical position. The second representation was
a geographical display of the activation of the logit of four species
in this area (the logit being the confidence score associated with
each species as presented in Equation 1). We suppose here that
the logit provides an index of habitat suitability. We chose the
species to be representative of different environmental conditions
at a fine scale. The four selected species were Ailanthus altissima
(Mill.) Swingle. (invasive along roads, rails, etc.), Cistus albidus
L. (in the garrigues and limestone slopes), Capsella bursa-pastoris
(L.) Medik. (pioneer of lawns, crops, wasteland, rubble in urban
areas), and Anthemis maritima L. (marine sands).

For this analysis, with a limited number of species, we propose
to compare our model to the predictions of an environmental
MaxEnt (Phillips et al., 2006; Phillips and Dudik, 2008) model
for the 4 species mentioned. The MaxEnt model remains to this
day the most used model for single species SDMs and is known
for its performance. We used the R implementation of MaxEnt
and the environmental rasters presented in Section 2.1.3 for the
4 species models. We give as input to MaxEnt the bioclimatic
and soil rasters over France. As the rasters must be given with
the same size and resolution we use the “resample” function of
the “aster” library in R to scale the bioclimatic raster to those of
the soil (250 m). For the species Anthemis maritima L., being a
coastal sand species, more than half of the learning occurrences
fell outside the coverage of the rasters (the rasters being defined
only on land, the occurrences too close to the water can be in the
no data cells). To overcome this problem, we use the “approxNA”
function of the “raster” library which allows us to extend the
coverage of the rasters by replicating the values close to the no
data zones onto them. The prediction of the MaxEnt models in
this area can be compared to the CNN logit activations to see
the difference in dynamics and resolution of the two models.
However, there is a conceptual difference between the outputs of
the models. WhereMaxEnt gives an estimate of the probability of
presence, the CNN logits cannot be interpreted as such. The two
predictions are therefore not directly comparable. We propose
only to compare the spatial dynamics of the maps produced
in this area and not to directly compare the presence/absence
predictions. To do so, we scale, for each species, the two model
outputs to a prediction between 0 and 1, where 1 corresponds
to the point on the map where the score given to the species
by the model is the highest and 0 the lowest. This method is
justified by the choice of species that we know are present in
the study area but not in all environments. In other words, we
know that these species are present in some habitats included
in the study area and absent from some others. In practice, the
output of the MaxEnt is already between 0 and 1 so we simply
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TABLE 4 | Evaluation of the models.

Model A30 MSA30 MeanAUC MeanAUC France MeanAUC US

Environmental random forest 0.204 0.069 0.905 0.732 0.889

Remote-sensing based CNN 0.235 0.132 0.915 0.771 0.902

use a min-max scaler to set the local maximum to 1 and the
local minimum to 0. For the CNN, the logits are not necessarily
between 0 and 1 and can contain extreme values, thus, we first
apply a sigmoid to bring the logits scores between 0 and 1 and
then the min-max scaler. The threshold of the sigmoid is chosen
equal to the average activation of the logits of the species in the
area. This allows to center the values and remains consistent with
the known condition of absence and presence of the species in the
area.

We rendered themaps by combining a backgroundmap of the
remote sensing data and a layer displaying the values obtained
with a colormap going from transparent (0) to bright red (1).

2.5. Ecological Interpretation of the
Learned Features
Here, we use the species, ecological traits and environment data
that were not used during model training (refer to Section 2.1.3).
These data allow us to assess howwell themodel is able to capture
information related to the environment (climate and soil factors)
and species ecology (species traits). To do so, we fit a linear
model on each axis of the t-SNE (the two variables z̃1 and z̃2)
using either the environmental or ecological trait variables as
explanatory variables (R language, lm function). The correlation
then captured between the feature space of themodel (reduced by
t-SNE) and these data may be indicative of the ability of the CNN
model to capture information directly related to species ecology
through VHR imagery data. The variable bio_7 was removed
from the linear model on the environmental variables because by
definition it is equal to bio_5−bio_6 and is, therefore, directly
correlated to them.

3. RESULTS AND DISCUSSION

The evaluation of the CNN based on VHR remote-sensing
data against the environmental random forest highlights the
performance of the CNN which obtains a better score than
the more classically used environmental model on all metrics
(Table 4). The CNN obtains 23.5 vs. 20.4% on the top-30 accuracy
(A30). The performance gap is even greater when evaluating
the mean top-30 accuracy per species (MSA30) with a score of
13.2% for the CNN against 6.9% for the random forest. This
suggests that the CNN is particularly better on less represented
species in the dataset as these species gain more weight in
the MSA30 compared to the A30. Figure 2 confirms this by
showing the performance of the two models as a function of the
number of occurrences in the training set. The difference in the
performance of the two models increases rapidly as the number
of occurrences decreases. In particular, for species between 270

and 92 occurrences, the CNN is already twice as good as random
forest.

