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Orphan crops are indigenous and invariably grown by small and marginal farmers under
subsistence farming systems. These crops, which are common and widely accepted
by local farmers, are highly rich in nutritional profile, good for medicinal purposes, and
well adapted to suboptimal growing conditions. However, these crops have suffered
neglect and abandonment from the scientific community because of very low or no
investments in research and genetic improvement. A plausible reason for this is that
these crops are not traded internationally at a rate comparable to that of the major
food crops such as wheat, rice, and maize. Furthermore, marginal environments have
poor soils and are characterized by extreme weather conditions such as heat, erratic
rainfall, water deficit, and soil and water salinity, among others. With more frequent
extreme climatic events and continued land degradation, orphan crops are beginning
to receive renewed attention as alternative crops for dietary diversification in marginal
environments and, by extension, across the globe. Increased awareness of good health
is also a major contributor to the revived attention accorded to orphan crops. Thus,
the introduction, evaluation, and adaptation of outstanding varieties of orphan crops
for dietary diversification will contribute not only to sustained food production but also
to improved nutrition in marginal environments. In this review article, the concept of
orphan crops vis-à-vis marginality and food and nutritional security is defined for a few
orphan crops. We also examined recent advances in research involving orphan crops
and the potential of these crops for dietary diversification within the context of harsh
marginal environments. Recent advances in genomics coupled with molecular breeding
will play a pivotal role in improving the genetic potential of orphan crops and help in
developing sustainable food systems. We concluded by presenting a potential roadmap
to future research engagement and a policy framework with recommendations aimed
at facilitating and enhancing the adoption and sustainable production of orphan crops
under agriculturally marginal conditions.

Keywords: orphan crops, marginal environments, climate change, food and nutritional security, improved
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INTRODUCTION

The current world population is 7.8 billion, which is projected
to reach 9.7 billion by 2050 (United Nations Population Fund,
2019). Tilman et al. (2011) indicated that agricultural production
must increase by 60–110% to meet the global requirement of the
projected population by 2050. Potapov et al. (2021) estimated
total global cropland area in 2019 to be 1,244 Mha, along
with a corresponding total annual net primary production of
5.5 Pg (5.5 × 1015) carbon year−1. Arable lands are usually
affected adversely by land degradation and climate change, which
have become the present-day reality of our ecosystem. Soil
and water salinity are also major contributors to the decline
in productivity of agricultural lands, thereby limiting food and
fodder production (Khan et al., 2006). About 1,125 million
hectares of land are affected by salinity across the globe, with
human-induced salinization accounting for about 76 million
hectares (Wicke et al., 2011, 2020). As of now, an estimated one-
fifth of the land area under irrigation is adversely affected by
salinity while the current rate of advancement in salinization is
projected to render about 1.5 million hectares of land useless
every year (Hossain, 2019). Water scarcity also constitutes a
limitation to the intensive use of land. According to White
(2014), water scarcity occurs when water is grossly inadequate to
meet human and ecosystem requirements simultaneously. This
scenario is often occasioned by physical water scarcity or lack
of required infrastructure for the provision of access to available
water resources (economic scarcity). Natural phenomena such as
aridity and drought could cause physical water scarcity; however,
human influences, including desertification and water storage,
could also trigger physical water scarcity (Pereira et al., 2009;
White, 2014). In view of the present scenarios, farmers are
forced to grow their crops in saline soils under rainfall deficit
and drought and/or heat stress during the cropping season.
Interestingly, some underused alternative crops (e.g., foxtail
millet, proso millet, Bambara groundnut, and barnyard millet,
among others) have a competitive nutritional profile comparable
to and in some cases better than that of commonly grown
food crops such as maize, rice, and wheat. These crops not
only have high concentrations of essential nutrients but also
have potential for outstanding performance under suboptimal
growing conditions (Bharucha and Pretty, 2010).

To mitigate the impact of climate change and continued
land degradation as well as to increase/sustain global food
production, two potential approaches can be pursued. The first
involves increasing yield per unit area of crops through genetic
enhancement and improved agronomic practices (Parry and
Hawkesford, 2010). The second option involves bringing back
degraded lands into productive use through the introduction,
testing, and adaptation of alternative nutrient-dense and stress-
tolerant crops to marginal environments especially where these
crops have not been previously cultivated (Mabhaudhi et al.,
2019). This would facilitate dietary diversification and pave the
way for food self-sufficiency in the affected regions. In summary,
to achieve sustainable food and nutrition security, there is a need
to breed crops for stress tolerance and resource use efficiency in
marginal environments as well as devote more research attention

toward the introduction, evaluation, and adaptation of underused
crops for dietary diversification.

This review was conducted to examine the potential of some
selected orphan or underused crops for diversified and balanced
diets, improved food and nutrition security, income generation
by rural poor, empowerment of women and youth, as well
as salvaging degrading marginal environments. The potency
of modern breeding strategies (including high-throughput
genotyping and phenotyping, marker-assisted selection, genomic
selection, gene editing, mutation breeding, and other approaches
that could fast-track the genetic enhancement of these crops)
along with the anticipated impact of dietary diversification on the
social fabric are also highlighted along with a potential roadmap
for future research engagement and a policy framework.

Marginality
The concept of marginal environments is subjective and
therefore defined from diverse perspectives, including
societal, infrastructure, health, education, political, economic,
environmental, and development index (Gurung and Kollmair,
2005). In the context of agriculture, we consider marginal
environments as lands that are limiting in the provision of
optimal conditions required for crop growth and productivity
as well as those that result in poor economic returns when used
for crop cultivation. A comprehensive definition of marginal
environments was provided by Pender and Hazell (2000), who
referred to these environments as less-favorable agricultural areas
(LFAAs) characterized by constrained agricultural potential and
resource degradation attributable to biophysical and politico-
socioeconomic factors. The authors indicated that the low
production potential of these LFAAs is driven by rugged terrains,
extreme weather conditions, poor soil and water quality, lack of
socioeconomic connectivity, and limited exposure to agricultural
intensification opportunities. They also added that drought and
erratic rainfall, salinization, and other factors present significant
constraints for intensive agriculture in LFAAs.

