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Salinity stress is one of the major global problems that negatively affect crop growth
and productivity. Therefore, ecofriendly and sustainable strategies for mitigating salinity
stress in agricultural production and global food security are highly demandable.
Sugarcane press mud (PM) is an excellent source of the organic amendment, and
the role of PM in mitigating salinity stress is not well understood. Therefore, this study
was aimed to investigate how the PM mitigates salinity stress through the regulation
of rice growth, yield, physiological properties, and antioxidant enzyme activities in fine
rice grown under different salinity stress conditions. In this study, different levels of
salinity (6 and 12 dS m−1) with or without different levels of 3, 6, and 9% of SPM,
respectively were tested. Salinity stress significantly increased malondialdehyde (MDA,
38%), hydrogen peroxide (H2O2, 74.39%), Na+ (61.5%), electrolyte leakage (40.32%),
decreased chlorophyll content (32.64%), leaf water content (107.77%), total soluble
protein (TSP, 72.28%), and free amino acids (FAA, 75.27%). However, these negative
effects of salinity stress were reversed mainly in rice plants after PM application. PM
application (9%) remained the most effective and significantly increased growth, yield,
TSP, FAA, accumulation of soluble sugars, proline, K+, and activity of antioxidant
enzymes, namely, ascorbate peroxidase (APX), catalase (CAT), and peroxidase (POD).
Thus, these findings suggest a PM-mediated eco-friendly strategy for salinity alleviation
in agricultural soil could be useful for plant growth and productivity in saline soils.
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INTRODUCTION

Salinity stress is one of the serious limitations for plant growth,
productivity, and soil health (Machado and Serralheiro, 2017;
Kamran et al., 2020; Seleiman et al., 2022). It is expected
that salinity contamination will severely affect 50% of the total
cultivable land within 2050 (Shrivastava and Kumar, 2015).
Salinity negatively affects crop production and causes huge
yield and economic losses; therefore, proper strategies must be
adopted to reduce salinity stress on crops and protect the soils
from the devastating impacts of salinity stress (Mohanavelu
et al., 2021; Monsur et al., 2022). Salinity stress is a complex
process that negatively affects the plant’s physiological and
biochemical processes (Dustgeer et al., 2021; Sultan et al., 2021).
The effects of salt ranged from seed germination to flowering
and fruiting settings, which resultantly caused significant yield
losses (Mbarki et al., 2020; El Sabagh et al., 2021). Moreover,
salt stress also induces osmotic and ionic stress and induce
the production of reactive oxygen species (ROS), which cause
damages to significant molecules, namely, DNA, proteins, and
cellular membranes (Ahanger et al., 2017; Hassan et al., 2019,
2020, 2021a; Mbarki et al., 2020; Hossain et al., 2021; Sultan et al.,
2021; Batool et al., 2022). Salt stress also reduced the nutrient
uptake and enzymes’ activity, therefore significant growth and
yield losses (Kamran et al., 2020; Singhal et al., 2021). Moreover,
salinity stress also reduced the photosynthetic efficiency and
increased the accumulation of toxic ions (Na+), which cause
serious growth and yield losses (Ahanger et al., 2017; Mbarki
et al., 2020; Taha et al., 2020; Dustgeer et al., 2021; El Sabagh
et al., 2021; Sultan et al., 2021). The adverse effects of salt
stress on plants growth and development depend on different
factors, namely, planting species, growth stage, environmental
conditions, and salts concentration in soil solution (Aghighi
et al., 2018; Monsur et al., 2020). Therefore, it is essential to
find out sustainable strategies to reduce the deleterious impacts
of salt stress through genetic techniques, soil conditioners,
and biological products (Farid et al., 2020; Leal et al., 2020;
Naz et al., 2021).

For salt-affected reclamation, applying organic amendments
like farmyard manures, press mud (PM), and green manuring is
considered a simple and practical economic approach (Hassan
et al., 2021b). Press mud is a by-product of the sugarcane
industry produced in large quantities. The agricultural use of
PM has shown significant improvement in nutrient uptake
and soil health (Chattha et al., 2019). Sugarcane PM is
considered to positively affect the soil structure, soil organic
matter, nutrients uptake, and soil microbial activities (Nawaz
et al., 2017; Chattha et al., 2019). Therefore, PM could
serve as an important amendment to improve salt-affected
soils’ productivity in this context. PM application induced
salinity tolerance by enhancing the leaf water status, membrane
stability, photosynthetic efficiency, accumulation of osmolytes,
and K+ (Sheoran et al., 2021a). Press mud application improves
nutrient uptake and significantly increases growth and biomass
productivity under salinity stress (Imran et al., 2021). Moreover,
PM also mobilizes the CaCO3 to maintain the optimum Ca2+

availability, improve soil structure stability, and increase the

leaching of Na+ in salt-affected soils (Muhammad et al., 2019).
In addition, PM also serves as a potential nutrient source and soil
conditioner for reclamation of salt-affected soils (Kumar S. et al.,
2017).

