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The reliable mapping of species richness is a crucial step for the identification of areas of 
high conservation priority, alongside other value and threat considerations. This is 
commonly done by overlapping range maps of individual species, which requires dense 
availability of occurrence data or relies on assumptions about the presence of species in 
unsampled areas deemed suitable by environmental niche models. Here, we present a 
deep learning approach that directly estimates species richness, skipping the step of 
estimating individual species ranges. We train a neural network model based on species 
lists from inventory plots, which provide ground truth data for supervised machine learning. 
The model learns to predict species richness based on spatially associated variables, 
including climatic and geographic predictors, as well as counts of available species records 
from online databases. We assess the empirical utility of our approach by producing 
independently verifiable maps of alpha, beta, and gamma plant diversity at high spatial 
resolutions for Australia, a continent with highly heterogeneous diversity patterns. Our 
deep learning framework provides a powerful and flexible new approach for estimating 
biodiversity patterns, constituting a step forward toward automated biodiversity assessments.

Keywords: neural network, machine learning, species richness, biodiversity, plant, Australia, diversity pattern, 
deep learning

INTRODUCTION

Since the very beginning of biogeographic research, the estimation and extrapolation of species 
diversity has been of foremost interest (von Humboldt, 1817; Arrhenius, 1921). It is well 
established that species diversity is distributed unevenly across space, generally following a 
latitudinal gradient, with increasing diversity from the poles toward the equator (MacArthur, 
1965). On a regional level, it has been found that there are substantial differences in species 
richness among habitats, such as between a forested area and an open grassland (MacArthur, 
1965). These observed spatial patterns have led to the formulation of three levels of species 
diversity: alpha, beta, and gamma diversity (Whittaker, 1960).

Alpha diversity refers to diversity on a local scale, describing the species diversity (richness) 
within a functional community. For example, alpha diversity describes the observed species 
diversity within a defined plot or within a defined ecological unit, such as a pond, a field, 
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or a patch of forest. The scale of such ecological units depends 
on the organism group of interest; while for birds a defined 
forest or grassland transect of several hundred m2 to several 
km2 may be  appropriate to describe a species community, for 
insects this could be  a single tree. For plants, alpha diversity 
is often equated to the count of species identified during the 
inventory of a vegetation plot of defined size (Revermann 
et  al., 2016).

Beta diversity, on the other hand, describes the amount of 
differentiation between species communities. Unlike the other 
levels of species diversity, the exact interpretation and 
quantification of beta diversity varies substantially across studies 
(see Tuomisto, 2010a,b for a detailed review on this topic). 
Originally, beta diversity was defined as the ratio between 
gamma and alpha diversity (b g a= / , sensu Whittaker, 1972). 
Today, one commonly used measure of beta diversity is the 
Sørensen dissimilarity index (see section “Materials and Methods” 
below for more detail), which captures spatial turnover as well 
as differences in diversity between sites (Koleff et  al., 2003).

Gamma diversity describes the overall species diversity across 
communities within a larger geographic area. It is often 
summarized across biogeographic or political units, such as 
ecoregions or countries (Kier et  al., 2005; Brummitt et  al., 
2021). Alternatively, studies commonly summarize gamma 
diversity within cells of a spatial grid of fixed cell-size (Goldie 
et  al., 2010; Thornhill et  al., 2016). While alpha diversity 
represents the actual species diversity that can be  measured 
at a given site, gamma diversity more broadly and loosely 
describes the diversity of species that can be  found in the 
whole area. Gamma diversity is the most communicated level 
of species diversity when referring to biodiversity hotspots, 
with tropical regions, in particular the Neotropics, showing 
the globally highest gamma diversity values (Raven et al., 2020). 
Alpha diversity, on the other hand, shows different areas of 
maximum diversity, dependent on the size of the area surveyed, 
with temperate grasslands showing among the highest species 
richness on small plots (Wilson et  al., 2012).

While species diversity can be  directly counted for small 
plot sizes, for example, during species inventories (alpha 
diversity), this requires much effort and thus cannot be  scaled 
up to large areas or whole continents (gamma diversity). 
Therefore, many studies apply some form of modeling and 
estimation to derive diversity maps for larger areas. For example, 
gamma diversity is often inferred by modeling individual 
species distributions and adding these up to obtain the total 
number of species that occur in a given area (Mutke and 
Barthlott, 2005; Barthlott et  al., 2007). However, this approach 
has been shown to introduce substantial errors, when cross-
checking the diversity predictions with actual species counts 
in selected grid cells (Aranda and Lobo, 2011). A general 
shortcoming of these methods is that usually the data available 
is insufficient to reliably model the ranges for each individual 
species. This problem intensifies with the number of species 
in the target group for which to estimate diversity patterns. 
In some cases, total species diversity is extrapolated for larger 
groups, based on a selected subset of taxa with good data 
coverage, under the simplistic assumption that the diversity 

patterns revealed by these taxa are representative for others 
(Kier et  al., 2005), which is however often not the case (Ritter 
et  al., 2019).