The model evaluation in MeanAUC shows a good overall
capture of the species distribution over the global dataset with
both models over 0.9 (0.915 for the CNN and 0.905 for the
random forest). However, the separate MeanAUC evaluation
shows lower scores than the overall evaluation for both countries.
This illustrates the impact of pseudo-absence on particularly large
and diverse study areas. In particular, the scores in France are
significantly lower than in the US or the global evaluation. Two
factors may be at play, the task may be more difficult (more
species with few occurrences) but also the smaller size of the
country may accentuate the previous remark. The comparison
of the models confirms with this metric the better performance
of the CNN against the random forest. In particular, in France,
where the difference of MeanAUC is the most important (0.771
for the CNN vs. 0.732 for the random forest) shows that the CNN
seems more robust when the task is more difficult.

Both proposed metrics have limitations that must be taken
into account in the analysis of the results. For the evaluation
of MSAk or Ak, the most obvious problem is the choice of k.
Indeed, the actual k depends on both the spatial resolution of the
prediction and the specific richness at the prediction point, which
we do not know. The relative probability given to a rare species
by the model may never allow it to reach the top k for small k
even if the spatial dynamics of its prediction are consistent with
its distribution. In our case, the choice of a relatively restrictive k
with respect to the number of species (k fixed at 30 for 31,435
species) leads to relatively low scores in accuracy which can
give the impression that the models perform poorly. For the
AUC, the choice of pseudo-absences is known to have a strong
impact on the score obtained and in particular, in our case, the
evaluation of themodels in such a large and varied region (France
and the United States) facilitates obtaining high AUC scores.
Indeed, the drawing of pseudo-absences has a great chance to
represent environments that are on average quite far from the
species’ niches. This partly explains why the evaluations of the
two separate countries are lower than the overall evaluation. In
general, we prefer to use theMSAk metric which avoids the choice
of pseudo-absences and is adapted to the evaluation of a model
learned by cross entropy.

Figures 3, 4 visualize the RGB patches of the occurrences
on the t-SNE space, and Figure 5 visualizes the projection
of the t-SNE space on the geographical space in France.
Two complementary conclusions can be drawn from these
visualizations. First, the visualization of the RGB patches on
the t-SNE highlights the fine-scale landscape factors identified
by the CNN. In Figure 3, we can identify several areas of the
t-SNE space corresponding to different broad landscape types.
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FIGURE 2 | Performance of models in mean top-30 accuracy per species (MSA30) according to the frequency of the species in the training set.

On the left side of the t-SNE, we can, e.g., identify mountain
patches, and below, we can see forests. Toward the center of the
t-SNE, one can identify predominantly agricultural landscapes,
and the whole lower part and the right side present more or
less dense urban landscapes. Figure 4 presents a zoom on a slice
of the previous figure with examples of identifiable landscapes.
Second, Figure 5 displays the projection of t-SNE space onto
geographic space. It can be seen that the t-SNE space also
contains geographic structuring in the large ecoregions. For
example, the mountainous areas (e.g., the Alps in the southeast,
the Massif Central in the center, and the Pyrenees in the
southwest) and the Mediterranean basin stand out in similar
colors indicating that these large areas are well-recognized by the
model. Overall, the map shows good visual consistency with the
large-scale biogeographic zones previously identified (Cervellini
et al., 2020). This result combined with the analysis of the
previous figure highlights that themodel identifies both the broad
biogeographic regions but also the different fine-scale landscapes
within these regions (such as urban-rural). This important result
shows that the model is able to capture spatially consistent
information at multiple scales from VHR imagery data with both
high spatial accuracy and large-scale consistency. This provides a
breakthrough in the well-known problem of trading precision for
generality when studying ecological processes (Levins, 1966).

