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Salicylic acid (SA) and N-hydroxypipecolic acid (NHP) are two central plant immune signals 
involved in both resistance at local sites of pathogen infection (basal resistance) and at 
distal uninfected sites after primary infection (systemic acquired resistance). Major 
discoveries and advances have led to deeper understanding of their biosynthesis and 
signaling during plant defense responses. In addition to their well-defined roles in immunity, 
recent research is emerging on their direct mechanistic impacts on plant growth and 
development. In this review, we will first provide an overview of how SA and NHP regulate 
local and systemic immune responses in plants. We will emphasize how these two signals 
are mutually potentiated and are convergent on multiple aspects—from biosynthesis to 
homeostasis, and from signaling to gene expression and phenotypic responses. We will 
then highlight how SA and NHP are emerging to be crucial regulators of the growth-
defense balance, showcasing recent multi-faceted studies on their metabolism, receptor 
signaling and direct growth/development-related host targets. Overall, this article reflects 
current advances and provides future outlooks on SA/NHP biology and their functional 
significance as central signals for plant immunity and growth. Because global climate 
change will increasingly influence plant health and resilience, it is paramount to fundamentally 
understand how these two tightly linked plant signals are at the nexus of the growth-
defense balance.

Keywords: salicylic acid, N-hydroxypipecolic acid, pipecolic acid, plant immunity, plant growth, plant development, 
plant hormone, growth-defense tradeoff

INTRODUCTION

Plants rely on their two-tiered and interlinked innate immune system to initiate local responses 
against pathogenic attack (Jones and Dangl, 2006; Kim and Castroverde, 2020; Zhou and 
Zhang, 2020; Yuan et  al., 2021). First, pattern-triggered immunity (PTI) is initiated after 
activation of cell surface pattern recognition receptors (PRRs) that typically recognize conserved 
pathogen-associated molecular patterns (PAMPs; Macho and Zipfel, 2014; Li et al., 2016; DeFalco 
and Zipfel, 2021). Second, a more robust effector-triggered immunity (ETI) is activated when 
pathogen effectors are recognized by intracellular nucleotide-binding leucine-rich repeat receptors 
(NLRs), often resulting in  localized cell death (Zebell and Dong, 2015; Saur et  al., 2021). 
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Sustained immune activation at the local infection site primes 
unaffected systemic tissues against future biotic stress via 
systemic acquired resistance (SAR; Vlot et  al., 2021; Zeier, 
2021). Several key SAR inducers have been identified, including 
salicylic acid (SA), methyl SA, azelaic acid (AzA), glycerol-3-
phosphate (G3P), dehydroabietinal (DA), nitric oxide (NO), 
reactive oxygen species (ROS), pipecolic acid (Pip), and 
N-hydroxypipecolic acid (NHP; Wendehenne et  al., 2014;  
Singh et  al., 2017; Hartmann et  al., 2018).

A central regulator of local and systemic immunity is the 
plant hormone SA (Zhang and Li, 2019). Because it serves 
various roles, SA levels and metabolism are altered during 
immune responses to suit the plant’s needs (Dempsey et  al., 
2011). SA is produced via two independent pathways: 
isochorismate synthase (ICS) and phenylalanine ammonia lyase 
(PAL) pathways (Dempsey et  al., 2011; Hartmann and Zeier, 
2019; Zhang and Li, 2019; Huang et al., 2020a). In Arabidopsis, 
most of the pathogen-induced SA is produced through the 
ICS pathway involving pathogen-induced genes 
ISOCHORISMATE SYNTHASE 1 (ICS1), ENHANCED DISEASE 
SUSCEPTIBILITY 5 (EDS5), and AVRPPHB SUSCEPTIBLE 3 
(PBS3; Chen et  al., 2009; Huang et  al., 2020a). Of the two 
Arabidopsis ICS paralogs, ICS1 plays a major role in SA synthesis 
following infection (Nawrath and Metraux, 1999; Wildermuth 
et  al., 2001; Garcion et  al., 2008). In plastids, ICS1 converts 
chorismate to isochorismate, which is transported by EDS5 to 
the cytosol (Garcion et al., 2008). PBS3 and EPS1 then catalyze 
the final conversions to SA (Rekhter et  al., 2019; Torrens-
Spence et al., 2019). Although low SA levels can be transported 
to systemic tissues during SAR, its long-distance mobility alone 
is not responsible for SAR establishment (Vernooij et al., 1994; 
Lim et al., 2020). It is proposed that SA contributes to systemic 
propagation of defenses alongside other signaling molecules 
(Lim et  al., 2020; Vlot et  al., 2021).