Alternative approaches have been applied to the task of 
diversity estimation and mapping, which skip the step of 
modeling individual species ranges. These often involve using 
occurrence records, floras, and checklists to count the total 
number of species that has been recorded within large 
biogeographic regions (Mutke and Barthlott, 2005; Kreft and 
Jetz, 2007). While such approaches do not require modeling 
distributions of individual species, they are particularly vulnerable 
to biases in data collection, as some taxa may be  better 
represented in some checklists and biodiversity repositories 
than others. This method assumes one single diversity value 
within each of the regions analyzed, without accounting for 
diversity differences within these (sometimes large) areas. 
Although it is  possible to interpolate diversity values to a finer 
resolution using spatial autocorrelation of associated variables 
such as climatic predictors (Kreft and Jetz, 2007), such gap 
filling may be  difficult to verify and often provides a false 
sense of confidence for data-poor regions.

With the emergence of continental and global vegetation plot 
databases (Chytrý et  al., 2016; Bruelheide et  al., 2019; Sabatini 
et  al., 2021), a new data source with extended spatial coverage 
has become widely, providing point-estimates of species diversity 
within clearly delimited areas. Recently, Večeřa et  al. (2019) 
showed the potential of machine learning methods (random forest 
models) to estimate the expected diversity for fixed size vegetation 
plots (alpha diversity), based on climatic and other predictors, 
when trained on alpha diversity data from vegetation plot databases. 
However, to our knowledge, available machine learning models 
cannot extrapolate vegetation plot data to larger areas and do 
not provide estimates of multiple metrics of biodiversity.

Here, we present a deep learning framework that uses neural 
network models to predict alpha, beta, and gamma diversity. 
The models are trained to predict plant diversity based on 
climatic and geographic predictors, measures of human impact, 
and sampling effort. Our approach requires neither specific 
distribution information about individual species, nor the manual 
extrapolation of species richness using methods such as species–
area curves (Kier et  al., 2005). Instead, our models inherently 
learn the species–area relationships, allowing prediction of the 
three diversity metrics at user-defined spatial scales. Our 
approach is purely data-driven and hypothesis-free, including 
the selection of the best neural network architecture, to avoid 
confirmation biases in terms of picking models whose diversity 
predictions best match previous expectations.

We selected plot-based vegetation survey data from Australia 
(vascular plants; Tracheophyta) to empirically test the 
effectiveness of our models in predicting diversity patterns 
and to validate our methodology. Australia, as an island 
continent, has the advantage of a clear delimitation of natural 
boundaries; it has high natural diversity and uneven biological 
sampling (González-Orozco et  al., 2014; Cook et  al., 2015; 
Laffan et al., 2016); high spatial heterogeneity with well-defined 
and contrasting biomes (Byrne et  al., 2008, 2011; Macintyre 
and Mucina, 2021); a relatively well-documented vascular 
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flora with reliable national databases (Sparrow et  al., 2021)1 
that feed into the Global Biodiversity Information Facility 
(GBIF)2; good climatic data3; and a large number of freely 
available plot-based vegetation records suitable for training 
deep learning frameworks (Sabatini et  al., 2021).

MATERIALS AND METHODS

Vegetation Plot Data
The values of alpha, beta, and gamma diversity used in this 
study to train the neural network models were derived from 
vegetation plot data (species inventories). We downloaded these 
data from the sPlotOpen database (Sabatini et  al., 2021), only 
using plots where all vascular plants had been assessed. This 
resulted in a total of 7,896 vegetation plots for Australia 
(Figure  1). For each vegetation plot, we  compiled its area 
(which ranged from 50 to 10,000 m2) and the list of plant 
species identified in the plot (ranging from 1 to 115 species). 
From each of these sites, we  compiled measures for alpha, 
beta, and gamma diversity as described in more detail below 
(Figure  1), which we  used to train our models.

Calculating gamma diversity required the definition of a 
surrounding area, preferably containing other vegetation plots, 
to determine the overall diversity found within the cumulative 
species lists of several neighboring vegetation plots (Figure  2). 
To ensure that the same number of vegetation plots was used 
for calculating the gamma diversity of each site, we  defined 
as the surrounding area a circle around each site encompassing 
exactly N nearest neighbors (vegetation plots). The gamma 
diversity for each site was then determined as the number of 
unique species names extracted from the species lists of the 
N nearest neighbors within the encompassing circle. After 
compiling diversity estimated for different values of N 
(Supplementary Figures S1–S7), we  chose an N of 50 for all 
models in this study, as this value led to the best compromise 
between a visually discernible spatial structure in the resulting 
beta and gamma diversity values, while also highlighting regional 
heterogeneity (Supplementary Figure S3).

The radius of this encompassing circle varied between sites, 
depending on the proximity of other vegetation plots relative 
to the given site. The extent of the radius itself was used as 
a feature in our models, allowing the neural network to learn 
the expected associations between gamma diversity and the 
size of the area for which it was calculated (the species-area 
relationship), which we  used later when making predictions 
with this model to adjust the spatial resolution of the predictions.

Finally, beta diversity was calculated using the multiple-site 
implementation of the Sørensen dissimilarity index (bsor), 
following the definition in (Baselga, 2010). For a given focal 
site j with N neighbors, we  defined the focal site index as 
j = N + 1. We  iterated through the N neighboring sites (i) and 
applied the formula:

1 https://avh.chah.org.au/
2 https://www.gbif.org/
3 http://www.bom.gov.au/climate/data/
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where bij  and bji are the number of species only present in 
site i and site j, respectively, Si is the total number of species 
in site i (alpha diversity from vegetation plot), and ST  is the 
total number of species in all sites combined (gamma diversity).