Figures 6, 7 highlight model ecological significance at a fine
spatial scale. Figure 6B is a projection of the 3D t-SNE of the
feature space in this area (refer to Section 2.4), it highlights that
the model is able to differentiate many fine-scale environments.
For example, we can see the temporary ponds (in purplish pink
in the center), the highway (purple line in the North), the coast
(in light pink), etc. This figure shows good identification of
contrasting habitats, in terms of surface and nature. Among
the natural habitats of large spatial dimensions, the mountain
of the Gardiole (a, natural area of ecological, faunistic, and
floristic interest), represented by 2 dominant colors (green in the
southwest and blue in the North East), is finely delimited. The

southern part of this space presents a gradient of green, from its
central plateau located at an altitude of nearly 200 m, to the crops
they dominate below (of almond green color). Among the most
localized natural habitats, we see that the coastline (b, the beach
of the Aresquiers), in light pink color, has indeed been captured
over its entire length from the South to the North-East of the
figure. Another remarkable, well-identified small-scale habitat is
the coastal forest massif dominated by the presence of Pinus (c,
the Wood of the Aresquiers), located at the center of the image,
in light blue color. The precise delimitation of the outline of this
small forest (limited to the south and east by ponds, and to the
north and west by crops) shows how well it has been captured,
despite its appearance with a fairly strong visual similarity to the
forest observed further north in the Gardiole (but presenting a
greater specific heterogeneity). The more anthropized habitats
are also well-captured since we see that the different villages
(d, Frontignan in the South, Gigean in the North West, Vic la
Gardiole, and Mireval in the Center, Villeneuve-lès-Maguelone
in the North East), whatever their sizes, are well-represented
by a unique purplish pink color. The large plots of crops (e)
are either represented by a creamy brown color in the North
West wine-growing plain, or by an almond-green color for
those located between the Gardiole mountain and the sea. Thus,
patches of uniform color seem to define a well-defined habitat.
This visualization also highlights the impact of data bias. This is
particularly visible in the seaside ponds where artifacts coming
from the remote sensing data (marked lines due to sun reflections
and image reconstruction) seem to create inconsistencies in the
feature space. It is difficult to estimate the impact of these artifacts
onmodel learning. Even if they seem to have an important impact
on the feature space, they correspond to an area with little or
no observation (salt ponds being difficult to access and where
only animals can be observed). The model may not have learned
to ignore these biases. However, some observed divisions are
difficult to explain. In particular, the limits between the green and
blue zones seem to bemade in themiddle of the garrigues without
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FIGURE 3 | Visualization of the remote sensing imagery patch (RGB) of occurrences on the t-SNE space. The grid corresponds to a uniform slicing of the t-SNE

space (the result of the convolutional neural networks (CNN) feature space dimension reduction) and each cell displays the RGB image of the occurrence closest to its

center. The position of the occurrences in this space is the result of the dimension reduction of their activation of the feature space.

observing any particular bias in the data nor that knowledge of
the area seems to explain. This could be the result of multiple
factors combined and difficult to untangle such as unidentified
bias in data, the influence of near training occurrences, and
unidentified environmental shift.

Concerning the maps of logit distributions of the four selected
species, the first observation is that the activation is also at fine
resolution with notable changes observable from 50 m (distance

between points). This confirms that the learning of the model
makes it possible to identify a change in the environment on the
order of 10 m and that its prediction quickly changes spatially.
For the four species, the activation seems to correspond globally
to the expected distribution of the species. In comparison,
the activations of the MaxEnt model, based on much coarser
resolution data, do not allow such spatial resolution. With the
exception of Anthemis maritima L., the dynamics of the MaxEnt
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FIGURE 4 | Zoom of Figure 3 with examples of landscape features identified.

FIGURE 5 | (A) Color space applied to t-SNE space (the result of the CNN feature space dimension reduction), each occurrence is associated with a color

corresponding to its position in t-SNE space. (B) Map of France at 1 km/px resolution, each pixel takes the color of the closest spatial occurrence, a color defined by

the (A) color space.

predictions over the area for the different species also seem to
be fairly consistent even if much less fine-grained. We remind
for this analysis that only the dynamics of the predictions of
the two models (knowing that the species is present in the area
but not everywhere) are compared and that we cannot directly

compare predictions of the probability of presence. Another
point to note is that the environmental rasters are not defined
on the seawater ponds present on the map (presence of no
data). The MaxEnt model does not give predictions in these
areas.
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FIGURE 6 | Visualization of the features learned by the CNN in an area of 10 × 15 km on the French Mediterranean coast. (A) Remote sensing RGB image. (B)

Geographical projection (50 m/px) of the t-SNE space (the result of the CNN feature space dimension reduction). Highlighted environments: (a) the mountain of the