Orphan Crops
According to Dawson et al. (2007), orphan crops are those
that have either originated from a geographical location or
become “naturalized” due to many decades (usually greater than
10 decades) of cultivation alongside natural selection and/or
artificial selection by farmers. The term “orphan” is derived
from the state of neglect and abandonment of the crops by
the scientific community despite their grossly underexploited
food and nutritional potential that can contribute to food and
nutrition security, healthy living, improved livelihood of farmers,
and improvement of the environment (Tadele and Assefa, 2012;
Tadele and Bartels, 2019). Orphan crops are also referred to as
underused, lost, indigenous, minor, promising, or future crops
(Tadele, 2019). Orphan crops have a history with indigenous
people and are generally accepted among the rural populace
for their nutritional and health values as well as adaptation to
prevailing local stresses and growing conditions (Kamei et al.,
2016). With renewed awareness of the potential of orphan crops
in terms of being nutrient-dense, amenable to diverse food
systems, and tolerant of suboptimal growing conditions, research
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attention is beginning to shift in the direction of these crops, for
which the knowledge of indigenous people would be invaluable.

Although number of orphan crops are native to different
continents or regions like Africa, Asia, South America, North
America, South Pacific, and Australia, among others (Davies
et al., 2005; Foyer et al., 2016; Mueller et al., 2017; Kagawa-
Viviani et al., 2018; Dawson et al., 2019; Kehinde et al., 2022),
but a plant species may be called orphan for one particular region
may not be necessarily orphan crop for others. Several orphan
crops listed for Africa include crops that are commonly grown in
South Asia and other parts of the world. For example, the African
Orphan Crops Consortium (AOCC) listed okra, onion, cashew,
custard apple, jack fruit, papaya, watermelon, coconut, pumpkin,
finger millet, sweet potato, lentil, mango, bitter gourd, drumstick,
mulberry, banana, guava, etc., as part of the 101 most important
orphan crops in Africa1, whereas these crops are widely cultivated
in other areas of the world and are not considered as orphan
crops in those regions. In the past couple of decades, crop
species from different parts of the world have been gaining
attention in other regions, that is, outside of their niche. Quinoa
(Chenopodium quinoa) is one of the most captivating cases,
moving out of South America (Bolivia, Peru, and Chile) and
expanding globally. Quinoa varieties have been bred specifically
for the European and North American environments (Alandia
et al., 2020). Similarly, amaranth, buckwheat, millets, and other
crops have gained attention outside of their centers of origin and
domestication (Rodríguez et al., 2020).

It is noteworthy that the AOCC selected the 101 priority
orphan crops based on three primary criteria: (1) being rich
in micro- and macronutrient contents, (2) being relevant
to Africa, and (3) having a need for developing breeding
resources (Hendre et al., 2019). In a similar manner, the Food
and Agriculture Organization of the United Nations Regional
Office for Asia and the Pacific (FAO/RAP) identified and
designated traditional underused crops as Future Smart Food
(FSF) based on four criteria: high nutritional profile, climate
resilience, local availability, and economic viability. This was
in line with the FAO/RAP Initiative for Zero Hunger (Li
and Siddique, 2018). Thus, in this review, we identified 13
orphan crops based on four criteria: (1) resilience to salinity,
drought, and/or heat stress, which are prevalent in marginal
environments; (2) high nutritional profile; (3) amenability to
diverse cropping systems; and (4) local availability for economic
growth and social development. These crops were assigned
to three categories: cereals and pseudo-cereals, pulses, and oil
crops (Table 1).

It suffices to indicate that the intention is not for orphan crops
to dominate the diet or compete with the major food crops but
to complement production to meet the food requirements of the
fast-increasing population as soon as possible. Orphan crops are
also outstanding in performance and could thrive better than
major food crops in environments where they are indigenous
and widely cultivated. Promotion and adoption of orphan crops
are expected to achieve direct and indirect impacts on many
global challenges.

1http://africanorphancrops.org/

POTENTIAL AND PROSPECTS OF
ORPHAN CROPS IN FOOD SYSTEMS

Despite being grown on infertile portions of farms and
commonly cultivated in marginal agricultural regions; orphan
crops continue to play a significant role in food security. They
provide the calorie requirement of people living in areas where
major food crops such as maize, rice, and wheat cannot be
produced optimally. It is also noteworthy that orphan crops
require low inputs by nature; thus, farmers will be spending far
lesser amount of money on production compared to those of
major food crops.

Role in System Diversification,
Sustainability, and Soil Health
While maize, rice, and wheat dominate cropping systems; these
crops do not perform well in marginal areas. Orphan crops can be
grown successfully as sustainable alternatives to satisfy the calorie
requirements of communities. The use of orphan crops to occupy
niches in production in multiple cropping systems has several
advantages. For instance, niche management using alternative
orphan crops addresses the food production challenges in
locations where climate and other environmental factors can
no longer support traditional cereals. Second, selected orphan
crops can be used to explore sustainable crop diversification
opportunities for multiple cropping, thereby supporting yield
stability, building up of disease and pest resistance, higher
resource use efficiency, and intensification where conditions
allow for this. Local crop intensification and the use of diverse
crop cycles have been put forward as a solution to improve
food security without increasing the area under cultivation
subject to site-specific productivity and actual environmental
costs (Waha et al., 2020). As the frequency of climate extremes
increases, mixed crop production practices that include wide
adaptation traits are important for maintaining food security
(Iijima et al., 2016). Therefore, the inclusion of orphan crops
can increase both food security and opportunities for designing
sustainable crop intensification strategies. Alternative crops in
the form of orphan crops score highly in all areas of the four
pillars of food security: access, availability, use, and stability. In
particular, the majority fit in sustainable production practices and
support dietary diversity. Orphan crops could have a different
supplemental requirement (fertilizers/minerals) for their growth
and development as compared with the staple cereals that
largely dominate food systems, but definitely not exhaustive
requirements. Soil nutritional status affects the nutritional profile
of crop produce (Rekik, 2020). Therefore, it is imperative to work
out soil health needs and define specific fertilizer requirements
prior to including orphan crops in food systems.

Nutritional requirements significantly affect food systems.
Small millets, which are mostly orphan crops, play significant
roles in the diets and nutrition of local indigenous people in
Africa, Asia, and South America. Compared with traditional
cereals, orphan crops such as finger, foxtail, and proso millet,
among others, have high potential and value as food sources
as they provide gluten-free flour, are higher in dietary fiber
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TABLE 1 | Selected nutrient-dense orphan crops for dietary diversification in marginal environments.

S. no. Crop Scientific
name

Country/region of
origin

Reaction to stresses††† Importance Source of information

Drought Salinity Heat

(1) Finger millet Eleusine
coracana

East Africa T MT – Rich in methionine, High
content of fiber and minerals

National Research Council,
1996; Chandrashekar,

2010; Bhatt et al., 2011;
FAO, 1995

(2) Proso millet Panicum
miliaceum

Egypt and Arabia T T T Rich in protein, fiber, B
vitamins, and minerals

FAO, 1995; Kalinova and
Moudry, 2006

(3) Barnyard
millet

Echinochloa
spp.