Rice (Oryza sativa L.) is an imperious staple food crop around
the globe; however, salinity stress is a significant threat to rice
productivity. Rice plants alleviate the salinity-induced damages
by maintaining ionic balance, osmotic adjustments, scavenging
ROS, maintaining nutrient uptake and cell signaling, and
increasing hormonal accumulation (Liu et al., 2021). However,
limited studies are conducted to determine the impact of PM
on crops grown under salt stress conditions. Therefore, more
investigations are required to explore the mechanism behind PM-
induced salinity tolerance in field crops. To our best knowledge,
no study is available related to the effect of sugarcane PM
on photosynthetic pigments, physiological attributes, element
concentration, antioxidant defense, and growth and yield of rice
crops growing in salt-stressed conditions. Thus, we hypothesized
that the application of PM would improve salinity tolerance in
rice crops by favoring photosynthetic pigments, physiological
attributes, and antioxidant defense. Therefore, this study was
aimed to explore the impact of PM photosynthetic pigments,
physiological features, H2O2 and malondialdehyde (MDA)
production, soluble protein, free amino acid and elements
accumulation, antioxidant defense, and growth and yield of
rice crop.

MATERIALS AND METHODS

Experimental Details
This experiment was carried out at the Agronomy Farm in a
complete randomized design (CRD) with a factorial combination
having three replications. The investigation was composed of
several salinity treatments; control, 6 and 12 dS m−1, and diverse
levels of PM control, 3, 6, and 9%. For achieving the desired
rates of PM (3, 6, and 9%), we used PM at the rate of 300,
600, and 900 g/pot. The PM was thoroughly mixed in soil and
left for 7 days. The rice variety Kisan-basmati was used in this
study, which is sensitive against salinity stress. Rice plants were
grown at Agronomy Farm for 4 weeks to reach the transplanting
stage; after that, they were transplanted to experimental pots with
a volume of 8 kg and diameter of 32 cm. In each pot, 8 kg
of soil was filled and eight seedlings were transplanted in each
pot. The soil used in the study had a sandy loam texture with
pH (7.82), organic matter (0.82%), and available nitrogen (N),
phosphorus (P), and potassium (K): 0.04%, 6.60 and 156 ppm,
respectively. Ammonium phosphate (5.58 g) and sulfate of potash
(1.87 g) were added to each plot to fulfill nutrient requirements.
The fertilizers were applied for soil analysis, and these fertilizers
were readily available in the market; therefore, they were used
to meet nutrient needs. According to treatments, the imposition
of various salt stress levels was applied following the procedure
used previously by Khaliq et al. (2015). A soil sample from the
collected soil was taken, soil paste was made, and then left for
2 h to attain equilibrium. The soil extract was then collected
using filter paper. After that, the soil mixture was ovendried,
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and the percentage of soil saturation was calculated using the
following equation.

Saturation (%) =
Loss in soil weight on drying
Weight of soil after drying

× 100

The concentration of salts (6 and 12 dS m−1) to achieve
the desired treatment levels treatments was calculated using the
following equation (Khaliq et al., 2015).

Nacl required
(

g
kg

)
=

TSS× 58.5× saturation(%)

100× 1000

Here TSS refers to total soluble salt, which was determined as
(EC2 – EC1) × 10. EC1 refers to the initial EC of soil, whereas
EC2 refers to the desired EC as per treatments.

Growth Parameters
Three plants were uprooted carefully from each pot, and roots
and shoots were separated and washed to remove any debris.
After that, the length of three roots and shoots was measured, and
the average was taken. Later on, they were weighed to determine
the fresh weight and ovendried (70◦C) for 8 h to determine the
dry weights. Moreover, three plants in each pot were selected,
leaves were counted, and the average was worked out. The growth
traits were collected at the flag leaf stage of the plant. The pots
were well irrigated after 24 h. Plants were carefully uprooted from
the pots to avoid any damage to roots.

Determination of Photosynthetic
Pigments
Leaves were selected at the flag leaf stage to determine the
concentrations of chlorophyll and carotenoid by the methods
of Lichtenthaler (1987). The leaves rice (1 g) was taken and
homogenized in 85% of acetone solution, and the extract
was centrifuged for 15 min at 1,000 rpm. Absorbance was
recorded using a spectrophotometer, and the concentration
of photosynthetic pigments was determined using the below
equations.

chlorphylla
(

mg
g

FW
)

=
12.7 (OD663)− 2.69(OD645)× V ×W

1000
.

chlorphyll b
(

mg
g

FW
)

=
12.9 (OD645)− 4.68(OD663)× V ×W

1000

Total chlorphyll
(

mg
g

FW
)

=
2.02 (OD645)− 8.02(OD663)× V ×W

1000

In the above equations, V and W refer to the volume
of acetone and the weight of the plant sample. Moreover,

carotenoids were calculated using the following equation.

