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Glycine max root cells developing into syncytia through the parasitic activities of the

pathogenic nematode Heterodera glycines underwent isolation by laser microdissection

(LM). Microarray analyses have identified the expression of a G. max DOESN’T MAKE

INFECTIONS3 (DMI3) homolog in syncytia undergoing parasitism but during a defense

response. DMI3 encodes part of the common symbiosis pathway (CSP) involving DMI1,

DMI2, and other CSP genes. The identified DMI gene expression, and symbiosis role,

suggests the possible existence of commonalities between symbiosis and defense.

G. max has 3 DMI1, 12 DMI2, and 2 DMI3 paralogs. LM-assisted gene expression

experiments of isolated syncytia under further examination here show G. max DMI1-3,

DMI2-7, and DMI3-2 expression occurring during the defense response in the H.

glycines-resistant genotypes G. max[Peking/PI548402] and G. max[PI88788] indicating a

broad and consistent level of expression of the genes. Transgenic overexpression (OE) of

G. max DMI1-3, DMI2-7, and DMI3-2 impairs H. glycines parasitism. RNA interference

(RNAi) of G. max DMI1-3, DMI2-7, and DMI3-2 increases H. glycines parasitism. The

combined opposite outcomes reveal a defense function for these genes. Prior functional

transgenic analyses of the 32-member G. max mitogen activated protein kinase (MAPK)

gene family has determined that 9 of them act in the defense response to H. glycines

parasitism, referred to as defense MAPKs. RNA-seq analyses of root RNA isolated

from the 9 G. max defense MAPKs undergoing OE or RNAi reveal they alter the

relative transcript abundances (RTAs) of specific DMI1, DMI2, and DMI3 paralogs. In
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contrast, transgenically-manipulatedDMI1-3,DMI2-7, andDMI3-2 expression influences

MAPK3-1 and MAPK3-2 RTAs under certain circumstances. The results show G. max

homologs of the CSP, and defense pathway are linked, apparently involving co-regulated

gene expression.

Keywords: plant parasitic nematode, pathogen recognition receptor (PRR), effector triggered immunity (ETI),

pathogen associated molecular pattern (PAMP), PAMP triggered immunity (PTI), Glycine max, common symbiosis

pathway (CSP), DOESN’T MAKE INFECTIONS (DMI)

INTRODUCTION

Plants are sessile organisms that respond to biotic and abiotic
conditions, accordingly, to the best of their capability. In
some instances, plants undergo symbiotic interactions which
facilitate the improvement of their existence and fitness due
to the availability of needed materials (Stanley et al., 1993).
Plants also undergo pathogenic interactions which impair their
ability, and detrimentally affect their fitness (Traw et al., 2007).
Therefore, the processes are contrasting in nature (Lewin, 1982).
Furthermore, plants can undergo these contrasting processes
simultaneously, leading to a disruption of normal cell biological
and physiological activities (Barker et al., 1971, 1972; Lehman
et al., 1971; Hussey and Barker, 1976; Huang and Barker, 1983;
Ko et al., 1984). In these instances, plants may have to choose
between symbiosis and defense reactions to varying degrees,
considering both processes involve the invasion of plant tissue
and interaction with specific cell types, leading to impaired
symbiosis at the expense of the successful pathogen. Plants even
make choices between different types of symbioses that are
sustained in their tissue (Bethlenfalvay et al., 1985, 1987; Hohnjec
et al., 2005). These results indicate there are contrasting ways
in which the underlying genetic programs function during these
different processes while also being shared as important actors.
Such considerations are important not only from a metabolite
assimilation standpoint, but even more broadly as it relates to
climate change. For example, the production of commercial
synthetic nitrogen-containing fertilizers consumes 1–2% of the
earth’s used energy each year while also being the leading source
of CO2 generation, contributing between 1 and 2% of worldwide
emissions (Boerner, 2019). Furthermore, to combat pathogens
globally, approximately 3 billion kilograms (kg) of pesticides
are applied annually, costing nearly $40 billion (Pimentel, 2005;
Sharma et al., 2019). Knowledge of genetic pathways functioning
in both processes, and with the capability of being fine-tuned to
functionmore effectively, is of urgent need (Ried et al., 2014; Saha
et al., 2014).

An important model used to understand symbioses is Glycine
max (soybean), undergoing such relationships with arbuscular
mycorrhizal (AM) fungi as well as rhizobia bacteria that lead
to the production of nodules (Bethlenfalvay et al., 1985, 1987;
van Kessel et al., 1985). The AM relationship, occurring within
>80% of land plants, and nodulation occurring in the Fabaceae,
represent the two most important symbiotic interactions that
happen between the plant root and microbes (Zhu et al., 2006).
AM associations are the more ancient form, first evolving around
460 million years ago (mya) in all land plant lineages and