Central Asia T T – Source of high protein, fiber,
high iron, and gluten-free

Saleh et al., 2013

(4) Buckwheat Fagopyrum
tataricum

China T S S Low-gluten, high protein
content, rich in vitamin B, and
has nutraceutical properties

Wu et al., 2019; Pirzadah
and Rehman, 2021

(5) Fonio Digitaria sp. West Africa T MT MT Gluten-free, rich in the amino
acids, cysteine, and

methionine. Matures within
60–70 days.

Temple and Bassa, 1991;
National Research Council,

1996

(6) Little millet Panicum
sumatrense

India T MT T Low in calories but rich in
dietary fiber, magnesium,

bioactive compounds, and
other essential minerals and

vitamins.

Itagi et al., 2013; Ajithkumar
and Panneerselvam, 2014

(7) African yam
bean

Sphenostylis
stenocarpa

West Africa T – – Abundant in protein, dietary
fiber, carbohydrate, and

minerals

Baiyeri et al., 2018; Anya
and Ozung, 2019; George

et al., 2020

(8) African
winged
bean

Psophocarpus
tetragonolobus

New Guinea and
Indonesia

– – T Rich in dietary protein and low
in anti-nutritional factors

Wan Mohtar et al., 2014;
Mohanty et al., 2015;

Vatanparast et al., 2016

(9) Moth bean Vigna
aconitifolia

India T MT T Rich in protein and minerals
such as Ca, Mg, K, Zn, and Cu

Gupta et al., 2016; Tiwari
et al., 2018; van Zonneveld

et al., 2020

(10) Bambara
nut

Vigna
subterranea

West Africa T MT T Rich in quality protein and
dietary fiber. Also, a good

source of calcium, phosphorus,
iron, and vitamin C.

National Research Council,
1996; Feldman et al., 2019;

Soumare et al., 2021;
Olanrewaju et al., 2022

(11) Jatropha Jatropha
curcas

African tropics T T MT Rich source of protein and oil King et al., 2009; Maes
et al., 2009; Devappa et al.,

2010

(12) Jojoba Simmondsia
chinensis

Northern Mexico and
Southwestern
United States

T T T Oil makes 50% of seed by
weight, contains 97%

monoesters of long-chain fatty
acids giving it very long shelf life

Dunstone and Begg, 1979;
Benzioni and Dunstone,

1986; Makpoul et al., 2017

(13) Camelina Camelina sativa Eastern Himalayas,
China, Japan, and

Malaysia

T MT – High level (about 45%) of
omega-3 fatty acids

Acamovic et al., 1999;
Bakhshi et al., 2021

(14) Teff Eragrostis tef Ethiopia T MT T Gluten free and highly rich in
iron and other key nutrients

National Research Council,
1996; Aptekar, 2013; Zhu,
2018; Gelaw and Qureshi,

2020

†T, tolerant; MT, moderately tolerant; S, sensitive.

and essential amino acids (leucine, isoleucine, and lysine),
and have good lipid content (Dias-Martins et al., 2018). For
example, finger millet has comparable carbohydrate, protein,
and fat content as wheat and rice, but the crop is by far
the richest source of calcium (300–350 mg/100 g), as detailed
in Table 2A. Finger millet also has comparable and, in some
cases, higher essential amino acids, vitamins, and micronutrients
than wheat and rice (Table 2B). Other small millets also
serve as abundant sources of phosphorus and iron. In a
study conducted by Devisetti et al. (2014), the protein content

of foxtail and proso millets was found to be high (e.g.,
14.8 g/100 g), and measured total and soluble dietary fiber
was significantly high. In the brown and whole grains, both
small grains had significant phenolic compounds and phytic
acid, which can be overcome by processing, while the nitrogen
solubility of their flours was good (e.g., up to 16.4 mg/g) in
water (Devisetti et al., 2014). Work of Das et al. (2019) has
shown that proso millet, for example, provides vitamins (niacin,
B-complex vitamins, and folic acid), minerals (P, Ca, Zn, and
Fe), and essential amino acids (methionine and cysteine). Proso
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TABLE 2A | Nutritional profile of selected millets compared with those of wheat and rice.

Nutrient composition

Crop Carbohydrates
(g)

Protein (g) Fat (g) Energy (KCal) Crude fiber (g) Mineral
matter (g)

Ca (mg) P (mg) Fe (mg)

Finger millet 72 7.3 1.3 328 3.6 2.7 344 283 3.9

Foxtail millet 60.9 12.3 4.3 331 8 3.3 31 290 2.8

Proso millet 70.4 12.5 1.1 341 2.2 1.9 14 206 0.8

Barnyard millet 65.5 6.2 2.2 307 9.8 4.4 20 280 5

Little millet 67 7.7 4.7 341 7.6 1.5 17 220 9.3

Pearl millet 67.5 11.6 5 361 1.2 2.3 42 296 8

Wheat (whole) 71.2 11.8 1.5 346 1.2 1.5 41 306 5.3

Rice (raw, milled) 78.2 6.8 0.5 345 0.2 0.6 10 160 0.7

Teff 73.13 13.3 0.4 367 8 – 180 429 7.63

Essential amino acids

Crops Arginine
(mg/g of N)

Histidine
(mg/g of N)

Lysine
(mg/g of N)

Tryptophan
(mg/g of N)

Phenyl
Alanine (mg/g

of N)

Tyrosine
(mg/g of N)

Methionine
(mg/g of N)

Cystine
(mg/g of N)

Threonine
(mg/g of N)

Leucine
(mg/g of N)

Isoleucine
(mg/g of N)

Valine
(mg/g of N)

Finger millet 300 130 220 100 310 220 210 140 240 690 400 480

Foxtail millet 220 130 140 60 420 – 180 100 190 1040 480 430

Proso millet 290 110 190 50 310 – 160 – 150 760 410 410

Barnyard millet 270 120 150 50 430 – 180 110 200 650 360 410

Little millet 250 120 110 60 330 – 180 90 190 760 370 350

Pearl millet 300 140 190 110 290 200 150 110 140 750 260 330

Wheat (whole) 290 130 170 70 280 180 90 140 180 410 220 280

Rice (raw, milled) 480 130 230 80 280 290 150 90 230 500 300 380

(Source: Nutritive value of Indian foods, NIN, 2007; MILLET in your Meals, http://www.sahajasamrudha.org/ and https://data.nal.usda.gov/dataset/composition-foods-raw-processed-prepared-usda-national-nutrient-
database-standard-reference-release-27).
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TABLE 2B | Nutritional profile of selected millets compared with those of wheat and rice.