Carotenoids
(

mg
g

FW
)

= OD480+ (0.114× OD663)− (0.638× OD645)

Measurement of Relative Water Content
and Electrolyte Leakage
For the determination of RCW, leaf samples were collected at
the flag leaf stage and weighed for the determination of fresh
weight (FW). After that, leaf samples were dipped in water and
weighed to determine the turgid weight (TW). Later on, turgid
leaves were ovendried, and dry weight was taken. Finally, RWC
was determined by the following equation given by Mostofa and
Fujita (2013).

RWC (%) =
FW − DR
TW − DR

× 100

Fresh leaves (0.25 g) were added in 25 ml of distal water after
24 h EC1 was recorded using an EC meter. Then the test tubes
were heated in the water bath for 50 min at 90◦C, and EC2 was
recorded. The final value of electrolyte leakage was calculated by
the equation:

EL% = (EC1÷ EC2)× 100.

Determination of H2O2 and
Malondialdehyde Levels
Hydrogen peroxide concentration in rice samples was measured
at the flag leaf stage by Velikova et al. (2000). A total of 0.5 g
rice plant sample was grounded in 5 ml of TCA solution and
centrifuged. After that, samples were placed in test tubes, 1M
potassium iodide (KI) and 100 µl potassium phosphate buffers
were added and left at room temperature for 30 min, and
absorbance was noted at 390 nm to determine H2O2 contents.
MDA contents in rice plant samples were estimated by Rao and
Sresty’s (2000) procedures. For this, 0.5 g frozen sample of rice
plants was homogenized in 5 ml of TCA solution and centrifuged
at 12,000 rpm for 15 min. After that, the mixture was added with
5 ml of thiobarbituric acid (TBA), heated for 30 min, later on,
cooled quickly, and absorbance was noted at 600 nm.

Determination of Total Soluble Proteins
and Free Amino Acids
The concentration of TSP in the rice plant sample was measured
at the flag leaf stage using the methods described by Bradford
(1976). A total of 0.5 g of plant samples were grounded in
phosphate buffer (5 ml) and centrifuged at 15,000 rpm for 15 min.
After that, 1 ml plant extract was taken in test tubes containing
3 ml of Bradford reagent and set aside for 15 min at room
temperature. Later on, TSP concentration in collected samples
was recorded at 595 nm using a spectrophotometer. The total
free amino acids (FAA) in the rice sample at the flag leaf stage
were determined with Hamilto and Van-Slyke (1943). We took
1 ml of plant extract and placed it in test tubes containing
1 ml of ninhydrin and pyridine solution, and samples were
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placed in the water bath at 90◦C for 30 min. After that, volume
was brought to 25 ml, and FAA concentration was recorded
at 570 mM using a spectrophotometer. To determine soluble
sugars, plant supernatant was prepared, and 1–2 drops were
placed on the prism of a digital refractometer to measure soluble
sugar value. Bates et al. (1973) methods were used to determine
proline contents in rice samples. A total of 0.5 g of rice samples
were extracted with 3% sulfosalicylic acid solution (10 ml) and
centrifuged for 10 min at 10,000 rpm. Afterward, acid-ninhydrin
was added to the supernatant and placed at 90◦C in the water bath
for 30 min, and absorbance was recorded at 520 nm to determine
proline concentration.

Antioxidant Enzyme Activity
The activities of all the antioxidants were measured at the flag
leaf stage. To determine the ascorbate peroxide (APX), we took
plant extract and mixture contained 100 µl of enzyme extracts,
100 µl of ascorbate (7.5 mM), 100 µl of H2O2 (300 mM), and
2.7 ml of potassium buffer (25 mM); 2 mM CA having 7.0 pH
was added in the plant extract. Absorbance was noted at 290 nm
with a spectrophotometer to determine APX activity (Nakano
and Asada, 1981). After that, APX was determined at 290 nm
using the spectrophotometer. The activity of ascorbic acid (AsA)
was measured using the procedure described by Mukherjee and
Choudhuri (1983). A total of 0.5 g rice samples were standardized
with 10% tri-chloro-acetic acid solution (5 ml) and centrifuged
at 8,000 rpm for 10 min. Afterward, 2 ml of supernatant was
taken, and 0.5 ml DTC reagent was added and incubated for
3 h and then cooled. The procedure given by Aebi (1984) was
used to determine the catalase (CAT) contents in rice samples.
Test tubes containing 100 µl of H2O2 (5.9 mM) and 1,000 µl
of buffer along with the 100 µl of plant extract were taken and
centrifuged at 15,000 rpm for 30 min, and absorbance was noted
at 240 nm using a spectrophotometer. The peroxidase (POD)
content was measured by the procedure of Zhang (1982). We
took reactants having 100 µl of extract enzyme + 2,700 µl
of 50 mM potassium buffers + 100 µL guaiacol and 100 µl
of H2O2, which was added into plant sample. Afterward, rice
samples were homogenized with 5 ml of potassium phosphate
buffer (50 mM having 7.0 pH) under ice-cold conditions and
centrifuged for 15 min at 15,000 rpm. Absorbance was recorded
using a spectrophotometer at 470 nm.