Gardiole, (b) the beach of the Aresquiers, (c) the Wood of the Aresquiers, (d) villages, and (e) crops.
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FIGURE 7 | Species CNN logits activation (left) and MaxEnt predictions (right) in an area of 10 × 15 km on the French Mediterranean coast (50 m/px). (A) Ailanthus

altissima (Mill.) Swingle. (B) Cistus albidus L. (C) Capsella bursa-pastoris (L.) Medik. (D) Anthemis maritima L.
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Ailanthus altissima (Mill.) Swingle., illustrated in Figure 7A,
is known to be an invasive tree species of agricultural, urban and
forested areas of the Mediterranean and temperate regions, that
develop along with transport infrastructures thanks to its winged
seeds that are easily spread by the wind. It is well-predicted by
the CNN in the various habitats disturbed by human activity.
We can note for example the visible activation along the highway
(in the northeast) and the activations limited to the agricultural
plots, wastelands, and paths in the forest of the massif. We can
also see that the model correctly identified the habitats in which
this species can not be observed, and which are unfavorable to
its development, such as the temporary pools in the center of the
map, or the coastline of the Aresquiers. The MaxEnt prediction
follows roughly this dynamic with the highest values in the areas
most impacted by human activity and the lowest values in the
ponds (for the few ponds that have data on the rasters). However,
the prediction is much less precise and much smoother than for
CNN. The MaxEnt model tends not to predict on ponds but
everywhere else.

Cistus albidus L., illustrated in Figure 7B, is a native species
of the Mediterranean region and is found in areas of degraded
scrublands of Mediterranean forests. Adapted to sunny and dry
areas, it can be found over almost all of the territory illustrated
in Figure 7B, with the exception of the coast, which explains
its broad predicted distribution on the maps produced by the
models. It is on the mountain of Gardiole that it is observed
in greater numbers, which is well-represented by its strong
prediction for this area on both models’ maps. For this species,
the predictions of the two models are particularly similar. This
species is frequent in the region and abundant in the dataset
whichmay allow bothmodels to have a consistent prediction. The
main difference still lies in the resolution of the prediction. The
CNN prediction can vary quickly where MaxEnt is smoother.
Unlike the previous species, there are no clearly visible factors to
visually explain the rapid variations in predictions by the CNN. It
could be due to differences in vegetation type at a fine scale that
might be better captured by the CNN-SDM (such as differences
in forest cover density).

Capsella bursa-pastoris (L.) Medik. Figure 7C is a
cosmopolitan herbaceous species observed along paths, in
crops lands, and wastelands. Here again, the prediction dynamics
of the models are visually quite consistent. Its intense prediction
in urban and crops areas is in line with what is known about its
ecology. The predictions of the CNN are also finer, it does not
predict in the forests, it is noticeable at the level of the woods
at the edges of the ponds in the center of the map for example,
but predicts the non-forest parcels present on the massif in the
middle of the forests.

Anthemis maritima L., Figure 7D growing in marine sands, is
correctly predicted by the CNN along the coastal line, as well as
around the swamps and in the sandy areas between the Gardiole
mountain and the sea. However, the MaxEnt model seems less
consistent for this species. First, as it cannot predict the coastline
(due to no data) this highlights a problem for the training of this
model for coastal species. Unless the raster coverage is artificially
extended to include the entire coastal zone, it is difficult to predict
its presence accurately on the coast. Second, apart from the fact

that the model is limited in its prediction area, the strongest
activations of the prediction are in urban areas, which does
not correspond to the ecology of the species. The difficulty in
predicting this species by the MaxEnt model seems to lie both
in the spatial definition of the rasters introducing biases on the
observed niche of the species in the training and also in the
fact that this species was particularly rare in the dataset (only
24 occurrences). On the contrary, the data used by the CNN
and its resolution allow covering completely the coastline and
previous studies have already shown the ability of the CNN to
predict rare species by joint learning on many species (Deneu
et al., 2021). This last result is confirmed in Figure 2. Despite
close performances between the CNN and the random forest on
the most frequent species, the CNN score is largely superior on
the species with few learning occurrences.