Vitamins

Millet Thiamin (mg) Niacin (mg) Riboflavin Vit A (carotene)
(mg/100 g)

Vit B6
(mg/100 g)

Folic Acid
(mg/100 g)

Vit B5
(mg/100 g)

Vit E (mg/100 g)

Finger millet 0.42 1.1 0.2 42 – 18.3 – 22

Foxtail millet 0.59 3.2 0.1 32 – 15 0.8 31

Proso millet 0.41 4.5 0.3 0 – – 1.2 –

Barnyard millet 0.33 4.2 0.1 0 – – – –

Little millet 0.3 3.2 0.1 0 – 9 – –

Sorghum 0.38 4.3 0.2 47 0.21 20 1.3 12

Pearl millet 0.38 2.8 0.2 132 – 45.5 1.1 19

Wheat (whole) 0.41 5.1 0.1 64 0.57 36.6 – –

Rice (raw, milled) 0.41 4.3 0 0 – 8 – –

Teff 0.39 3.36 0.27 0 0.46 – 0.94 0.08

Micronutrients

Finger millet Mg (mg/100 g) Na (mg/100 g) K (mg/10 0g) Cu (mg/100 g) Mn (mg/100 g) Mb (mg/100 g) Zn (mg/100 g) Cr (mg/100 g) Su (mg/100 g) Cl (mg/100 g)

Foxtail millet 137 11 408 0.47 5.49 0.102 2.3 0 160 44

Proso millet 81 4.6 250 1.4 0.6 0.07 2.4 0 171 37

Barnyard millet 153 8.2 113 1.6 0.6 – 1.4 0 157 19

Little millet 82 – – 0.6 0.96 – 3 0.1 – –

Sorghum 133 8.1 129 1 0.68 0.016 3.7 0.2 149 13

Pearl millet 171 7.3 131 0.46 0.78 0.039 1.6 0 54 44

Wheat (whole) 137 10.9 307 1.06 1.15 0.069 3.1 0 147 39

Rice (raw, milled) 138 17.1 284 0.68 2.29 0.051 2.7 0 128 47

Rice 90 – – 0.14 0.59 0.058 1.4 0 – –

Teff 184 12 427 0.81 9.24 – 3.63 – – –

(Source: Nutritive value of Indian foods, NIN, 2007; MILLET in your Meals, http://www.sahajasamrudha.org/ and https://data.nal.usda.gov/dataset/composition-foods-raw-processed-prepared-usda-national-nutrient-
database-standard-reference-release-27).
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millet also has comparable contributions to protein, energy,
and carbohydrates.

Agricultural Systems for Health
Orphan crops support sustainable production practices of diverse
cropping systems, have high feed value in livestock and fisheries,
and contribute to soil health. They also contribute to net-carbon
sequestration (Toensmeier et al., 2020), a goal important for
climate adaptation and mitigation. These system attributes are
fundamental in pursuit of good human health as supported by
agriculture and related ecosystem services. The nutritional status
of the crops can be considered as an overlap between agriculture
and health. In this process, system performance and the ability
to provide nutritious food become a “central dogma.” It is also
evident that evolution of a few dominant crops largely contributes
toward a risk of malnutrition and dietary diseases. Here, we
give some examples of direct health benefits from agricultural
products beyond nutrition. For instance, the low glycemic index
of their flour products has been found to decrease the risk of
type-2 diabetes mellitus and cardiovascular disease in human
adults (Das et al., 2019). Foxtail millet products have been found
to contribute to human health through low glycemic index and
hypolipidemic and antioxidant attributes (Sharma and Niranjan,
2018). Several diseases in humans (i.e., cancer, cardiovascular
disease, dental disease, diabetes, obesity, and osteoporosis) are
on the increase in developed and developing countries and
diets supported by orphan crops are an extremely important
consideration for diminishing these diseases. The prominence of
diverse foods that include orphan crops has potential to decrease
the impact of epidemics from diet-driven non-communicable
diseases (Watkins and Daignault, 2020; Åhlberg, 2021; Carazo
et al., 2021).

Source of Livelihood for Resource-Poor
Farmers
Indigenous communities living in remote areas often grow
orphan crops for their food and livelihood development
(Kuhnlein et al., 2013). The proliferation of orphan crops in
remote areas is driven by low adoption of modern farming
methods because of limited access to agricultural services and a
disconnect from input and output markets. For these indigenous
communities, orphan crops are central to religious beliefs, rituals,
and customary practices. These crops have also been used to
develop recipes for dishes served on special occasions, in the
cure of disease bouts, and as currency for the barter system
of exchange for other commodities. Together with wild fruits
and vegetables collected from forests, orphan crops constitute a
source of the entire livelihood system for poor rural people living
in remote areas.

Consumer Taste Satisfaction
With higher incomes, a spin-off from improved literacy and
rural-urban migration, most of the youth do not consume
traditional dishes (Baada et al., 2019; Marchetti et al., 2020). In
urban centers, consumer tastes are shaped by increased access
to meat products and other dairy products at the expense

of products from orphan crops (Akinola et al., 2020; Lillford
and Hermansson, 2021). Large well-developed commodity
value chains dictate consumption of rice, maize, and wheat
products at the expense of orphan crops in urban centers
(Reardon, 2015). Generational differences have not supported
the use of orphan crops on a large scale. Orphan crops have
maintained the diversity of food chains although they have
limited taste preferences.

Some of the challenges could be as follows:

Relatively Inferior Yields
Most orphan crops have not been genetically improved and hence
have yield lower than that of the main food crops. Attributes
such as high nutrient density are lost in the poor yield and
poorly applied management practices. Without improved high-
yielding varieties and a positive response to management and
inputs, orphan crops face extinction because of anthropogenic
negligence (Azam-Ali et al., 2021).

No Favorable Policy Supports
Orphan crops have not received fair and supportive policy
coverage worldwide. Without policies, the knowledge vested
in, and cultural importance associated with orphan crops have
dwindled over time (Azam-Ali et al., 2021), a situation that
needs redress. Promotion and widescale popularization have been
suggested to protect the huge value of orphan crops.