Determination of Elemental
Concentration
Rice plant samples were taken and washed to remove any
contamination. After that, sample were ovendried and grinded to
make the powder. Finally, grinded samples were digested at a hot
plate after adding the mixture of HCL and HNO3, and the filtrate
was obtained and diluted by adding water. The concentration
of ions (Na+ and K+) in rice was measured using a flame
photometer (Jones and Case, 1990).

Determination of Yield Attributes
The tillers of all the plants in every pot were counted and
averaged to determine the tillers/pot. Similarly, panicles on each

plant in every pot were calculated, and the average was taken.
Five panicles from each pot were selected, panicle lengths were
measured, and grains/panicles were counted. The full pots were
harvested, and grains were separated from the panicle and
weighed to determine the grain yield/pot.

Statistical Analysis
The observed data were analyzed with computer-based software
STATISTIX 8.1 using analysis of variance, and the least significant
differences (LSD) test at 0.05 probability level was used to
determine the significant difference among means (Steel et al.,
1997). Moreover, Sigma-plot (8.0) software was used to prepare
the graphs.

RESULTS

Effect of Press-Mud Amendment on
Growth Attributes of Rice Plants Grown
Under Salinity Stress
The results indicated that salinity markedly reduced the growth-
related parameters of rice (Table 1). Shoot and root length
decreased significantly (0.05 P) by 37.5 and 24.1% at 6 and 12 dS
m−1, respectively (Table 1). Likewise, salt stress also diminished
biomass production. The maximum reduction in roots fresh
weight (16.7%), shoots fresh weight (35.6%), root dry mass
(22.2%), and shoot dry mass (37.4%) at 12 dS m−1 was compared
with control (Table 1). However, PM application protecting the
rice plants from harmful impacts of salinity stress significantly
improved the growth traits. Application of PM (9%) increased
shoot and root length by 44.7 and 27.9%, shoot and root fresh
biomass by 40.7 and 7%, and shoot and root dry biomass by 41.5
and 23.9%, respectively, under 12 dS m−1 salinity stress (Table 1).

Effect of Press-Mud Amendment on
Photosynthetic Pigments of Rice Plants
Grown Under Salinity Stress
Salt stress significantly (p = 0.05) reduced chlorophyll and
carotenoid contents in rice seedlings (Figure 1). The chlorophyll
a, chlorophyll b, total chlorophyll, and carotenoids showed
a reduction of 15.1, 39.4, 25, and 37.2% under a salinity
stress level of 12 dS m−1 (Figure 1). The PM application
significantly increased photosynthetic pigments under salinity
stress (Figure 1). An escalation in chlorophyll a (28%),
chlorophyll b (41.6%), total chlorophyll (33%), and carotenoid
(42.4%) was recorded with PM (9%) under salt stress as compared
with control (Figure 1).

Effect of Press-Mud Amendment on
Electrolyte Leakage and Relative Water
Contents of Rice Plants Grown Under
Salinity Stress
The PM application markedly reduced the EL and considerably
increased the RWC (Figure 2). Maximum EL (37.2%) and
minimum RCW (50.6%) were recorded at 12 dS m−1 salt
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TABLE 1 | Effect of different levels of press mud application on growth attributes of rice plants grown under different levels of salinity stress.

SL PM L SL (cm) RL (cm) SFW (g) RFW (g) SDW (g) RDW (g) LPP

0 dS m−1 Control 49.7e ± 0.9 11.8bc ± 0.7 55.0g ± 0.8 3.7cd ± 0.04 10.4ef ± 0.7 1.4e ± 0.02 23f ± 0.80

3% 66.0d ± 0.8 14.7a ± 0.9 71.0d ± 0.6 3.8c ± 0.03 13.9c ± 0.8 1.5d ± 0.01 28cd ± 0.8

6% 75.7b ± 10 14.9a ± 0.8 80b ± 1.30 3.9b ± 0.05 15b ± 1.30 1.7b ± 0.02 31b ± 0.70

9% 80.0a ± 1.3 15.6a ± 1.0 85a ± 1.40 3.9a ± 0.15 16.1a ± 0.8 1.8a ± 0.04 33a ± 0.80