Another metabolite involved in plant immunity is NHP, a 
hydroxylated derivative of the non-protein amino acid Pip that 
can induce SA accumulation (Návarová et  al., 2012; Hartmann 
et al., 2018; Wang et al., 2018). The NHP biosynthetic pathway 
is inducible by pathogens and leads to SAR (Hartmann et  al., 
2018). NHP can induce defense gene expression, amplify the 
resistance response, synergistically function with SA, and promote 
the hypersensitive response (Hartmann et  al., 2018). Recent 
exciting studies have provided detailed insights into NHP 
biosynthesis and mobilization. Three pathogen-inducible genes 
are involved in NHP biosynthesis: AGD2-LIKE DEFENSE 
RESPONSE PROTEIN 1 (ALD1), SAR DEFICIENT 4 (SARD4), 
and FLAVIN-DEPENDENT MONOOXYGENASE 1 (FMO1; 
Hartmann and Zeier, 2018). ALD1 is an L-Lys-α-aminotransferase 
that deaminates L-Lys, spontaneously leading to dehydropipecolic 
acid intermediates (Hartmann and Zeier, 2018). These are 
reduced by SARD4 to Pip, which is then converted by FMO1 
to NHP (Hartmann and Zeier, 2018). The local and systemic 
accumulation of Pip and NHP after pathogen attack are necessary 
for SAR (Hartmann and Zeier, 2018).

Deployment of SA, NHP, and other defense responses must 
be  balanced with the plants’ ability to grow and/or develop in 
order to optimize overall fitness (Huot et  al., 2014).  

This “growth-defense equilibrium” paradigm has been postulated 
due to limited resources that must be balanced leading to reciprocal 
tradeoffs (Coley et al., 1985). Alternatively, this is due to interlinked 
and conditional coordination between growth and immune 
responses depending on the environment (Kliebenstein, 2016). 
In terms of SA and NHP, over-accumulating mutants exhibit 
decreased growth (Abreu and Munné-Bosch, 2009; Pastorczyk-
Szlenkier and Bednarek, 2021), reflecting that SA/NHP mediate 
the delicate equilibrium between plant growth and immunity.

CONVERGENCE OF SA AND NHP 
BIOSYNTHESIS AND SIGNALING

To understand the relationship between immunity and growth 
via the SA and NHP pathways, it is important to highlight 
the tight mechanistic linkage between these two central immune-
activating metabolites (Figure  1; for detailed review, see Zeier, 
2021). SA and NHP biosynthesis and downstream signaling 
are closely intertwined, relying on overlapping regulatory proteins 
and signaling components (Sun et  al., 2015; Hartmann and 
Zeier, 2019; Ding and Ding, 2020). The SA pathway genes 
ICS1, EDS5, and PBS3 and the NHP biosynthetic genes ALD1, 
SARD4, and FMO1 are regulated via two partially redundant 
master transcription factors SAR DEFICIENT 1 (SARD1) and 
CALMODULIN-BINDING PROTEIN 60-LIKE G (CBP60g; 
Wang et  al., 2011; Sun et  al., 2015; Huang et  al., 2020a). 
SARD1 and CBP60g activation by pathogen infection and/or 
immune elicitation leads to increased SA and NHP levels 
(Hartmann and Zeier, 2019; Huang et  al., 2020a).