Feature Generation
The alpha, beta, and gamma diversity metrics described above 
were used as labels to train three models, one for each diversity 
metric. The predictors (features) used in these models were 
compiled from different publicly available data sources. To 
ensure approximately equal size of all grid cells for the raster-
based feature data used in this study, we transformed all spatial 
data into the cylindrical equal-area (CEA) projection, centered 
at 30° latitude south of the equator.

As a general measure of sampling effort, we  compiled the 
number of recorded species occurrences, available on GBIF, which 
were found in the vicinity of a given site. We  first downloaded 
all non-fossil vascular plant (Tracheophyta) occurrences for Australia 
from GBIF that were based on human observations and were 
not flagged for geospatial issues.4 This includes both native and 
naturalized species, the latter having uneven spatial distributions 
related to broad disturbance histories in Australia (Leishman et al., 
2017). This resulted in 13,580,191 occurrence records. We  then 
discarded any records with non-binomial species names and cross-
checked names of the remaining records against the World Checklist 
of Vascular Plants, a continuously updated collection of reviewed 
plant species names (Govaerts et  al., 2021). This resulted in 
12,622,786 remaining GBIF records. For each site, we  defined a 
10 × 10 km window centered on the site’s coordinates; we  then 
counted all GBIF occurrences within this window as a measure 
of sampling effort (Supplementary Figure S8), as well as the 
number of species found in the GBIF records as a diversity proxy. 
Both counts were used as individual features in our models.

We also compiled climatic and anthropogenic features for each 
site. First, we downloaded raster data for 19 bioclimatic variables 
(BIO1–BIO19) as well as data on elevation from the WorldClim 
database (Fick and Hijmans, 2017).5 Second, we  downloaded 
raster data on human footprint from wcshumanfootprint.org 
(Venter et  al., 2016), which reflects the magnitude of human 
disturbance, including information on human population density, 
agricultural land use, presence of roads and several other data 
sources. There is a high correlation between population density, 
agricultural development, and high biodiversity regions in Australia 
(Keith and Auld, 2017). All data rasters were downloaded at a 

4 https://doi.org/10.15468/dl.kbq3d7
5 https://worldclim.org/
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resolution of 0.5 min of a degree (~1 × 1 km grid). The complete 
list of features (n = 27) extracted for each site is shown in Table 1. 
All feature values were rescaled to range between 0 and 1 before 
being used as input in the neural network.

Neural Network Architecture
We built regression models using fully connected neural networks 
to learn and then infer species diversity based on the climatic, 

geographic, human footprint features, as well as general sampling 
effort reflected by the available GBIF data. While the output 
values in a neural network regression model can theoretically 
take any range, rescaling these values to a smaller range generally 
improves the model convergence and performance. We  therefore 
rescaled our training labels by multiplying the diversity values 
by the following scaling factors, which were approximated to 
match the maximum values found in the training data for each 
diversity metric, thus leading for all values to fall within a range 

FIGURE 1 | Sites with vegetation plot data used in this study for model training and evaluation. Most of the vegetation plot sites used in this study (white points, 
7,896 sites) are located in the easternmost two Australian states Queensland (northeast) and New South Wales (center east). The panels below the map show the 
compiled measures of alpha, beta, and gamma diversity for all vegetation plot sites. The satellite image of Australia was downloaded via ggmap (Kahle and 
Wickham, 2013). The spatial scale of the alpha diversity estimates is defined by the plot size of the underlying vegetation plots and differs among sites. Similarly, the 
gamma diversity values are based on sets of 50 neighboring vegetation plots; depending on the spatial density of vegetation plots, these diversity values are 
therefore determined across different spatial scales. Both values, the size of the vegetation plot and the spatial scale of each gamma diversity estimate, are used as 
features in our models.
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between 0 and 1: alpha scaling factor = 1/100, gamma scaling 
factor = 1/800 (no rescaling was necessary for beta diversity).

Models differed in the number of hidden layers and 
number of nodes per layer (see model testing below, Table 2). 
Further, we  applied different fractions of dropout in our 
models, which leads to randomly removing the specified 
fraction of nodes in each hidden layer in each training 
epoch. This has the effect of reducing overfitting toward 
the training data, as the model is forced to rely less on 
individual highly optimized weights. We  used the rectified 
linear units function (ReLU) as the activation function within 
each layer, and a softplus activation function for the output 
layer. The softplus activation function in the output layer 
ensures that the output values (diversity estimates) are all 
within a positive range, while not imposing any restrictions 
on the possible maximum value.

For training, we  used the mean absolute error (MAE) as 
the loss function to be minimized. Of the 7,896 training instances 
(vegetation plot sites), we  set aside 20% (1,579 instances) as an 
independent test set. We assigned another 20% (1,579 instances) 
of the data as a validation set, which we  used to determine 
the optimal number of training epochs that minimizes the 
validation set MAE, while preventing overfitting toward the 
training data. All models were trained with the remaining 60% 
of the data (4,738 instances), using a batch size of 40 instances.