CURRENT STATUS OF THE EX SITU AND
IN SITU CONSERVATION OF SELECTED
ORPHAN CROPS IN GENEBANKS

The rich diversity that exists in most of the orphan crops is
threatened with extinction unless their germplasm is conserved
and fully characterized (Bhattacharjee et al., 2009). There have
been various efforts (Sogbohossou et al., 2018; Daley et al.,
2020) to conserve a few orphan crops, but, in most cases,
the germplasm collections are not optimum and lack full
genetic characterization. Both in situ and ex situ germplasm
collections of different orphan crops will be required, followed
by the full characterization of the collections to facilitate further
genetic improvement efforts. At present, approximately 7.4
million accessions of different crops are stored in approximately
1,750 genebanks (FAO, 2010) around the world. Most of
this genetic diversity (∼80%) belongs to the major crops and
their relatives. Keeping in view the importance of orphan
crops in agricultural diversification, the genebank at the
International Center for Biosaline Agriculture has assembled
and conserved several accessions of various orphan crops from
different countries. These accessions are available for use in
research and development programs for the region and other
parts of the world.

Globally, ex situ collections of small millets and pseudo-cereals
are being preserved in more than 150 genebanks across the world,
of which the International Crop Research Institute for the Semi-
Arid Tropics (ICRISAT) in India; Institute of Crop Germplasm
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Resources, Chinese Academy of Agricultural Sciences (ICGR-
CAAS), in Beijing, China; Plant Genetic Resources Conservation
Unit, Southern Regional Plant Introduction Station, University
of Georgia, USDA-ARS, United States; and National Bureau of
Plant Genetic Resources (NBPGR), New Delhi, India, are the
major repositories for these orphan crops. Table 3 details the
proportion of germplasm accessions of selected orphan crops
under the different germplasm storage types, while the list of
selected orphan crops conserved in different genebanks and the
status details of the collections appear in Supplementary Table 1
(Genesys, 2017).

ADVANCES IN GENETIC IMPROVEMENT
OF ORPHAN CROPS

A global-level coordinated effort is urgently required in orphan
crop research that can address the array of upcoming challenges,

including climate resilience, shrinking agricultural resources,
hidden hunger, food/nutrition security, etc. It is noteworthy
here that the Green Revolution’s genetic gain (Evenson and
Gollin, 2003) has been attributed to germplasm conservation,
characterization, and trade (Pingali, 2012). To achieve a
successful orphan crop improvement program, both in situ and
ex situ germplasm collections will be necessary, followed by
their intensive characterization. The CGIAR institutes IITA and
CIAT-Bioversity International and several other international
agencies are making efforts2 (Padulosi et al., 2021); however,
more organizations and intensive endeavors are needed. The
One CGIAR platform has the potential to contribute significantly
toward this as it is in the vicinity of several centers of crop
diversity, for example, CIMMYT (Mexico), CIP (Peru), CIAT
(Colombia), IITA (Nigeria), ICRISAT (India), and ICARDA

2https://www.iita.org/news-item/raising-profile-yam-whole-genome-
sequencing-neglected-orphan-crop/

TABLE 3 | Germplasms of selected orphan crops conserved under different types of germplasm storage.

Crop Long term
seed

collection (%)

Medium-term
seed

collection (%)

Short term
seed

collection (%)

Seed
collection

(%)

Cryopreserved
seeds (%)

Field
collections

(%)

DNA
collection (%)

Others/Not
specified (%)

Source of
information

Finger millet
(Eleusine coracana)

36.47 37.68 0.07 7.29 0.03 18.46 GENESYS

Proso millet
(Panicum
miliaceum)

24.34 8.15 3.53 60.75 0.005 0.33 2.90

Barnyard millet
(Echinochloa spp.)

29.62 31.73 19.75 0.16 0.08 18.66

Buckwheat millet
(Fagopyrum spp.)

31.96 7.61 42.41 0.18 17.84

Fonio (Digitaria sp.) 32.86 21.43 1.43 37.14 7.14

Little millet
(Panicum
sumatrense)

40.32 40.58 0.09 18.84 0.17

African yam bean
(Sphenostylis
stenocarpa)

10 49.15 0.1 37.87 2.87

African winged
bean
(Psophocarpus
tetragonolobus)

4.14 5.56 0.13 24.97 0.13 65.07

Amaranthus
(Amaranth spp.)

31.14 9.10 1.88 36.94 0.05 0.02 20.87

Moth bean (Vigna
aconitifolia)

23.05 3.17 2.02 38.04 0.29 33.43

Bambara nut (Vigna
subterranea)

30.01 31.59 35.13 3.27

Jatropha (Jatropha
curcas)

5.86 18.05 0.16 0.81 74.31 0.81

Jojoba
(Simmondsia
chinensis)

1.82 1.21 1.21 63.97 11.13 20.66

Camelina (Camelina
sativa)

57.22 18.63 15.56 0.68 7.91

Castor bean
(Ricinus communis)

18.36 23.89 52.78 0.02 0.85 4.10

Teff (Eragrostis tef ) 3.01 0.42 31.50 65.07
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(Morocco). These centers have mandatory crops and target
environments. However, if they contribute toward orphan crop
collection, conservation, and characterization in their target
environments using their already established infrastructure, this
could be quite useful.

The ease of hybridization in the staple food crops (rice, wheat,
and maize) rendered them fit candidates for crop improvement
programs globally. Orphan crops have varying floral biology.
The tiny intricate flowers in orphan crops such as finger millet
(Hilu and De Wet, 1980) and amaranth (Stetter et al., 2016)
hinder crossing effectively. Further, the invariable outcrossing
percentage in orphan crops, including amaranth (up to 49%),
African eggplant (up to 30%), and several others, hindered
hybridization (Adeniji et al., 2012). Unlike amaranth and African
eggplant, other orphan crops such as grass pea (predominantly
autogamous) and water yam (dioecious) facilitate the breeding
process (Hanson and Street, 2008; Ghorbel et al., 2014). A focused
and coordinated effort is urgently required in understanding the
possibility for hybridization while addressing crossing barriers of
different orphan crops.

Genetic variability in progenies from interspecific crosses
is always inevitable, although few of them are viable. With
success achieved through interspecific hybridization between
Dioscorea alata (water yam), and Dioscorea nummularia (yam),
Lebot et al. (2019) encourage replication of this strategy in
other orphan crop species and suggest further opportunities
to introgress superior traits. On the one hand, ample genetic
variation can be created while introgressing useful traits from one
species into another. Large-scale crossing followed by embryo
rescue could help in opening new avenues in interspecific
hybridization of relatively unexplored orphan crop species.
Well-established and standardized breeding protocols, breeding
schemes, and strategies for orphan crops are instrumental in crop
genetic improvement.