3 dS m−1 Control 35.1j ± 0.8 9.7e ± 0.70 41.0j ± 0.8 3.4fg ± 0.01 6.7i ± 0.9 1.1h ± 0.03 18.5h ± 1.2

3% 41.2i ± 1.2 10.8cd ± 0.4 44.0i ± 0.7 3.5f ± 0.02 9.1g ± 0.3 1.3f ± 0.03 20.2g ± 1.2

6% 61.8e ± 0.9 12.8b ± 0.6 66.0e ± 0.8 3.6e ± 0.02 12.5d ± 0.5 1.5d ± 0.01 27d ± 0.90

9% 71.0c ± 0.8 14.8a ± 0.8 74.7c ± 1.0 3.7d ± 0.03 14c ± 0.40 1.6c ± 0.01 29c ± 0.60

6 dS m−1 Control 29.0k ± 0.6 9.2e ± 0.80 35.1k ± 0.6 3.0k ± 0.08 5.5j ± 1.0 1.1i ± 0.03 17.5h ± 0.8

3% 41.0i ± 0.9 10.1de ± 0.8 41.2j ± 1.1 3.2j ± 0.03 8.5h ± 0.9 1.2g ± 0.02 20g ± 0.40

6% 44.0h ± 0.7 11.7bc ± 0.7 49.7h ± 0.9 3.3i ± 0.03 9.5g ± 1.1 1.3f ± 0.04 21g ± 0.60

9% 55.0f ± 0.4 12.2b ± 0.9 61.5f ± 1.1 3.4h ± 0.02 11e ± 0.80 1.4e ± 0.02 25.5e ± 0.7

LSD at 0.05 P 0.746 0.533 0.744 0.042 0.739 0.020 0.659

SL, salinity levels; PML, press mud levels; SL, shoot length; RL, root length; SFW, shoot fresh weight; RFW, root fresh weight; SDW, shoot dry weight; RDW, root dry
weight; LPP, leaves per plant. The values given in the table are the mean of three replicates with ± S.E. and different letters with each meaning showing the significant
difference at p ≤ 0.05.

stress compared with control. Moreover, PM application (9%)
reduced electrolyte leakage by 42% and increased RWC by 34%
under salt stress (12 dS m−1) conditions as compared with
control (Figure 2).

Effect of Press-Mud Amendment on
Malondialdehyde and H2O2 Contents of
Rice Plants Grown Under Salinity Stress
Salt stress significantly increased the MDA accumulation, and
maximum MDA contents (6.55 µmol g−1 FW) were recorded in
12 dS m−1 salt stress without PM application while the lowest
MDA contents (4.2 µmol g−1 FW) was noted in control with
9% PM application (Figure 2). The application of salinity stress
and PM also significantly affected H2O2 contents (Figure 2). The
maximum concentration of H2O2 (15.82 µmol) was observed
under 12 dS m−1 salinity stress without PM application, and the
minimum concentration of H2O2 (7.73 µmol) was noticed under
control conditions. The application of PM significantly reduced
H2O2 accumulation; however, application of PM (9%) remained
the top-performing, and it reduced the H2O2 accumulation by 14
and 17% and at 6 and 12 dS m−1, respectively (Figure 2).

Effect of Press-Mud Amendment on
Total Soluble Protein, Free Amino Acids,
Soluble Sugars, and Proline Content of
Rice Plants Grown Under Salinity Stress
Salinity stress considerably reduced TSP and FAA concentrations
(Figure 3), and a reduction of 38 and 39% in TSP and FAA,
respectively, was recorded at 12 ds m−1 salt stress (Figure 3).
However, PM appreciably increased the accumulation of both
TSP and FAA. The application of PM (9%) increased the TSP
and FAA by 18 and 19%, respectively, at 12 dS m−1 salt
stress (Figure 3). The results indicated that soluble sugars (SS)
and proline contents were significantly increased under salt
stress (Figure 3). Further application of PM also increased the

accumulation of SS and proline (Figure 3). The PM application
(9%) increased SS by 27 and 28% at 6 and 12 dS m−1 salt stress,
respectively, while it increased the proline contents by 33 and 41%
at 6 and 12 dS m−1 salt stress, respectively, as compared with
control (Figure 3).

Effect of Press-Mud Amendment on the
Activity of Antioxidant Enzymes of Rice
Plants Grown Under Salinity Stress
Results revealed that salt stress and PM application considerably
increased the antioxidant enzyme activities (Figure 4). The PM
(9%) increased activities of CAT (12 and 15.8%) and APX (10
and 13%) under both levels of salt stress (Figure 4). Likewise,
POD and AsA activities also increased by 52 and 38% with PM
(9%) under a salt stress level of 12 dS m−1 compared with control
treatment (Figure 4).