Full induction of SARD1 and CBP60g gene expression requires 
TGACG SEQUENCE-SPECIFIC BINDING PROTEIN 1 and 
4 (TGA1 and TGA4) transcription factors, which modulate 
SA and NHP levels (Hartmann et  al., 2018; Sun et  al., 2018; 
Zhang and Li, 2019). TGA1 and TGA4 are paralogs of the 
TGA transcription factor family, which specifically bind variants 
of the palindromic sequence TGACGTCA in target gene 
promoters (Xiang et  al., 1997). In addition to TGA1/4, other 
TGAs include TGA2/3/5/6, which are essential for responses 
to SA and NHP (Kesarwani et  al., 2007; Nair et  al., 2021). 
Higher-order tga mutants have significantly reduced sensitivity 
to SA and NHP (Zhang et  al., 2003; Nair et  al., 2021), which 
could potentially explain their SAR-deficient phenotypes (Zhang 
et  al., 2003; Kesarwani et  al., 2007). The requirement of these 
TGAs for SA- and NHP-mediated transcriptional reprogramming 
is expected since TGAs recruit the master coactivator and SA 
receptor NONEXPRESSER OF PR GENES 1 (NPR1), which 
is required for SA- and NHP-responsive expression (Ding et al., 
2018; Nair et  al., 2021). In addition to TGAs, SA, and NHP 
biosynthesis and signaling can be modulated by CALMODULIN-
BINDING TRANSCRIPTION ACTIVATOR (CAMTA) 1, 2, 
and 3—central transcriptional repressors in plant immunity 
that directly target CBP60g and SARD1 promoters (Sun 
et  al., 2020).

In addition to transcription factors, other proteins also 
control SA/NHP accumulation. These include two lipase-like 
proteins ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) 
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and PHYTOALEXIN DEFICIENT 4 (PAD4; Hartmann and 
Zeier, 2019; Zeier, 2021), which mediate both ETI and PTI. 
This potentially suggests the major importance of the SA and 
NHP pathways after immune activation. Interestingly, EDS1 
and PAD4 are target genes of SARD1 and CBP60g (Sun et  al., 
2015), further reflecting the close mechanistic relationships of 
these immune regulators during SA/NHP production. Recent 
studies have identified another key component involved in local 
and systemic immunity—a Jumonji (JMJ) domain-containing 
H3K4 demethylase, JMJ14 (Li et  al., 2020). In local leaves, 
JMJ14 positively regulates immunity by upregulating ALD1/FMO1 
transcription and enhanced SA-responsiveness; in distal leaves, 
JMJ14 is vital for systemic NHP accumulation and SAR (Li 
et  al., 2020). The jmj14 mutants exhibited reduced local and 
systemic defenses. Remarkably, JMJ14 positively regulates 
immunity-induced H3K4me3 histone enrichment in SA- and 

NHP-associated defense genes (Li et  al., 2020). Altogether, 
these studies highlight the common and overlapping molecular 
players that impinge on the SA and NHP pathways.

MUTUAL POTENTIATION OF SA AND 
NHP DURING PLANT IMMUNITY

Because of common overlapping SA and NHP regulators, it 
is not surprising that SA/NHP cooperatively and synergistically 
influence each other to induce SAR (Figure  1; for detailed 
review, see Zeier, 2021). This mutual amplification is best 
exemplified by their effect on each other’s biosynthetic genes. 
NHP biosynthetic enzymes ALD1 and FMO1 are required for 
systemic SA accumulation (Mishina and Zeier, 2006; Cecchini 
et  al., 2015). Indeed, NHP treatment directly induces and also 