Apart from hybridization barriers, time incurred in the
generation advancement process poses another bottleneck in
fast-tracking varietal improvement. Chiurugwi et al. (2019) have
reviewed different technologies that have potential to transform
and speed up the genetic improvement process (breeding) for
orphan crops. Shortening of the crop cycle through decreasing
days to flowering is the key step in this process. This can be
achieved successfully by modifying growth conditions, including
photoperiod adjustments through light exposure, modifying
relative humidity and temperature in growth chambers, and
carrying out early seed harvest (O’Connor et al., 2013; Ghosh
et al., 2018). Doubled haploidy offers an alternative approach
toward fast-track fixing of useful alleles in breeding germplasm
(Chaudhary et al., 2019). Protocols for speed breeding have
been optimized in staple cereal crops, including rice and wheat
(Ohnishi et al., 2011; Alahmad et al., 2018). Speed breeding
protocols are being developed in orphan crops such as grain
amaranth, grass pea, and quinoa (Stetter et al., 2016; Ghosh et al.,
2018). This strategy therefore offers a promising approach in
addressing the breeding bottlenecks of orphan crops.

For traits per se, the breeding strategy of orphan crops could
be slightly different from that of staple food crops for which
the focus is mainly on yield. The domestication syndrome traits

in orphan crops are a priority objective that facilitates their
adaptation into relatively newer environments and agricultural
systems. Furthermore, improved processability needs to be
focused on for orphan crop products, which depends largely on
their physical properties (e.g., amylose to amylopectin in cereal
starches) and chemical properties (e.g., anti-nutritional phytates
in legumes) (Jamnadass et al., 2020). To enhance favorable crop-
crop interactions, orphan crops must be better integrated into
existing farming systems by concentrating on features such as
plant architecture and phenology. Fixing these traits will promote
the suitability of orphan crops in relatively newer agricultural
systems; thereafter, breeding programs can target yield or other
economically relevant traits.

Genetic improvement of orphan crops has been achieved by
landrace selection to improve domestication syndrome features,
including non-shattering seed type, increased seed size and
weight, lesser dormancy period, etc., in addition to imparting
tolerance for biotic and abiotic stresses (Sseremba et al.,
2018a,b). Targeted improvements for domestication syndrome
traits using genome editing with CRISPR-Cas9 approaches have
been suggested (Lemmon et al., 2018; Tripathi et al., 2019;
Zaman et al., 2019), but poorly developed genomic resources pose
challenges. Standardized genetic transformation protocols, tissue
culture methods, well-annotated genome sequences, and other
similar resources/methods have become bottlenecks in using
genome editing and other transformation methods in orphan
crop improvement. An integrated breeding approach focusing
on domestication syndrome traits together with processability,
harvestability, architecture, and phenology should help in
establishing effective integrated production (intercrop) systems
aided by orphan crops.

Despite the important roles of orphan crops in global food and
nutrition security and their potential contribution to sustainable
food production under the changing climatic scenario, the
research efforts made on genetic improvement of these crops
are grossly inadequate. Advances in next-generation sequencing,
high throughput genotyping and phenotyping techniques have
made feasible the rapid identification of yield and yield-related
QTLs in these orphan crops. Subsequently, the identified QTLs
can be introgressed into the desired genotypes of the orphan
crops using marker-assisted breeding. After sequencing of the
first orphan genome (i.e., foxtail millet) (Bennetzen et al., 2012;
Zhang et al., 2012), the genomes of several other orphan crops
have been sequenced: teff (Cannarozzi et al., 2014), pearl millet
(Varshney et al., 2017a), finger millet (Hittalmani et al., 2017;
Hatakeyama et al., 2018), broomcorn millet (Shi et al., 2019; Zou
et al., 2019), wild relatives of barnyard millet (Echinochloa crus-
galli and Echinochloa oryzicola) (Guo et al., 2017; Ye et al., 2020),
fonio millet (Abrouk et al., 2020), adlay (Guo et al., 2020), and
wild Coix (C. aquatica) (Kang et al., 2020; Liu et al., 2020). Apart
from these, Chang et al. (2019) published the genome assembly
of five orphan crops: Bambara groundnut (Vigna subterranea),
lablab (Lablab purpureus), white acacia (Faidherbia albida),
marula (Sclerocarya birrea), and moringa (Moringa oleifera).
During the past decade, the AOCC (see Text Footnote 1) took
the initiative to sequence the genome of 101 African orphan
crops and re-sequencing 100 lines of each genome will speed up
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molecular breeding in these crops by developing better suited
genotypes with higher yield. Currently, crop breeding has entered
biotechnology-based breeding involving transgenic, genome
design, genome editing, and genomic breeding techniques.
During the past decades, with the availability of reference
genomes and advancement in sequencing technologies, genome-
wide association studies (GWAS) and omics studies have been
carried out in foxtail millet (Jia et al., 2013; Upadhyaya et al.,
2015; Jaiswal et al., 2019), pearl millet (Varshney et al., 2017b),
finger millet (Rahman et al., 2014; Sharma et al., 2018), cassava
(Rabbi et al., 2017; Kayondo et al., 2018; Zhang et al., 2018;
do Carmo et al., 2020), and orphan legume species such as
pigeon pea (Varshney et al., 2017a), chickpea (Li et al., 2018),
and common bean (Wu et al., 2020). Some of these crops used
to be considered as orphan crop are now mainstream crops,
and undergone genomic selection during past decades such as
pearl millet (Varshney et al., 2017a), pea (Annicchiarico et al.,
2017), cassava (Wolfe et al., 2017), pigeon pea (Bohra et al.,
2020), peanut (Pandey et al., 2020), common bean (Keller et al.,
2020), etc. Thus, there is need to employ application of genomic
tools for genetic improvement of current orphan crops as well;
so that they can be evolved as the mainstream crops with
increased yield potential. Despite the knowledge gained through
genomic studies, advancement in breeding has not accelerated
in developing new improved varieties as expected. A more
concerted genomics-assisted breeding approach is required for
the genetic improvement of these orphan crops for yield and
other agronomic traits. Details of cytogenetic and genomic
information on selected orphan crops appear in Table 4.