Model Testing and Evaluation
We tested a range of different training configurations for each 
diversity metric, specifically testing different combinations of 
input features, different numbers of hidden layers and nodes 
per layer, and different dropout fractions (Table  2). Based on 
the diversity predictions for our independent test set, 

A

B

FIGURE 2 | Calculation of diversity measures from vegetation plot data. For a given vegetation plot (VP, solid red square, panel A) we identified the N nearest 
neighboring vegetation plots in space (N = 3 in this example, represented by plots P1–P3). We exported the radius of the smallest circle encompassing all N 
neighbors as a feature for model training. Additionally, we exported the number of GBIF occurrences within a square of 10 × 10 km size around the given vegetation 
plot, as a measure of sampling effort in the general area. Having identified the nearest neighbors (P1–P3), we compared the species lists of these vegetation plots 
with the focal vegetation plot (VP, panel B). Alpha diversity represents the number of species found in the focal vegetation plot (VP), while gamma diversity 
represents the total diversity consisting of all species identified among the focal and neighboring vegetation plots. Beta diversity was calculated using the multiple-
site Sørensen dissimilarity index (see section “Materials and Methods”), based on the differences in species composition found among the selected vegetation plots.
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TABLE 1 | Features used in the neural network models.

Index Feature name Data source Selected 27 Selected 8 Selected 6

1 Longitude sPlotOpen X X
2 Latitude sPlotOpen X X
3 Sampling effort gbif.org X
4 # of sampled species gbif.org X
5 Human footprint wcshumanfootprint.org X X X
6 Elevation WorldClim X X X
7 BIO1 (annual mean temperature) WorldClim X X X
8 BIO2 (mean diurnal range) WorldClim X
9 BIO3 (isothermality) WorldClim X
10 BIO4 (temperature seasonality) WorldClim X
11 BIO5 (max. temp. warmest month) WorldClim X
12 BIO6 (min temp. coldest month) WorldClim X
13 BIO7 (temperature annual range) WorldClim X
14 BIO8 (mean temp. wettest quarter) WorldClim X
15 BIO9 (mean temp. driest quarter) WorldClim X
16 BIO10 (mean temp. warmest quarter) WorldClim X
17 BIO11 (mean temp. coldest quarter) WorldClim X
18 BIO12 (annual precipitation) WorldClim X X X
19 BIO13 (precipitation wettest month) WorldClim X
20 BIO14 (precipitation driest month) WorldClim X
21 BIO15 (precipitation seasonality) WorldClim X
22 BIO16 (precipitation wettest quarter) WorldClim X
23 BIO17 (precipitation driest quarter) WorldClim X
24 BIO18 (precipitation warmest quarter) WorldClim X
25 BIO19 (precipitation coldest quarter) WorldClim X
26 Vegetation plot size Based on sPlotOpen data X X X
27 Neighborhood radius Based on sPlotOpen data X X X

we  calculated the mean absolute percentage error (MAPE) for 
each model, which differs from the MAE in being a relative 
error, scaled by the absolute values of the predictions. For 
each diversity metric we determined the best model configuration 
by picking the model with the lowest MAPE score.

After identifying the most suitable settings through model 
testing, we  retrained this best model for each diversity metric, 
using all 7,896 training instances. To avoid overfitting towards 
the training data, we trained these production models only until 
the optimal epoch determined during model testing. For each 
diversity metric we  trained an ensemble of 50 models with 
different random starting seeds, using the best model settings. 
We  averaged the predictions across all these 50 models for each 
diversity metric, and also calculated the coefficient of variation 
(the standard deviation divided by the mean) as a measure of 
variation of the predicted diversity values, representing uncertainty.

Prediction Data
To produce the predictions of alpha, beta, and gamma  
diversity across Australia, we  defined a grid with a cell size of 
10 × 10 km and extracted the 27 features for each of the cell 
centroids. We  set the plotsize feature for all points to 500 m2 
(the most common vegetation plot size in training data, 
Supplementary Figure S9). Therefore, the predicted alpha diversity 
values reflect the expected number of plant species to be  found 
in a plot of size 500 m2. The radius feature, describing the size 
of the surrounding area around a point for which gamma 
diversity is estimated, was set to 5 km, to approximately match 
the size of the grid cells (10 km× 10 km square).

By adjusting the radius feature, our trained models can 
be  used to predict beta and gamma diversity at user-defined 
spatial resolutions, as it can be  adapted to match the given 
cell size. Similarly, adjusting the plot size feature allows us to 
predict alpha diversity for any given plot size. This enables 
flexibility in predicting species diversity at different spatial 
resolutions of the prediction grid, while inherently accounting 
for species-area relationships, as these are learned by the model. 
For both the radius feature and the plot size feature, the selected 
values for prediction should be  chosen to be  within the range 
of values present in the training data (Supplementary Figure S9).