FIGURE 1 | Regulatory convergence and mutual potentiation of salicylic acid (SA) and N-hydroxypipecolic acid (NHP) biosynthesis and signaling. Upstream 
immunity-associated signals [e.g., reactive oxygen species (ROS), Ca2+] lead to activation/repression of TGACG SEQUENCE-SPECIFIC BINDING PROTEIN 1 
(TGA1)/4 transcriptional activators and CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR (CAMTA) transcriptional repressors. Along with the antagonistic SA 
receptors NONEXPRESSER OF PR GENES 1 (NPR1; co-activator) and NPR3/4 (co-repressors), TGA1/4 and CAMTA1/2/3 control expression of CALMODULIN-
BINDING PROTEIN 60-LIKE G (CBP60g) and SAR DEFICIENT 1 (SARD1) that encode functionally redundant master transcription factors of plant immunity. 
SARD1 and CBP60g directly bind the promoters of SA biosynthetic (ICS1, EDS5, and PBS3) and NHP biosynthetic genes (ALD1, SARD4, and FMO1). Central 
immune regulators ENHANCED DISEASE SUSCEPTIBILITY 1 (EDS1) and PHYTOALEXIN DEFICIENT 4 (PAD4; which mediate both pattern-triggered immunity 
and effector-triggered immunity) are also required for SA and NHP accumulation. Downstream of their biosynthesis, SA directly activates while NHP indirectly 
activates the SA receptor NPR1. NPR1 then promotes TGA-directed transcription of key defense genes for local/basal and systemic immune responses. Created 
with BioRender.com.
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primes SA biosynthetic gene expression (ICS1, EDS5, and PBS3) 
and SA production, as elegantly demonstrated by Yildiz et  al. 
(2021). Downstream of SA biosynthesis, NHP also primes 
SA-induced defense gene expression (Bernsdorff et  al., 2016; 
Yildiz et  al., 2021).

On the other hand, SA can enhance NHP-activated immunity 
and gene expression (Hartmann et al., 2018; Yildiz et al., 2021). 
In particular, both ALD1 and FMO1 gene expression can 
be  directly upregulated by SA (Cecchini et  al., 2015), although 
they also exhibit SA-independent expression (Bartsch et  al., 
2006; Bernsdorff et  al., 2016). SA induction-deficient sid2 
mutants are SAR-deficient, but not to the same extent as 
NHP-deficient ald1 and fmo1 mutants (Hartmann et  al., 2018; 
Yildiz et  al., 2021). Potentially, this could be  due to basal SA 
levels present in sid2 mutants (Nair et  al., 2021), but further 
genetic and molecular dissection is necessitated.

This mutual potentiation can be  explained since SA- and 
NHP-mediated signaling both depend on the coactivator NPR1 
(Návarová et  al., 2012; Yildiz et  al., 2021) and its paralogous 
corepressors NPR3 and NPR4, all of which can bind SA and 
regulate SAR (Fu et  al., 2012; Wu et  al., 2012; Fu and Dong, 
2013; Ding et  al., 2018; Liu et  al., 2020). Both SA-induction 
of NHP biosynthetic genes and NHP-induction of SA-associated 
genes depend on the NPR1 regulatory module (Ding et  al., 
2018; Nair et al., 2021; Zeier, 2021). Overall, these demonstrate 
that SAR is dependent on mutual amplification of SA and 
NHP (Bernsdorff et  al., 2016; Huang et  al., 2020a; Nair et  al., 
2021; Yildiz et al., 2021), illustrating the cooperative interactions 
between these two central immune-activating metabolites.