POLICY PERSPECTIVES FOR GLOBAL
EXPANSION OF ORPHAN CROPS

Historical Perspective
Global agricultural systems are at a critical juncture. Agricultural
policies, market incentives, trade forces, agricultural subsidies,
and years of intensive research targeting agricultural productivity

growth have skewed crop production portfolios toward a handful
of high-yielding crops that can be grown to scale on the world’s
mainstream agricultural lands (Tadele, 2019; Borelli et al., 2020).
Policy support has been mainly directed at promoting the
production and use of conventional crop species (e.g., wheat,
rice, and maize) that dominate global food markets and underpin
global diets that are becoming increasingly homogeneous
(Borelli et al., 2020). Meanwhile, increasing evidence has come
to light suggesting that the narrowing of diversity in crop
species poses a significant threat to global food security and
environmental sustainability (Khoury et al., 2014). From an
environmental standpoint, these specialized modern production
systems dominated by conventional crops require high-tech and
high-input production systems, leading to the overexploitation
of the natural resource base and ecosystems (Willett et al.,
2019; Borelli et al., 2020). Given the high-level adaptation of
orphan crop species to heterogeneous and harsh agro-ecological
conditions, promoting orphan crops on a large scale could
encourage the use of regenerative and ecological processes
instead of relying entirely on intensification of conventional crops
requiring a significant number of external inputs (i.e., chemicals
and fertilizers) that are harmful to the environment. From the
poverty elimination perspective, orphan crops are seen as “poor
peoples’ crops,” which have the potential to not only enhance
the food and nutrition security of the rural poor but also offer
income-generating opportunities (Naluwairo, 2011). Investment
in orphan crops could improve the livelihoods of socially
marginal and vulnerable groups, including indigenous people
and women (Egeland and Harrison, 2013; Azam-Ali et al., 2021).

In spite of the increased political will throughout recent
years to promote investment in orphan crops, numerous studies
generate evidence pointing to the lack of support for them,
all of which recognize the need for change in the nature and
scope of the policy environment (Mabhaudhi et al., 2017; Tadele,
2019; Tadele and Bartels, 2019; Kamenya et al., 2021). Previous
literature on neglected crop species points to several impediments
and challenges that limit the integration of orphan crops into
commercial food systems (Fanzo et al., 2013). Inappropriate

TABLE 4 | Cytogenetic and genome details of selected orphan crops.

Crop Scientific name Ploidy level Chromosome number Estimated genome size

Finger millet Eleusine coracana Allotetraploid 36 1.6 Gbp

Proso millet Panicum miliaceum Tetraploid 36 923 Mbp

Barnyard millet Echinochloa sp. Hexaploid 54 1.27 Gbp

Buckwheat Fagopyrum esculentum Diploid 16 540 Mbp

Fonio Digitaria exilis Tetraploid 36 893 Mbp

Little millet Panicum sumatrense Tetraploid 36 NA

African yam bean Sphenostylis stenocarpa Diploid 18, 20, 22, and 24 NA

African winged bean (Psophocarpus tetragonolobus) NA NA NA

Moth bean Vigna aconitifolia Diploid 22 NA

Bambara nut Vigna subterranea Diploid 20, 22 NA

Jatropha Jatropha curcas Diploid 22 339 Mbp

Jojoba Simmondsia chinensis Diploid 26 887 Mbp

Camelina Camelina sativa Hexaploid 40 785 Mb

Teff Eragrostis tef Allotetraploid 40 672 Mbp
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agriculture and food security policies that favor large cereal
crops often diminish the dietary importance of orphan crops.
There is still a lack of policies to support and recognize the
nutritional value of neglected crops, which makes it difficult
for locally produced traditional products to enter international
marketplaces. There is very little research tying orphan crops
to various diets and enhanced nutrition or comparing cost-
effective strategies of using species for nutritional outcomes.
Most of the essential data are dispersed and inaccessible
through a single platform, which frequently goes unnoticed
by policymakers. More crucial is the lack of infrastructure
and markets nationally and regionally to channel neglected
crop products to major food markets (Hunter et al., 2019;
Kumar and Bhalothia, 2020).

The Broader Policy Context: Global
Policy Responses
The State of the World’s Biodiversity for Food and Agriculture
highlighted a rapid decline and global disappearance of
many local varieties of domesticated plants, many of which
are neglected in local production systems and are mainly
maintained by custodian farmers exclusively for subsistence
and informal trade (FAO, 2019; Borelli et al., 2020). These
plants nevertheless have a tremendous potential to redress
key challenges in sustainable development, such as the
vulnerability of production systems to climate change,
disempowerment of vulnerable groups (women and indigenous
peoples), widespread poverty, shrinking food biodiversity,
and pervasive malnutrition (Egeland and Harrison, 2013;
Azam-Ali et al., 2021). With the effects of climate change on
the horizon posing critical challenges to agricultural systems,
orphan crops have recently attracted increasing attention
at the policy level because of their remarkable resilience to
biotic and abiotic stresses and importance for rural food
security, especially in marginal areas where production
is constrained by biotic and socioeconomic constraints
(Mabhaudhi et al., 2017).

In pursuit of achieving the Sustainable Development Goals
(SDGs) related to the food security-poverty-environment nexus,
the United Nations General Assembly (UNGA) has adopted
several conventions to address the problems faced by global
food production systems, including the lack of policy support
for orphan and underused crops. The UN community has
widely advocated investing in conserving these crop species
and making greater use of the abundance and diversity of
orphan crops in promoting sustainable diets (United Nations,
2019a,b). Subsequently, the UNGA conventions recognized
several priority actions to transform production systems,
especially to make underused and neglected crop species
available to producers and consumers. These actions include
directing increased research investments to explore their climate
resilience and nutritional characteristics; providing greater
support for their mainstreaming in food security policies and
programs (e.g., public procurement); encouraging their use to
diversify farming systems and create more biodiverse landscapes
and healthier ecosystems; and upgrading their value chains

and markets to ensure their sustainable use (FAO, 2019;
United Nations, 2019a,b).

Similarly, the Second Global Plan of Action for Plant Genetic
Resources for Food and Agriculture and the International Treaty
on Plant Genetic Resources for Food and Agriculture lay out a
series of agreed priority plans and actions that can protect the
rich portfolio of diverse genetic resources, especially promoting
the conservation and sustainable use of neglected and underused
species (FAO, 2012). The Second Global Plan of Action aims to
promote cost-efficient and effective global efforts to conserve and
sustainably use orphan and neglected crops, link conservation
with use for a greater use of plant germplasm, reinforce crop
improvement and seed systems to foster economic development,
create capacity, and strengthen national programs and widen
partnerships for orphan crop management. The Second Global
Plan of Action is a strategic framework that comprises 18 priority
activities organized into four areas: (1) in situ conservation and
management, (2) ex situ conservation, (3) sustainable use, and (4)
sustainable institutional and human capacity. The agreed priority
actions are instrumental in reorienting and prioritizing research
and development (R&D) agendas.