We can observe that the activation of logits can change
rapidly from one pixel to another (i.e., within 50 m). Contrary
to the visualization of the feature space by the t-SNE,
here, the activations do not seem to remain uniform on
the identified landscape structures. For example, the species
Anthemis maritima L. is globally predicted along the coastline,
but there are some areas of low activation, whereas the t-SNE
map seems to be consistent along the entire coastline. This
can be the result of several factors. First, the visualization of
the feature space by the t-SNE is done using strong dimension
reduction, which retains the most important information about
the dynamics of the feature space but certainly overlooks weaker
variations. The logits are the result of a linear model on the
feature space and not of its reduced representation in the t-
SNE space. These variations can, therefore, have an impact on
the logits without being visible on the map through the t-
SNE. Another factor is the learning of the model. The model is
evaluated by competing species against each other and the linear
models of the last layer producing the activation of the logits
are optimized during training to differentiate species which is
not equivalent to a prediction of the probability of presence. The
model may, therefore, emphasize one species more than another
depending on very local factors or sampling bias. One way to
limit this effect could be to reduce the size of the representation
space (the feature space z) leaving less freedom for the model to
separate individual species. As the identification of common and
representative factors of habitats and communities seems to have
more impact, the model would probably tend to favor this aspect.

Statistical analysis between the environmental or ecological
data and the t-SNE space reveals that the CNN captures
information strongly related to species ecology.We propose here
a very basic analysis of this statistical correlation. We do not
directly take into account here the possible collinearities between
the different variables, and we use a linear regression whereas
the dynamics of the t-SNE space are not necessarily linear (as
can be seen in Figure 8D). This may explain why significant
relationships are still associated with fairly low coefficients. The
idea here is simply to provide a numerical confirmation that the
model does capture information directly related to the ecology
of the species. Moreover, the significant correlations of this
simplistic approach with the highly reduced dimensional space
suggest that with further statistical analysis stronger and more
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FIGURE 8 | Visualization of two species traits (left) and two environmental variables (right) in the t-SNE space (the result of the CNN feature space dimension

reduction): (A) species temperature preference (EIV T), (B) species light preferences, (C) annual mean temperature (bio_1), and (D) temperature annual range (bio_7).

Artificial colors from purple (lowest values) to yellow (highest values).

precise correlations could be highlighted. Linear models on the
t-SNE using species or environmental trait data displays one of
the highly significant relationships (Tables 5, 6). For example,
the coefficient associated with EIV T (species temperature
preferences) is high on both axes of the t-SNE. Looking at
the models using Ellenberg traits we see that trait values alone
explain a significant portion of the variance in the position of

occurrences in the t-SNE space (adjusted R2 of 0.111 and 0.231).
This highlights that the information captured by the model in the
input data is well-correlated with the ecology of the species.

Figure 8A displays the Ellenberg temperature preference trait
(EIV T) and Figure 8C displays the mean annual temperature,
both of which are information related to either the species
of occurrence or the location of the occurrence, over t-SNE
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TABLE 5 | Ellenberg’s species traits linear models on the two axes of the t-SNE

space (the result of the CNN feature space dimension reduction).

tsne_1 tsne_2

Estimate (std. error) Estimate (std. error)

EIV L −1.562∗∗∗ (0.236) 2.630∗∗∗ (0.214)

EIV T −5.035∗∗∗ (0.260) 9.478∗∗∗ (0.235)

EIV K 2.523∗∗∗ (0.389) 0.150 (0.352)

EIV AirH 0.732∗ (0.378) −0.869∗∗ (0.341)

EIV F 1.461∗∗∗ (0.409) 2.328∗∗∗ (0.370)

EIV R 0.461∗∗ (0.213) −0.686∗∗∗ (0.192)

EIV TroL 2.902∗∗∗ (0.181) 3.851∗∗∗ (0.163)

EIV S −2.714∗∗∗ (0.366) −0.981∗∗∗ (0.331)

EIV SoiT 1.649∗∗∗ (0.252) 2.848∗∗∗ (0.228)

EIV N 0.211 (0.212) −0.598∗∗∗ (0.192)

Intercept −5.951 (3.947) −113.831∗∗∗ (3.569)

R2 0.111 0.232

Adjusted R2 0.111 0.231

∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

space. One can see in these two representations a strongly
pronounced gradient. The coherence between these two figures
is expected since the species that have the most affinity with
high temperatures are located in the warmest regions and
vice versa. If this gradient is so pronounced on the t-SNE
space it indicates that information strongly related to the
temperature is captured is mostly important in the feature
space of the model. Figure 8D represents the Temperature
Annual Range of occurrences data on the t-SNE. We can
see here that the distribution is characterized by pronounced
clusters. Contrary to the annual mean temperature there is
no particular gradient on one of the axes but the presence
of these clusters also confirms the ability of the model to
discern different types of environments. Figure 8B represents
the species’ light preferences, and here, it is more difficult to
see global dynamics. However, a darker cluster (corresponding
to species with an affinity for low light) stands out on the left
of the image. Figure 3 shows that this area of t-SNE space
corresponds to forests. This is another example of information
on the ecology of species that the model can capture with the
help of VHR remote-sensing data. These results highlight that
the information captured by the model is strongly related to
the environment and ecology of the species, even though this
data was not used directly in model construction. It confirms
the potential of remote sensing data for characterizing plant
functional types (Ustin and Gamon, 2010; Alleaume et al.,
2018).