RESULTS

An overview of all tested models is shown in Table  2. For 
alpha diversity, we  identified as the best model the following 
configuration: eight features (see Table  1), two layers with 30, 
and five nodes, and a dropout rate of 0.1. For beta and gamma 
diversity, the following configuration was identified as the best 
model: all 27 features, three layers with 30, 15, and 5 nodes, 
respectively, and no dropout (dropout rate = 0). We  identified 
the following training epochs as the stopping points for model 
training, as they constituted the best compromise between 
minimizing the training loss while avoiding overfitting (rounded 
to the nearest 50): 1500 epochs (alpha), 750 epochs (beta), 
and 1700 epochs (gamma, see Supplementary Figure S10). 
We used these numbers of training epochs to train the ensemble 
of 50 productions models for each diversity metric.
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Alpha Diversity Predictions
The best alpha diversity model predicted the test set, consisting 
of approximately 1,600 vegetation plots, with a mean absolute 
percentage error (MAPE) of 58.72% (Figure  3). This means 
that the predicted diversity for the average test set instance 
was within an approximately 60% range of the true diversity 
value. This comparably high prediction error is likely caused 
by the fact that the alpha diversity training instances show a 
complex spatial pattern, with no easily discernible areas of 
high or low diversity (Figure  1). The fact that most of the 
training features are spatially autocorrelated (such as the BioClim 
climatic layers) makes it difficult for the model to infer a 
strong signal from these features during training for predicting 
alpha diversity. The predictions made by an ensemble of 50 
trained alpha models show comparably large uncertainties in 
some areas (Figure  4), with a median coefficient of variation 
across all cells of 0.30. The areas of highest uncertainty—
exceeding the median value—are located mostly in the western 
half of Australia (grey areas in Figure  4), presumably due to 
the limited training data from those regions (Figure  1).

The overall highest alpha diversity predictions are found along 
the eastern coast of Australia, from the northernmost tip of 
Queensland to the most southwestern part of Victoria (Figure 4). 
A potential drop in alpha diversity is visible in the area around 
Cairns, extending about 100 km south from the city area, perhaps 
corresponding with the Burdekin-Lynd gap, an area that has 
been shown to constitute a range gap for several species (Edwards 
et  al., 2017). However, these grid cells are predicted with 
comparably high uncertainty, giving only weak support for this 
observed pattern. Other areas of medium to high alpha diversity 
inferred by our model are the top end of the Northern Territory, 
as well as the north Kimberley in northern Western Australia.

Beta Diversity Predictions
The best beta diversity model resulted in a MAPE of 7.21%, 
thus yielding a substantially higher accuracy compared to the 
alpha diversity model. Similarly, the median coefficient of 
variation across all prediction grid cells was low with (0.09), 
indicating high consistency in the predicted diversity pattern. 
The high-uncertainty cells, identified as having a coefficient 

TABLE 2 | Prediction accuracy for test set of all tested models.

Features Nodes Dropout Alpha Beta Gamma

6 30 0 0.6611 0.0750 0.1088
6 30 0.1 0.7078 0.0773 0.1409
6 30 0.3 0.7095 0.0779 0.1434
6 30, 5 0 0.6440 0.0752 0.1013
6 30, 5 0.1 0.6129 0.0761 0.1356
6 30, 5 0.3 0.7103 0.0788 0.1457
6 30, 15, 5 0 0.6570 0.0751 0.0823
6 30, 15, 5 0.1 0.6111 0.0752 0.0951
6 30, 15, 5 0.3 0.6725 0.0783 0.1312
6 30, 20, 10, 5 0 0.6225 0.0743 0.0804
6 30, 20, 10, 5 0.1 0.6542 0.0749 0.1012
6 30, 20, 10, 5 0.3 0.6844 0.0794 0.1307
8 30 0 0.6555 0.0742 0.1064
8 30 0.1 0.7022 0.0753 0.1056
8 30 0.3 0.6776 0.0763 0.1107
8 30, 5 0 0.6301 0.0749 0.0851
8 30, 5 0.1 0.5872 0.0757 0.1012
8 30, 5 0.3 0.6740 0.0779 0.1298
8 30, 15, 5 0 0.6179 0.0745 0.0673
8 30, 15, 5 0.1 0.6335 0.0749 0.0911
8 30, 15, 5 0.3 0.6606 0.0778 0.1173
8 30, 20, 10, 5 0 0.6157 0.0741 0.0634
8 30, 20, 10, 5 0.1 0.6047 0.0731 0.0877
8 30, 20, 10, 5 0.3 0.7323 0.0788 0.1357
27 30 0 0.6233 0.0732 0.0882
27 30 0.1 0.6198 0.0741 0.0829
27 30 0.3 0.6336 0.0750 0.0954
27 30, 5 0 0.6073 0.0738 0.0835
27 30, 5 0.1 0.5884 0.0736 0.0835
27 30, 5 0.3 0.6157 0.0764 0.1016
27 30, 15, 5 0 0.5921 0.0721 0.0609
27 30, 15, 5 0.1 0.6165 0.0747 0.0819
27 30, 15, 5 0.3 0.6343 0.0791 0.1145
27 30, 20, 10, 5 0 0.5904 0.0722 0.0660
27 30, 20, 10, 5 0.1 0.6153 0.0740 0.0987
27 30, 20, 10, 5 0.3 0.6824 0.0786 0.1221