MECHANISTIC IMPACT OF SA ON 
PLANT GROWTH AND DEVELOPMENT

Although SA is typically known as a defense hormone, it also 
affects plant growth and development (Figure  2) independently 
and/or via crosstalk with other hormones and signaling molecules 
(van Butselaar and Van den Ackerveken, 2020; Castroverde and 
Dina, 2021; Pokotylo et al., 2021; Saleem et al., 2021). SA-depleted 
Arabidopsis NahG transgenic plants are larger, while mutants 
with constitutively high SA levels such as acd6–1 are dwarfed 
(Rivas-San Vicente and Plasencia, 2011). SA can also delay or 
inhibit seed germination in Arabidopsis, possibly from the resulting 
oxidative stress (Rajjou et  al., 2006). This interplay between SA 
and ROS positively affects cell division in the quiescent center 
(QC), directly linking SA to root phenotypes (Wang et al., 2021). 
In agreement, SA-accumulating mutants and/or exogenous SA 
treatment can increase cell division in the QC by promoting 
ROS generation (Wang et  al., 2021). Reproductive development 
is also modulated by SA. In Arabidopsis, SA inhibits pollen 
tube tip growth, whereas methylated SA promotes tip growth 
(Rong et  al., 2016). The enzymes that interconvert between SA 
and MeSA (MeSA methylesterase and SA methyltransferase) 
can be found at the pollen tube apical regions, implying localized 
pollen tip synthesis (Rong et al., 2016). There is also an antagonistic 
effect between SA and ethylene-mediated apical hook formation, 
which is essential for growth above soil after germination  

(Huang et  al., 2020b). Apical hooks are promoted by ethylene 
and involve transcription factors ETHYLENE INSENSITIVE 3 
(EIN3) and ETHYLENE INSENSITIVE 3-like 1 (EIL1; Huang 
et  al., 2020b). SA activates NPR1 and inhibits EIN3 binding 
to target gene promoters, such as HLS1 (Huang et  al., 2020b). 
Though varied, SA clearly has an impact on various growth 
and developmental processes, which are facilitated by the intricate 
crosstalk between SA and other signals (e.g., major 
growth hormones).

Auxin is important for growth and development (Lavy and 
Estelle, 2016); therefore, elucidating how SA impacts auxin 
biosynthesis/signaling is key to understanding the central role 
of SA in plant growth-defense balance. Since both SA and 
auxin biosynthetic pathways proceed from the precursor 
chorismate (product of the shikimate pathway), it is possible 
that one hormone shifts the shikimate pathway metabolic flux 
away from the other (Koo et  al., 2020). SA can affect root 
meristem patterning, suggesting changes in auxin synthesis and 
transport (Pasternak et  al., 2019). For example, exposure to 
low SA concentration (below 50 μM) promotes adventitious root 
formation in Arabidopsis, potentially by elevating root tip auxin 
levels to promote root meristem maturation (Pasternak et  al., 
2019). Because of this SA-auxin interplay, pathogens sometimes 
co-opt the auxin pathway to better infect plants (Pasternak 
et  al., 2019). In response to pathogens, plants can use SA to 
repress the auxin pathway. SA can interact with and inhibit 
CATALASE2 (CAT2) to increase H2O2 levels, thereby repressing 
biosynthesis of the auxin precursor tryptophan by sulfenylating 
a key enzyme (Yuan et  al., 2017). SA treatment also leads to 
increasing AUXIN RESISTANT/INDOLE-3-ACETIC ACID 
INDUCIBLE (Aux/IAA) repressor levels thereby repressing 
auxin-related gene transcription (Wang et al., 2007). In addition, 
SA can interfere with auxin transport by repressing clathrin-
mediated endocytosis (Du et  al., 2013). SA also antagonizes 
auxin by inhibiting protein phosphatase 2A resulting in auxin 
transporter PIN-FORMED 2 (PIN2) hyperphosphorylation, 
leading to attenuated root growth (Tan et  al., 2020). Strikingly, 
SA can enhance adventitious root formation in cucumbers by 
competitively inhibiting the enzyme Cucumis sativus GRETCHEN 
HAGEN 3.5 (CsGH3.5), thereby increasing free auxin levels 
(Dong et  al., 2020). Altogether, SA can influence aspects of 
plant growth and development by interfering with the 
auxin pathway.