Several national and international research and policy
institutions have dedicated efforts to investigate and identify best
management practices to improve orphan crops. Among others,
these include CGIAR, the African Orphan Crops Consortium
(AOCC), Crop Diversity Trust, Svalbard Global Seed Vault,
Crops for the Future (CFF), and Tef Improvement Project. In
addition, several funding agencies provide financial grants and
aid for R&D of orphan crops, including the Bill & Melinda Gates
Foundation (BMGF), McKnight Foundation, and Biotechnology
and Biological Sciences Research Council (BBSRC) (Tadele,
2019). CGIAR plays a vital role among the international
institutions involved in germplasm collection and conservation,
but it focuses more on the major staple crops. Only a few of the
15 CGIAR centers are mandated to do R&D for orphan crops.
The AOCC is an international effort to improve the nutrition,
productivity, and climatic adaptability of some of Africa’s most
important food crops; its work involves sequencing, assembling,
and annotating the genomes of 100 traditional and underused
African food crops, which will enable higher nutritional content
for society over the decades to come (Jamnadass et al., 2020).

The Way Forward: Research
Engagement and Policy Priorities
To put neglected crops back on the national agenda and for
orphan crops to see a resurgence in local production systems and
global food demand, strategic actions are required at different
levels to mainstream orphan crops. These actions should target
combining intensification with sustainable solutions (Tadele,
2017). A major part of the recent literature exploring producers’
and consumers’ behavior and preferences advocates for a
three-pronged approach to establish enabling environments
for mainstreaming neglected crops for food and nutrition
in local food systems (Hunter et al., 2019; Borelli et al.,
2020; McMullin et al., 2021). This three-pronged approach
(Figure 1) revolves around three avenues of R&D activities: (1)
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FIGURE 1 | A three-pronged approach for mainstreaming underused and neglected crops. Source: Adopted from Borelli et al. (2020).

generating increased evidence about the nutritional value and
biocultural importance of neglected crops, (2) linking research
to policy and strategic plans to ensure that underused crop
species are considered in national food and nutrition security
strategies and actions, and (3) improving the knowledge base to
increase consumer awareness about the nutritional desirability
of underused crops to incorporate these crops into their food
systems, markets, and diets.

The three-pronged strategy to investigate orphan crop
mainstreaming solutions reveals innovative research pathways
for examining producer and consumer behavior and preferences.
Further research is essential to broaden our understanding of the
incentives and factors that influence diverse groups of farmers’
productive activities (Gassner et al., 2019; Borelli et al., 2020;
McMullin et al., 2021). It is necessary to take into account a
considerably broader range of additional aspects, including long-
term aspirations of the farming communities (Mausch et al.,
2018). In order for orphan crop foods to compete more effectively
with other food crops in more complex market-based food
systems, a deeper knowledge of consumers’ preferences and
behavior in relation to orphan food crops is required (Revoredo-
Giha et al., 2018). These must be considered in relation to the
consumers’ age, education, income, location, and media access.
Because of the importance of orphan crops in traditional food
systems, it is also necessary to analyze and understand consumers’
cultural backgrounds (McMullin et al., 2021).

Future strategies should highlight and promote the design and
execution of a variety of interventions aimed at enhancing and
improving value chains for neglected crops. The development
of quality assurance measures to indicate enhanced nutritional
value, demand creation through marketing campaigns and food

product development, supply chain development to provide
planting materials to farmers, and stimulating private sector
involvement to create “shared values” are some examples
(Waized et al., 2015). Orphan or indigenous crops are associated
with some desirable properties that can be useful in the elevation
of the crops to a higher rate of production (Tadele, 2019).
However, low yield remains a challenge for producers and
policymakers to take orphan crops to the next level. The
application of modern genetic and genomic tools to the breeding
of these crops can provide enormous opportunities for ensuring
world food security (Tadele, 2018). Technological developments
in terms of breeding and varietal development should be tailored
to the context of harsh and fragile environments where orphan
crops can strive. It is also vital to strengthen the seed system
for orphan crops to maintain local production systems. Public-
private partnerships in the multiplication and distribution of
better seed to marginal and isolated agricultural production
locations should be encouraged through breeding programs.

With the impending effects of climate change, abiotic stresses
such as drought, salinity, and heat, as well as climate change,
have a significant impact on crop yield and food security.
Future research should focus on creating resistance to or
tolerance of these environmental stresses. Several orphan crops
are nutrient-dense and their ability to adapt to harsh conditions
suggests that they can be deployed as part of efforts to
champion climate-change adaptation, improved agriculture, and
economic advancement for smallholder farmers residing in low-
production environments. However, some of the crops’ negative
characteristics (for example, low production) must be improved
(Tadele, 2019). Future policies must integrate intensification with
sustainable solutions (Tadele, 2017). Future agricultural policies
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targeting orphan crops should also encourage agro-ecological
practices by encouraging the use of orphan crops in operations
with the goal of decreasing external inputs and maximizing plant
hardiness in vulnerable, drought-prone areas where underused
crops can exploit residual soil moisture and scarce rainfall.

Building social capital can help farming communities and
grower associations strengthen their governance and technical
capacity, particularly for indigenous farmers with limited
access to information. Strengthening the capacity of farming
communities including women, youth, and indigenous people
is fundamental for boosting production efficiency, along
with improved post-production, technologies, business and
entrepreneurship skills, markets and market information, and
sustainable investments in physical infrastructure. This could be
pursued as part of a larger public-private partnership initiative
and investment goal in agricultural marketing of orphan crops.

Local and indigenous knowledge should be valued as a
vital instrument in future policies for agriculture and food
security and should be carefully considered and documented,
when possible, with the cooperation of indigenous and local
populations. Indigenous farmers who typically grow traditional
and neglected crops are losing valuable expertise about these
crops; thus, traditional knowledge linked with orphan crops is in
grave danger of eroding and disappearing. Traditional knowledge
on orphan crops is critical not only for the rural farmers who
produce them but also for scientific study on crop improvement
in general. Future policies should encourage investing in the
preservation and protection of traditional knowledge.

CONCLUSION

Orphan crops have undeniable health and nutritional benefits,
ability to cope with harsh and suboptimal growing conditions,

and broad ecosystem suitability. Thus, they are proven crops
with enormous potential to combat food and nutrition insecurity,
enrich and diversify diets and crop production systems, improve
farmers’ livelihood, as well as use and improve degraded soils
in marginal environments. Complementary mainstreaming of
these crops into production systems, genetic enhancement, and
continuous improvement of the crops for stress tolerance and
efficient use of resources through modern breeding approaches,
coupled with the use of appropriate agronomic practices, will
contribute immensely to increased global crop production.
Increased awareness of the importance of orphan crops among
stakeholders and favorable policies to provide the crops with
required attention, opportunities, and competitive advantage will
go a long way to addressing the global food deficit and the
challenges of malnutrition.
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