The last three columns show the mean average percentage error (MAPE) of the model predictions for an independent test set. The tested models differ in terms of the number of 
features (first column), number of layers and nodes per layer (second column), and the dropout rate (third column). The best models for each diversity metric are highlighted in bold. 
More detailed visualizations of the test set predictions for these best models are shown in Figure 4.
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FIGURE 3 | Prediction accuracy of best models as determined on an independent test set. The scatter plots show the predicted diversity (y-axes) plotted against 
the true diversity (x-axes) for the best alpha, beta, and gamma diversity models. These estimates were made for a randomly selected and independent test set 
(N = 1,579 instances), exclusively consisting of instances that were not used during model training. The points are colored by the vegetation plot-size associated with 
each data point (see legend). The red diagonal line shows for reference the best-case scenario, if all labels were predicted 100% accurately. Histograms show the 
total distribution of values for the true diversity values (top) and the predicted diversity values (right). For each model we calculated the Mean Absolute Percentage 
Error (MAPE), shown in the top-right corner of each plot.

of variation above the median, largely overlap with those 
identified for the alpha diversity model, covering the majority 
of Western Australia (Figure 4). Perhaps being the least intuitive 
of the three diversity metrics, areas with a high predicted beta 
diversity within our framework represent sites that are expected 
to show large differences in species composition between 
vegetation plots within the defined area (a given grid cell).

Differently to alpha diversity, the majority of the eastern 
coastal areas show medium to low beta diversity values. Higher 
beta diversity is inferred for the southeastern part of Australia, 
particularly in higher elevations between Canberra and Melbourne. 
High species turnover is also inferred for the arid eastern desert 
of central Australia, as well as for south-western Australia.

Gamma Diversity Predictions
With a MAPE score of 6.09%, our gamma model yielded the 
most accurate predictions among the three diversity metrics. 
The median coefficient of variation of gamma predictions across 
all of Australia was 0.37. As for the other two models, this 
variation was largely driven by high uncertainty grid cells in 
the western half of the continent (Figure  4). Our model 
predictions of gamma diversity across Australia identify several 
vascular plant biodiversity hotspots, such as the tropical and 
subtropical forests in northeastern Queensland, the tropical 
and subtropical grasslands across northern Australia, as well 
as the temperate forests and the montane grasslands and 
shrublands of south-eastern Australia (Figure  5). Below 
we  discuss the specific spatial diversity patterns that were 
predicted by our models in more detail (see section “Discussion”).

When evaluating our model predictions on a per-biome 
basis, excluding high uncertainty predictions as identified in 
Figure 4, we identify differences in predicted diversity between 
biome types (Figure 5). For alpha and gamma diversity, we find 
the highest average diversity predictions for tropical forests, 

temperate forests, montane shrublands and grasslands, and 
tropical and subtropical grasslands and savannas. Our beta 
diversity estimates, on the other hand, show a rather uniform 
pattern across biomes, with the exception of montane grasslands 
and shrublands, which show the highest species turnover. The 
high beta diversity identified for the montane biome may 
be  driven by the increased elevational gradients in this area, 
as species turnover has been found to be higher along elevational 
gradients (Venn et  al., 2017; Albrecht et  al., 2021).

DISCUSSION

Using Neural Networks for Diversity 
Predictions
Here we developed and applied a novel approach of estimating 
species diversity, using neural networks. We  showcased our 
model, using vegetation plot data that are openly available 
through the sPlotOpen database for Australia, and showed 
that it can be  used to accurately predict diversity on different 
scales (alpha, beta, and gamma). This enables us to produce 
maps of species diversity at a wide range of spatial resolutions. 
The main advantages of our approach, as compared to previous 
approaches of modeling species diversity, are that (i) it does 
not require the modeling of distribution ranges for individual 
species (e.g., Mutke and Barthlott, 2005; Barthlott et  al., 2007), 
(ii) it does not require an a priori definition of species-area 
relationships (e.g., Kier et  al., 2005), (iii) it does not require 
the assumption of monotonic and usually oversimplifying 
relationships (e.g., linear or exponential) between predictors 
and response variable (e.g., Cingolani et  al., 2010), and (iv) 
it allows the direct quantification of uncertainty in the predictions.

Given these advantages, and the easy combination of different 
features (predictors) of continuous or categorical nature, our 
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deep learning model, represents a promising new tool for the 
task of predicting diversity. This study and other recent work 
(e.g., Večeřa et  al., 2019) demonstrate how such models can 
be  trained on readily available data from public databases. 
Further, the versatility in terms of data input into these models 
allows for new ways of accounting for the effects of sampling 
effort (GBIF sampling density feature) and of human disturbances 
(human footprint feature) on diversity estimates. The advantage 
of these features, as well as the additional climatic features 
used in our models, is that these data are available on a 
global, spatially detailed scale (<1 km2). Previous studies have 
shown the utility of these data for modeling biotic properties 
of the landscape, such as phylogenetic diversity (Park et  al., 
2020). Predictors with even higher spatial resolution, such as 

remote sensing data (e.g., satellite images or 3D point clouds 
from airborne laser scanning), could help to improve the 
accuracy of the models presented in this study even further.