Effect of Press-Mud Amendment on the
Elemental Concentration of Rice Plants
Grown Under Salinity Stress
Salt stress significantly increased the Na+ contents while it
reduced the K+ accumulation. Conversely, PM appreciably
reduced the Na+ while increasing K+ accumulation (Figure 5).
The application of a PM (9%) reduced the Na+ contents by 26
and 48% under moderate (6 dS m−1) and stronger (12 dS m−1)
salt stress levels (Figure 5). Moreover, the application of PM (9%)
increased the K+ contents by 18 and 20% at moderate (6 dS m−1)
and stronger (12 dS m−1) salt stress (Figure 5).

Effect of Press-Mud Amendment on
Yield and Yield Parameters of Rice
Plants Grown Under Salinity Stress
Salinity caused a significant decrease in yield attributes of rice
crops (Table 2). However, PM appreciably improved the yield
traits of rice (Table 2). The maximum tillers (8.3), panicle length
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FIGURE 1 | Effect of different levels of press mud application on chlorophyll (A), chlorophyll (B), total chlorophyll (C), and carotenoid (D) contents of rice crop grown
under different levels of salinity stress. The bars indicate the means of three replications with ± S.E. and a different letter indicating significant differences at p < 0.05.

(20.6 cm), and panicle/plant (12.5) were noted in control (no salt
stress) with the application of 9% PM, whereas the lowest tillers
(3.8), panicle length (8 cm), and panicle/plant (6.5) were recorded
at 12 dS m−1 without PM application (Table 2). Likewise,
PM application also markedly increased the grains/panicle,
thousand-grain weight (TGW), and grain yield/pot under normal
and salt stress conditions. The application of 9% PM remained at
the top position, and it significantly improved the grains/panicle
(195 and 198%), TGW (21.03 and 23.61%), and grain yield/pot
(105 and 86%) at 6 and 12 dS m−1 salt stress (Table 2).

DISCUSSION

Mitigation of salinity stress through eco-friendly approaches
is highly demanding in plant production for sustainable
agriculture and global food security. In this study, salinity
stress decreased rice plants’ growth, biomass production, and
photosynthetic efficiency and induced oxidative stress. However,
it was evident that the SPM significantly alleviated salinity stress
and improved rice growth and yield by improving physiological
and biochemical attributes. Salinity stress induced a substantial
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FIGURE 2 | Effect of different levels of press mud application on RWC (A), EL (B), MDA (C), and H2O2 (D) contents of rice crop grown under different levels of
salinity stress. The bars indicate the means of three replications with ± S.E. and a different letter indicating significant differences at p < 0.05.

increase in Na+ accumulation, decreasing photosynthetic
pigments and leaf water contents disturbed nutrient and water
uptake, thereby reducing growth and biomass production
(Mahmood et al., 2021; Nahar et al., 2022). However, the
PM amendment appreciably alleviated the salinity stress and
improved the growth and biomass production. PM application
enhances soil organic matter content, which improves the
nutrient and water uptake and maintains better synthesis of
photosynthetic pigments, resulting in a significant improvement
in growth and biomass production (Budiyanto, 2021; Imran
et al., 2021). The favorable conditions created by SPM also

improved the antioxidant activities and osmolytes activities,
which protected the cellular structure, proteins, and lipids
from the toxic effect of salinity, and enhanced plant growth
and biomass production (Imran et al., 2021; Sheoran et al.,
2021a). In this study, salinity stress significantly reduces the
photosynthetic pigments. Excessive Na+ ions participate in ROS
production by working as signaling molecules in transduction
pathways (Fatima et al., 2021). The excessive accumulation of
Na+ denatures the enzyme needed to synthesize chlorophyll and
therefore reduces the synthesis of chlorophyll (Alzahib et al.,
2021). However, PM alleviated this reduction, which indicates
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FIGURE 3 | Effect of different levels of press mud application on TSP (A), FAA (B), soluble sugars (C), and proline (D) contents of rice crop grown under different
levels of salinity stress. The bars indicate the means of three replications with ± S.E. and a different letter indicating significant differences at p < 0.05.

PM application reduced the excessive Na+ accumulation, which
protects photosynthetic apparatus from damaging effects of Na+
and reduces the activities of chlorophyll degrading enzymes,
improving chlorophyll synthesis under salinity stress (Sheoran
et al., 2021a). In rice plants, salinity stress significantly reduced
RWC (Figure 1). Plants exposed to salinity stress face the osmotic
challenge that reduces the water uptake. Besides this, ABA-
mediated stomatal closure affects the transpiration pull and leads
to low/no water uptake by plant roots and entails low RWC
in plants (Meguekam et al., 2021). In contrast, PM improved
RWC, which could be due attributed to an increase in cell turgor

pressure, water uptake, and reduced transpiration rate, which
resulted in a significant increase in RWC (Kumar and Chopra,
2016; Soni et al., 2016).