These results bring some elements for the analysis
of the CNN-SDM performances. The simultaneous
learning of many species, at a large scale and high
spatial resolution, allows the CNN to capture common
and consistent information with the ecology of species
at several scales ranging from fine landscape to large
biogeographic regions.

TABLE 6 | Environmental linear models on the two axes of the t-SNE space (the

result of the CNN feature space dimension reduction).

tsne_1 tsne_2

Estimate (std. error) Estimate (std. error)

bio_1 2.837∗∗∗ (0.287) −0.867∗∗∗ (0.279)

bio_2 −0.774∗∗∗ (0.251) −1.010∗∗∗ (0.244)

bio_3 3.838∗∗∗ (0.588) 2.667∗∗∗ (0.571)

bio_4 −0.106∗∗∗ (0.008) 0.027∗∗∗ (0.008)

bio_5 0.326∗∗ (0.153) 0.116 (0.148)

bio_6 0.225 (0.142) 0.462∗∗∗ (0.138)

bio_8 −0.008 (0.008) −0.021∗∗∗ (0.008)

bio_9 −0.068∗∗∗ (0.006) −0.012∗ (0.006)

bio_10 2.073∗∗∗ (0.415) 0.412 (0.403)

bio_11 −5.772∗∗∗ (0.291) 0.772∗∗∗ (0.282)

bio_12 −0.101∗∗∗ (0.018) 0.005 (0.018)

bio_13 −0.468∗∗∗ (0.064) −0.144∗∗ (0.062)

bio_14 1.303∗∗∗ (0.091) 0.180∗∗ (0.089)

bio_15 −0.052 (0.119) −1.430∗∗∗ (0.115)

bio_16 0.336∗∗∗ (0.035) 0.232∗∗∗ (0.034)

bio_17 −0.220∗∗∗ (0.042) −0.431∗∗∗ (0.041)

bio_18 0.148∗∗∗ (0.022) 0.047∗∗ (0.022)

bio_19 −0.009 (0.022) 0.063∗∗∗ (0.021)

bdticm 0.003∗∗∗ (0.0005) −0.001 (0.0005)

bldfie 0.042∗∗∗ (0.006) 0.043∗∗∗ (0.006)

cecsol −0.286∗∗∗ (0.078) 0.422∗∗∗ (0.076)

clyppt −0.042 (0.344) −0.286 (0.335)

orcdrc −0.251∗∗∗ (0.031) −0.005 (0.030)

phihox −0.087 (0.068) 1.818∗∗∗ (0.066)

sltppt 0.269 (0.343) 0.133 (0.333)

sndppt 0.215 (0.341) 0.557∗ (0.331)

Intercept −81.011∗∗ (41.240) −384.572∗∗∗ (40.078)

R2 0.100 0.217

Adjusted R2 0.099 0.216

∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.

4. CONCLUSION

In this article, we studied a country-wide species distribution
model based on VHR (1m) remote sensing images processed
by a convolutional neural network. The evaluation of this
model shows that its predictive performance is better than
state-of-the-art environmental models while its spatial resolution
is several orders of magnitude higher. This strong predictive
power at fine scales makes it possible to build maps of
potential species distribution at resolutions, spatial scales, and
taxonomic scales never before considered. We have illustrated
this potential on a few species and a small region in the
south of France and compared it with the less fine predictions
of a MaxEnt model, but it is important to notice that the
model has been built on the scale of the whole of France
and USA and thousands of plant species. In order to better
understand how this model captures ecological information,
we have further analyzed the learned features using t-SNE, a
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powerful dimension reduction technique often used to visualize
the representation space of deep learning models. This allowed
confirmation that the model captures the relevant landscape
and habitat information at fine spatial scales, highlighting the
capacity of the model to predict species assemblages locally.
In the future study, we plan to combine the remote sensing
data with more conventional environmental rasters to further
increase the performance of the model. We also plan to extend
the approach to the high-resolutionmapping of habitats, typically
via transfer learning approaches that will require little habitat
occurrence data.
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