Remote sensing data are a promising and potentially highly 
informative data source for the task of biodiversity estimation 
(Gholizadeh et  al., 2020; Moat et  al., 2021). These data have 
been successfully applied in several recent studies for modeling 
vegetation attributes such as biomass (Breidenbach et al., 2021), 
growing stock volume (Lindgren et  al., 2021), and plant size 
(Söderberg et al., 2021), and can be applied for global inventory 
of habitats and for estimating the trait diversity within these 
habitats (Cavender-Bares et al., 2020). These data sources, which 
are already successfully applied for many biodiversity-related 
purposes (see overview in Cavender-Bares et  al., 2020), will 

FIGURE 4 | Neural Network predictions for alpha, beta, and gamma diversity of vascular plants. The neural network models were trained separately on alpha, beta, 
or gamma diversity estimates, which we compiled from available vegetation plot data (Figure 1). The alpha diversity maps (left column) show the number of vascular 
plant species expected to be found in a 500-m2 plot (most common plot-size found in the vegetation plot data; Supplementary Figure S2). The beta diversity 
maps (center column) quantifies the spatial turnover and differences in species compositions (Sørensen dissimilarity index, relative to the total diversity) between 
such 500 m2 plots within each grid cell (10 × 10 km). The gamma diversity maps (right columns) show the total species richness within each grid cell. The top row 
shows the predictions averaged across an ensemble of 50 independently trained models, using different starting seeds. The center row shows the coefficient of 
variation for each grid cell, as a measure of prediction uncertainty. High values (dark grey/black) correspond to grid cells with less consistent diversity predictions. 
The bottom row shows the average diversity predictions for only those grid cells with the most consistent diversity predictions (coefficient of variation smaller than 
median across all grid cells), while high-uncertainty grid cells are marked in grey.
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likely play a key role for future developments in the field of 
automated biodiversity assessments, and can be  readily added 
as additional features to neural network models as the ones 
presented in this study.

The neural network models trained in this study do not 
allow investigating direct causal relationships between predictors 
(features) and the response variable (species diversity). As 
neural networks are very complex models with many parameters, 
direct relationships cannot be  inferred in the same way as 

with classic mechanistic models (e.g., linear regression models). 
However, different methods have been developed to increase 
the interpretability of neural networks (Lundberg and Lee, 
2017), which can for example be  used to investigate the 
importance of individual predictors on the overall test accuracy 
(permutation feature importance, sensu Breiman, 2001).

The gamma diversity predictions reached the overall highest 
accuracy (Figure  3), likely because they carry the strongest 
spatial signal and can therefore be  predicted more easily with 

FIGURE 5 | Diversity predictions by biome. The violine plots show the range of diversity predictions across all grid cells within a given biome, excluding high 
uncertainty predictions (see Figure 4). The horizontal black lines inside the violine plots mark the mean estimate for each biome. The biomes, which are displayed 
on the map, were compiled from the Terrestrial Ecoregions of the World (TEOW) data (Olson et al., 2001).
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the used features, many of which are themselves spatially 
autocorrelated. This spatial signal in the gamma diversity values 
is noticeable when evaluating the training data (Figure  1), 
where there are spatially coherent areas of overall low and 
overall high gamma diversity, whereas for alpha and beta 
diversity the spatial patterns in the data are more disjunct. 
The reason that alpha and beta diversity cannot be  estimated 
with equally good accuracy is that the model is unable to 
learn the small spatial differences in alpha or beta diversity 
shown even among neighboring points (Figure  1) based on 
the available features.

Here, we  focus on the taxonomic aspect of diversity, i.e., 
species richness. Besides taxonomic diversity, there are other 
types of biodiversity, such as phylogenetic diversity and functional 
diversity (e.g., Swenson, 2011). The approach presented in this 
study can theoretically be  applied equally to these other types 
of biodiversity. However, this would require additional 
information on the identified species in each vegetation plot. 
In the case of modeling phylogenetic diversity, information 
on the phylogenetic relationships and distances of all identified 
species would be  required. In the case of functional diversity, 
information about species’ ecology and functional traits would 
be  needed, which can be  compiled for many species from 
large databases, such as the TRY database (Kattge et  al., 2011). 
Such data could be further complemented by automated machine 
learning methods for functional trait compilation, for example 
from digitized herbarium specimen (Davis et  al., 2020). 
Alternatively, similar deep learning models could be  designed 
that rely on training data other than vegetation plots, such as 
functional diversity estimates informed by sites for which 
different functional attributes have been compiled (e.g., Bagousse-
Pinguet et al., 2019). Particularly for functional diversity, several 
suitable predictors are readily available that could be  used as 
features in such models, such as soil data (Commonwealth 
Scientific and Industrial Research Organisation, 2014), 
hydrological data (Australian Government, 2021), as well as 
the climate predictors used in our models (Fick and 
Hijmans, 2017).5

Correlation Between Diversity Metrics
Previous studies have found all three diversity metrics to 
be  correlated (Cingolani et  al., 2010). Here, we  find that the 
maps produced for alpha and for gamma diversity overall show 
similar diversity hotspots, while beta diversity shows a different 
spatial pattern (Figures 4, 5). There is a wide variety of definitions 
of beta diversity, some which are directly correlated to alpha and 
gamma diversity (e.g., Whittaker’s original definition of b g a= / ,  
sensu Whittaker, 1960). However, the Sørensen dissimilarity index 
bsor  used in this study does not display such a direct correlation 
to either alpha or gamma diversity, leading to the distinctly different 
spatial pattern observed in our predictions (Figure  1).