Salinity significantly increased the accumulation of MDA
and H2O2. The increased H2O2 accumulation interrupts normal
cell functioning by causing oxidative damage and substantially
reducing growth and productivity (Hassan et al., 2020; Sultan
et al., 2021). Membrane damage is the primary effect of salinity
stress, and increased MDA accumulation under salt stress that
can be attributed to salt-induced membrane damage (Fatima
et al., 2021). Salt stress significantly increased EL; however,

Frontiers in Plant Science | www.frontiersin.org 8 April 2022 | Volume 13 | Article 840900

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-840900 May 11, 2022 Time: 6:38 # 9

Khan et al. Press Mud Mitigates Salinity Stress in Rice

FIGURE 4 | Effect of different levels of press mud application on APX (A), CTA (B), POD (C), and AsA (D) contents of rice crop grown under different levels of salinity
stress. The bars indicate the means of three replications with ± S.E. and a different letter indicating significant differences at p < 0.05.

the PM amendment markedly reduced the EL. Salt stress
increases ROS production, which damages cell membranes and
consequently increases the EL (Sultan et al., 2021). Membrane
integrity plays an imperious role in salt tolerance, and reduction
in EL with PM application was linked with lower MDA and H2O2
accumulation owing to improved antioxidant activities (APX,
CAT, POD, and AsA) and accumulation of proline and soluble
sugars (Sheoran et al., 2021a).

Salinity stress significantly reduced TS and FAA while it
increased the accumulation of soluble sugars and proline. The
higher FAA accumulation creates a potential osmotic gradient
which facilitates inward water movement and prevents the plants

from toxic effects of salinity stress (Sultan et al., 2021). PM
increases nitrogen uptake, which increases protein synthesis
because nitrogen is an integral component of proteins. Another
possible reason for this increase in protein concentration
might be increased antioxidant activities due to PM, which
protected the proteins from damaging effects of salinity
stress and improved their accumulation under salinity stress.
Increased protein accumulation regulates metabolic processes
and antioxidant activities, which enhances salt tolerance (Fahad
and Bano, 2012; Farouk and Al-Huqail, 2020). The increase
in sugars accumulation improves salt tolerance (Fahad and
Bano, 2012), and in this study, the PM amendment significantly
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FIGURE 5 | Effect of different levels of press mud application on Na+ (A), and K+ (B) contents of rice crop grown under varying levels of salinity stress. The bars
indicate the means of three replications with ± S.E. and a different letter indicating significant differences at p < 0.05.

TABLE 2 | Effect of different levels of press mud application on yield and yield attributes of rice plants grown under different levels of salinity stress.

SL PML NT PL (cm) PPP GPP TGW (g) GY/pot (g)

0 dS m−1 Control 5.9e ± 0.6 13.5g ± 0.8 9.4cd ± 1.2 12.0g ± 0.8 18.82de ± 0.59 26.6g ± 0.9

3% 7.1bc ± 0.8 17.1c ± 0.6 10.5bc ± 0.5 16.5d ± 0.5 19.60cd ± 0.46 34.3d ± 0.8

6% 8.0a ± 0.8 19.7ab ± 0.4 11.5ab ± 1.2 19.5b ± 0.5 21.30b ± 0.78 39.5b ± 0.6

9% 8.3a ± 0.6 20.6a ± 1.1 12.5a ± 1.1 21.0a ± 0.7 23.33a ± 0.85 42.5a ± 0.9

3 dS m−1 Control 4.2i ± 0.7 8.9j ± 0.01 7.3ef ± 1.1 6.1k ± 0.9 16.83g ± 0.58 18.0j ± 0.6

3% 5.0fg ± 0.8 11.1i ± 0.2 8.6de ± 1.2 9.0i ± 0.8 18.00ef ± 0.46 22.5i ± 2.4

6% 6.6c ± 0.4 16.0cd ± 0.7 10.6bc ± 0.4 15.1e ± 0.6 19.80cd ± 0.53 32.4e ± 1.7

9% 7.6b ± 0.4 18.2c ± 0.8 11.5ab ± 0.9 18bc ± 0.9 20.37bc ± 0.96 37.4c ± 1.6

6 dS m−1 Control 3.8j ± 0.1 8.0k ± 0.8 6.5f ± 1.0 4.5l ± 0.5 15.67g ± 0.74 15.9k ± 0.7