Like auxins, gibberellins (GA) constitute another major class 
of hormones mediating growth and development (Emamverdian 
et  al., 2020). During germination of the halophyte Limonium 
bicolor under salt stress, SA upregulated various genes involved 
in GA biosynthesis (Liu et  al., 2019). Complementing this 
finding, exogenous GA increased expression of NPR1 and 
WRKY70, resulting in elevated SA (Alonso-Ramírez et al., 2009).

MECHANISTIC IMPACT OF NHP ON 
PLANT GROWTH AND DEVELOPMENT

The impact of SA on growth and development is well-documented 
(Carviel et  al., 2009; Rivas-San Vicente and Plasencia, 2011; 
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Carella et  al., 2014; van Butselaar and Van den Ackerveken, 
2020; Pokotylo et  al., 2021); however, the effect of NHP is only 
starting to be  explored (Figure  2). For example, altering free 
NHP levels by inactivating UGT76B1-mediated glycosylation to 
NHPG can affect plant growth by decreasing rosette size and 
biomass (Bauer et  al., 2021; Cai et  al., 2021; Mohnike et  al., 
2021). Inhibited plant development and enhanced SAR was 
observed in the ugt76b1 mutant, while overexpression led to 
opposite phenotypes (Bauer et al., 2021; Cai et al., 2021; Mohnike 
et  al., 2021). Since NHP activates SAR, UGT76B1 dictates NHP 
levels and thus the SAR response (Bauer et  al., 2021;  

Cai et  al., 2021; Holmes et  al., 2021; Mohnike et  al., 2021). 
Interestingly, UGT76B1 (along with glucosyltransferases UGT74F1/
UGT74F2) also conjugates and inactivates SA to modulate disease 
resistance (Huang et  al., 2020a; Bauer et  al., 2021), further 
emphasizing the regulatory and metabolic convergence of NHP 
and SA. Complementing these studies, recent genetic analyses 
demonstrated that autoimmunity and growth suppression in the 
camta1/2/3 triple mutant can be  reversed by mutations in the 
NHP biosynthetic genes ALD1 and FMO1 (Sun et  al., 2020).

There are several major knowledge gaps regarding how NHP 
affects growth and development, particularly on its mechanistic 

FIGURE 2 | Salicylic acid and NHP at the nexus of the plant growth-defense balance. Major regulators of growth and development have synergistic and/or 
antagonistic relationships with SA and potentially with NHP. These include key plant hormones (auxin, brassinosteroid, gibberellin, cytokinin, and strigolactone) and 
the master regulatory kinase Target of Rapamycin (TOR). SA and potentially NHP could independently or synergistically impact various aspects of plant growth and 
development. In particular, SA has been shown to influence germination and apical hook development, pollen tip growth during floral development, root growth and 
patterning, shoot biomass accumulation, primary metabolism, and photosynthesis. Ultimately, levels and homeostasis between free bioactive SA/NHP and inactive 
storage forms (SAG/NHPG) allow plants to dynamically balance resources between growth and defense. Higher SA/NHP potentiates immune responses at the 
expense of growth, while lower SA/NHP promotes growth processes and modulates immunity. Created with BioRender.com.
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impact on canonical growth hormones like auxin, GA, and 
brassinosteroid (BR). Although crosstalk with hormones is 
relatively uncharacterized, the NHP precursor Pip has been 
described as an osmoprotectant in both bacteria and plants 
(Gouesbet et  al., 1994; Moulin et  al., 2006; Pérez-García et  al., 
2019), and this could have profound consequences on overall 
plant physiology. Pip levels were found to increase under 
hyperosmotic conditions and decrease under hypo-osmotic 
conditions, although the authors did not measure growth 
phenotypes (Moulin et al., 2006). During osmotic stress, lysine-
ketoglutarate reductase and saccharopine dehydrogenase can 
regulate L-lysine (Pip/NHP precursor) catabolism (Moulin et al., 
2006). Under drought conditions, Pip accumulates in the roots/
rhizosphere of sorghum, likely mediating root growth suppression 
(Caddell et  al., 2020). Strawberry leaves with a stunted growth 
phenotype were also found to accumulate Pip after chilling 
or treatment with maleic hydrazide (Yatsu and Boynton, 1959).