While the patterns of alpha and gamma diversity inferred 
by our models are strongly correlated, they do differ in 
some areas. There is potential for areas with low gamma 
diversity to exhibit relatively high densities of species, leading 
to high alpha diversity estimates within smaller defined areas, 
such as the 500 m2 vegetation plots used in our predictions. 

This is particularly the case for vegetation types consisting 
of species with relatively small individual plant sizes (such 
as grasslands and shrublands), which in comparison with 
forests allow for a potentially denser accumulation of 
individuals. These differences in average plant size often  
lead to open habitat grasslands displaying comparatively  
high alpha diversity values, particularly on small plot sizes 
(Wilson et  al., 2012).

The difference between alpha and gamma diversity is a 
matter of spatial scale. While alpha diversity describes the 
number of species in a specific species community (vegetation 
plot, ~500 m2), gamma diversity describes the number of species 
in a larger geographic area (grid cell in spatial raster, ~100 km2). 
In our approach, as in most regression tasks, we  expect the 
predictions of alpha or gamma diversity to be  reliable only 
within the spatial scales that are well represented in the training 
data, i.e., for alpha diversity within a range between 50 and 
10,000 m2, and for gamma diversity between ~100 and 40,000 km2 
(Supplementary Figure S9). Since these ranges do not overlap 
with each other, these are considered to be  separate diversity 
metrics in our model. However, if it were feasible to manually 
count all species occurring in a vegetation plot the size of a 
grid cell in our prediction raster, this alpha diversity estimate 
would be  expected to match the predicted gamma diversity 
of the same, equally sized grid cell.

Biases in Training Data
Sampling biases pose a serious challenge for biodiversity 
reconstruction in countries of uneven spatial sampling, such 
as Australia (Piccolo et al., 2020). In our approach, we account 
for geographic bias in the training data by quantifying the 
uncertainty in the diversity predictions. Areas of high prediciton 
accuracy identified by our models, largely reflect those areas 
with little or no training instances. Additionally, we  add the 
count of GBIF occurrence records in the vicinity of any given 
training instance as a measure of general sampling effort. Recent 
studies have addressed the issue of differences in sampling 
effort in more detail for defined regions and have pointed a 
way forward in addressing and accounting for this issue, using 
strategically sampled empirical data (Gioia and Hopper, 2017). 
However, such efforts are labor- and time-intensive and may 
not be feasible on continental scales. Alternatively, computational 
tools that can readily quantify spatial biases based on public 
database data are a promising way forward towards better 
accounting for the issue of spatial sampling biases (Zizka 
et  al., 2021).

The ground truth diversity data derived from vegetation 
plots, which were used in this study for model training, are 
subject to several potential biases. Previous studies have found 
an effect of the number of observers conducting the inventory, 
plot-size, and vegetation type on how reliably and consistently 
species are being identified, particularly effecting the detection 
of rare and cryptic species (Vittoz and Guisan, 2007). While 
we  did control for plot-size by adding it as a feature to our 
models, the potential effects of the number of observers and 
the vegetation type could not be  as easily modeled in this 
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framework. Beyond the issue of data availability, these 
predictors cannot be  added as features to the model, as 
their values cannot be  assumed or compiled for un-surveyed 
areas for which we want to make predictions with the trained 
model. However, these biases could be  addressed in future 
applications of these models by apply additional data filtering 
and bias correction steps, that go beyond the cleaning steps 
already implemented in the sPlotOpen database (Sabatini 
et  al., 2021).

Predicted Diversity Patterns for Australia
Our model predictions of alpha and gamma diversity identify 
several vascular plant biodiversity hotspots for Australia, such 
as (i) the tropical and subtropical forests in northeastern 
Queensland, (ii) the temperate forests and the montane grasslands 
and shrublands of southeastern Australia, (iii) the tropical 
savanna dominated ecosystems of the Northern Territory, and 
(iv) northern Western Australia (Figures  4, 5). These areas of 
high vascular plant diversity largely correlate with findings of 
previous studies, e.g., (Steffen, 2009; Goldie et  al., 2010; Yeates 
et  al., 2014; Thornhill et  al., 2016) and are highly correlated 
with broader climatic patterns (Ooi et  al., 2017).

One notable difference of our model predictions compared 
to previous work is the south-west of Western Australia, which 
is often inferred as a plant diversity hotspot (e.g., Myers et  al., 
2000; Steffen, 2009), but was predicted with comparably low 
alpha and gamma diversity by our models. This south-west 
Australian biodiversity hotspot may not have been predicted 
accurately—as also indicated by the large prediction uncertainty 
identified by our model—due to alternate evolutionary patterns 
in the region that have led to higher diversity than might 
otherwise be predicted in this very old and climatically buffered, 
infertile landscape (an OCBIL; see Hopper et  al., 2016). It is 
also interesting to note that the models predict similar alpha 
diversity between the Kimberley region of Western Australia 
and the top end of the Northern Territory, as recent surveys 
demonstrate that this is indeed the case (Barrett and Barrett, 
unpublished data).

Interestingly, our beta diversity model inferred high species 
turnover for the arid eastern desert of central Australia. While 
this region has the lowest estimates for alpha and gamma 
diversity, the species turnover (relative to the total diversity) 
is inferred to be  among the highest on the continent, likely 
reflecting a complex mosaic of Mediterranean, temperate, and 
arid vegetation types in this region (Fox, 2007).
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