3% 4.6h ± 0.9 9.8ij ± 0.5 7.5ef ± 0.8 7.4j ± 0.6 17.23fg ± 0.46 19.3j ± 0.3

6% 5.4f ± 0.5 12.2gh ± 0.6 8.4de ± 0.6 10.5h ± 0.3 19.43cd ± 0.21 24.4h ± 1.1

9% 6.3cd ± 0.6 14.9f ± 0.4 9.5cd ± 0.8 13.4f ± 0.7 19.37cd ± 1.00 29.5f ± 1.5

LSD at 0.05 P 0.490 1.014 0.707 0.351 1.14 0.834

SL, salinity levels; PML, press mud levels; NT, number of tillers; PL, panicle length; PPP, panicle per plant; GPP, grains per panicle; TGW, thousand-grain weight; GY, grain
yield. The values given in the table are the mean of three replications with ± S.E. and different letters with each meaning showing the significant difference at p ≤ 0.05.

increased the accumulation of soluble sugars in rice plants.
Proline accumulates in plants in response to salinity stress
which confers salt tolerance (Sultan et al., 2021). Proline
accumulation was significantly increased under salt stress,
and further SPM also increased the proline accumulation.
Press mud application increases the activity of the proline
synthesis enzyme (pyrroline-5-carboxylate reductase), which
increases proline synthesis and accumulation and improves
salt tolerance (Kumar A. et al., 2017; Makarana et al., 2019;
Sheoran et al., 2021a).

The activities of antioxidant enzymes were increased
under salinity stress, which was further increased by PM
application. The increase in activities of antioxidants
substantially scavenges the ROS and protects the plants

from the damaging effects of salt-induced oxidative stress
(Parveen et al., 2019; Mahmood et al., 2021). However, the
mechanism behind PM-induced increase in antioxidant
activities is still unexplored. Therefore, further studies
must be conducted to explore the mechanism behind the
increased antioxidant activity with PM supplementation.
An inadequate K+ supply under salt stress reduces
the photosynthetic rate and causes oxidative damage,
which are primary reasons for a reduction in growth
and yield (Hasanuzzaman et al., 2018; Dustgeer et al.,
2021). Na+, is a toxic ion, interferes with K+ uptake,
which disturbs the stomatal conductance, water uptake
and induces necrosis and water loss, therefore, causing
significant loss in growth and yield (Larbi et al., 2020).
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Additionally, at the early stages of salinity stress, higher
Na+ concentration also disturb the Ca2+ level and subsequently
impair the Ca2+ availability to young leaves (Talaat and Shawky,
2022). A particular amount of Ca2+ is needed to maintain
membrane integrity leaves (Talaat and Shawky, 2022); therefore,
a reduction in rice growth in the current study can be linked with
a decrease in membrane permeability due to poor Ca2+ uptake.
However, PM appreciably reduced the Na+ accumulation in rice
plants by increasing the K+ accumulation. Press mud application
ensures the desirable Ca2+ availability in soil by mobilizing
CaCO3, improving soil structural stability, and increasing
leaching of Na+ (Prapagar et al., 2012), thereby reducing the
salinity-induced oxidative damages (Sheoran et al., 2021b).
Additionally, PM being an excellent nutrient source ensures
a better supply of K+ in salt-affected soils, and Na+ uptake
minimizes the salt-induced toxic effects (Kumar S. et al., 2017).

Salinity stress significantly reduced the yield and yield
contributing traits of rice crops. Increased Na+ accretion in
rice leaves due to salt stress-induced early leaf senescence,
reduced the panicle formation and assimilated production,
reducing the growth and yield traits (Mannan et al., 2013).
Salt stress also reduces photosynthetic pigments and disrupts
osmolytes accumulation, plant water relationships, membrane
integrity, and K+ uptake and therefore causes a reduction in
yield and yield traits (Al-Ashkar et al., 2019; Otie et al., 2021).
Press mud alleviated the adverse impacts of salinity stress and
improved rice yield and yield traits. Improved soil properties,
nutrient uptake, photosynthetic pigments, antioxidant activities,
osmolytes accumulation, K+ uptake, and reduced MDA and
H2O2 following PM application substantially improved the yield
and yield traits.

CONCLUSION

Rice development and yield were substantially hampered by
salinity stress due to a considerable rise in MDA, H2O2, Na+, and
electrolyte leakage. Surprisingly, salinity-induced negative effects
were restored mainly due to the application of sugarcane press
mud. The application of press mud (9%) significantly improved
rice growth and yield due to improved photosynthetic pigment,
relative water contents, osmoregulating compounds, and K+

accumulation. It reduced MDA, H2O2, Na+, and electrolyte
leakage through triggered antioxidant activities. Therefore, the
use of press acerbated deleterious impacts of salinity stress
provides strong evidence for the role of press mud in improving
the salinity tolerance in rice plants. However, more genomics,
transcriptomic, proteomics, and metabolomics studies are direly
needed to underpin the mechanism associated with press mud-
induced salinity tolerance in rice plants.
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