Consistent with the negative impact of NHP on growth 
phenotypes, transcriptome analyses in Arabidopsis revealed that 
NHP-suppressed genes are associated with photosynthesis and 
primary metabolism, particularly those involved in fatty acid 
and amino acid biosynthesis (Yildiz et  al., 2021). Close 
examination of their transcriptome data reveal that certain 
NHP-downregulated genes are associated with the auxin  
(IAAs and AUXIN RESPONSE FACTORS/ARFs), BR 
(BRASSINOSTEROID INSENSITIVE 1/BRI1 and BRI1-EMS-
SUPPRESSOR 1/BES1), and GA pathways (DELLA, GA2OX). 
It is important to highlight that NHP-downregulation of these 
growth/development-related genes is less pronounced than in 
biologically induced SAR (Yildiz et  al., 2021).

In the future, it would be  interesting to conduct focused 
mechanistic studies on how NHP intercepts various growth 
hormone pathways and to determine whether common molecular 
components are targeted by both SA and NHP. Because of 
the known functional synergism between SA and NHP, it is 
intriguing to speculate that NHP influences these other hormones 
through similar mechanisms perturbed by SA. It is also unclear 
if the antagonistic effect of NHP on growth/development is 
dependent on or parallel with functional SA signaling. These 
potential directions will establish whether NHP is central to 
the growth-immunity balance just like SA.

SA AND NHP AT THE CROSSROADS 
OF GROWTH-DEFENSE HOMEOSTASIS

Salicylic acid and possibly NHP can impact growth and 
developmental processes, sometimes directly regulating other 
hormone pathways. SA, in particular, has been well-demonstrated 
for its central role in the growth-immunity balance (Huot 
et  al., 2014). It is not surprising that growth-related pathways 
(e.g., major growth hormones) can directly impinge on SA 
biosynthesis and signaling (Figure  2).

A well-demonstrated example is auxin signaling modulating 
the SA pathway (Wang et  al., 2007). Lowering auxin levels 
via GH3.5 is associated with higher SA levels, contributing 
to this canonical plant tradeoff (Hagen and Guilfoyle, 2002). 

AUXIN SIGNALING F BOX PROTEIN 1 (AFB1) overexpression 
enhances auxin signaling, resulting in lower SA levels and 
increased host susceptibility (Robert-Seilaniantz et  al., 2011). 
Auxin may also negatively impact the NHP pathway. NHP 
biosynthetic genes ALD1 and FMO1 are downregulated after 
treatment with the auxin indole-3-acetic acid as revealed by 
transcriptome datasets in the Gene Expression Atlas.1 However, 
further mechanistic investigations are still lacking.

Another class of hormones, BRs, have differential relationships 
with SA depending on the species (De Vleesschauwer et  al., 
2012). In rice, BR treatment represses SA signaling, while the 
opposite is observed in Arabidopsis (De Vleesschauwer et  al., 
2012). Like auxin, BR also antagonizes SA by blocking rice 
resistance. Specifically, the synthetic SA analog benzothiadiazole 
is less effective against the root oomycete pathogen Pythium 
graminicola after BR treatment (De Vleesschauwer et al., 2012). 
In contrast to BRs, exogenous GA promotes expression of 
ICS1 and NPR1, leading to increased SA levels in Arabidopsis 
(Alonso-Ramírez et al., 2009). The SA pathway is also influenced 
by another growth-related hormone, cytokinin (CK). The 
CK-associated type-B response regulator 2 (ARR2) directly 
interacts with TGA3 that regulates SA-responsive PR genes 
(O’Brien and Benková, 2013), thereby increasing Arabidopsis 
resistance against Hyaloperonospora arabidopsidis after CK 
treatment (Argueso et al., 2012). In rice, CK and SA synergistically 
activate PR gene expression against Magnaporthe oryzae infection 
(Jiang et  al., 2013), although CK did not induce expression 
of SA signaling regulators NPR1 and WRKY45 (Jiang et  al., 
2010). Finally, it has been demonstrated that strigolactones 
can induce SA accumulation (Omoarelojie et  al., 2019). How 
these hormones intercept NHP levels and signaling remain  
unclear.

Apart from major hormone pathways, the growth-defense 
balance can be  regulated by the Target of Rapamycin (TOR) 
kinase (De Vleesschauwer et  al., 2018). TOR is a broadly 
conserved eukaryotic master regulator of growth and development 
(Shi et  al., 2018). In rice, TOR aids growth and development 
at the expense of immunity by antagonizing SA and suppressing 
PTI (De Vleesschauwer et  al., 2018). Increased SA-dependent 
responses were observed after TOR disruption genetically or 
pharmacologically, while overexpressing TOR resulted in 
downregulated SA-associated genes (De Vleesschauwer et  al., 
2018). Currently, the impact of TOR on NHP biosynthesis/
signaling is unknown.

These studies altogether suggest a model that growth and 
developmental processes mechanistically impact the SA pathway. 
It would be intriguing to investigate whether NHP biosynthesis 
and signaling are similarly impacted by major growth hormones 
and TOR, and whether this occurs dependently or independently 
of SA. It would not be  surprising to discover direct functional 
linkage of growth/developmental processes on NHP biosynthesis 
and signaling, since growth suppression is associated with NHP 
over-accumulation (Pastorczyk-Szlenkier and Bednarek, 2021) 
and the NHP pathway exhibits close mechanistic connections 
to SA (Zeier, 2021).

1 https://www.ebi.ac.uk/gxa/home
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CONCLUSION

Increased SA and NHP levels through mutual potentiation lead 
to effective plant immunity against biotrophic and hemibiotrophic 
pathogens (Vlot et  al., 2021; Zeier, 2021). Optimal defenses 
can sometimes result in tradeoffs to growth and development 
(Huot et  al., 2014). Indeed, higher SA and NHP levels lead 
to dwarfed plants (Rivas-San Vicente and Plasencia, 2011; Cai 
et al., 2021). However, further studies on the broad conservation 
and/or specificity of SA/NHP-growth antagonism should 
be  performed in other plant taxa. Notably, the NHP pathway 
and its role in SAR has been demonstrated in various plant 
species (Schnake et  al., 2020). Although there is intensive 
crosstalk between SA and NHP, the impact of elevated NHP 
levels on plant physiology is largely unexplored. The additional 
dimensions of plant-microbiome and plant-environment 
interactions (Lebeis et  al., 2015; Nazar et  al., 2015; Pluhařová 
et al., 2019; Conesa et al., 2020) via the SA and NHP pathways 
remain low-hanging fruits, which can be  facilitated by recent 
global datasets on microbiota assembly and hormone interactomes 
(Altmann et  al., 2020; Trivedi et  al., 2020).

Ultimately, the dream goal would be  to optimize the plant’s 
growth-defense balance to maximize both yield and immune 
resilience (Mathan et  al., 2016; Kim et  al., 2021). Apart from 
tunable calibration of SA levels and signaling (van Butselaar 
and Van den Ackerveken, 2020), a potential avenue to bypass 
the growth-defense tradeoff may be  optimally manipulating 
the NHP levels (Cai et  al., 2021). Nevertheless, targeted 
engineering of this pathway still needs to be fully demonstrated 
and whether unforeseen collateral damage result from bypassing 

growth-defense tradeoffs must be  investigated. These open 
questions and future directions highlight the exciting promise 
of elucidating and dissecting the mechanisms underpinning 
the equilibrium between plant growth and immunity.
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