are believed to have allowed their ancestors to colonize land
(Remy et al., 1994; Redecker et al., 2000; Heckman et al.,
2001; Brundrett, 2002). Nodule-forming relationships are the
less ancient form that evolved ∼60–70 mya in angiosperms in
the Fabaceae (legumes) (Doyle and Luckow, 2003). AM fungi
enhance nutrient availability, mainly inorganic phosphate, to
the plants whereas legume plants form an intricate symbiotic
relationship with specific soil bacteria (i.e., rhizobia) forming
specialized structures called nodules which fix atmospheric
nitrogen for their host (Zhu et al., 2006; Ferguson et al.,
2010). In AM and nodule-forming symbiosis the microbe
colonizes the plant tissue. The plant permits their entry and
establishment of the microorganism so it can gain from their
activities. Experiments show the AM and nodulation processes
that permit microorganism (symbiont) entry and maintenance
are linked genetically, revealing the molecular components are
equally ancient even though they provide different beneficial
metabolites (Catoira et al., 2000; Ané et al., 2002, 2004; Zhu
et al., 2006; Wang et al., 2010). These observations allow a
generalization of the molecular nature of symbiosis as it relates
to plant defense.

About half of the non-nodulating legume mutants isolated
so far are also defective in the AM symbiosis, implying that
the wild-type copies of those genes are required for both
processes (Catoira et al., 2000; Ané et al., 2002, 2004). The signal
transduction pathway mediated by those genes is denoted as
the common symbiosis pathway (CSP) (Kouchi et al., 2010).
The range of symbiosis-defective phenotypes of the CSP genes
leads to their grouping into two categories; one is positioned
upstream of divalent calcium (Ca2+) spiking (upstream genes)
and the other is positioned downstream of Ca2+ spiking
(downstream genes), which is a central physiological reaction
in the CSP (Ehrhardt et al., 1996; Miwa et al., 2006). Following
the perception of nodulation (nod) factors (NFs) through
Lysin motif receptor-like kinases (LysM-RLKs), biphasic Ca2+

signaling is induced in root hair cells (i.e., a rapid influx
of Ca2+ into the root hair cells) and then the occurrence
of a periodical oscillation of cytosolic Ca2+ concentrations
at the perinuclear region (i.e., Ca2+ spiking). Ca2+ spiking
is also induced in response to AM infection, critical for
AM symbiosis as well as nodule symbiosis (Kosuta et al.,
2008).

Study of the CSP inmodel legumes has led to the identification
of three genes designated as DOESN’T MAKE INFECTIONS1, 2,
and 3 (DMI1-3) (Catoira et al., 2000; Ané et al., 2002, 2004).DMI
genes control the NF signaling pathway leading to nodulation,
and are required for formation of mycorrhiza, indicating that the
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symbiotic signaling pathway activated by both the rhizobial and
fungal symbionts share common steps (Oláh et al., 2005).

DMI1 encodes a putative cation channel protein that is
localized to the nuclear periphery (Riely et al., 2007). The
Medicago truncatula (alfalfa) Mt-DMI1, and Pisum sativum
(pea) Ps-DMI1/SYM8 are putative orthologs of L. japonicus LJ-
POLLUX, and Lj-CASTOR (Zhu et al., 2006; Edwards et al.,
2007). The DMI1 (M. truncatula) and DMI1/SYM8 (P. sativum)
proteins have the capacity to compensate for the loss of both
CASTOR and POLLUX ion channels in L. japonicus in both
AM and nodule symbioses (Venkateshwaran et al., 2012). Lj-
CASTOR and Lj-POLLUX are non-selective ion channels with
a preference for K+ over anions (Charpentier et al., 2008).
Along with these physiological changes is the involvement of
Ca2+. There appears to be 2 different Ca2+-involved processes
functioning early during the symbiotic relationship. One process
occurs at the root hair tip and is the generation of a Ca2+ gradient
that is important for infection thread development while the
second process involves the generation of Ca2+ spikes of in the
nuclear region (Cardenas et al., 1999; Shaw and Long, 2003).
Interestingly, dmi1mutants interfere with the generation of Ca2+

spikes (Ehrhardt et al., 1996; Wais et al., 2000; Shaw and Long,
2003; Lévy et al., 2004).

DMI2 exists in other plant systems as the symbiosis (SYM)
nodulation receptor kinase (NORK), and Symbiosis receptor-
like kinase (SYMRK) genes. DMI2 orthologs in P. sativum, M.
truncatula, and L. japonicus, respectively, include PsSYM19/Ms-
NORK/Lj-SYMRK that encode receptor-like kinases with leucine-
rich-repeat (LRR) domains in the predicted extracellular region
and possibly transmit the NF signal to the nuclear localized ion
channel DMI1 (Ané et al., 2002; Endre et al., 2002; Stracke et al.,
2002; Limpens et al., 2005; Riely et al., 2007; Smit et al., 2007).
DMI2 is indispensable for AM- and plant-Frankia symbioses, and
mutations in DMI2 lead to the abortion of rhizobia infection at a
very early stage (Endre et al., 2002; Stracke et al., 2002; Gherbi
et al., 2008). The DMI2 protein contains an intracellular kinase
domain, a transmembrane domain, and the extracellular portion,
including a region with LRRs and a malectin-like domain (MLD)
(Pan et al., 2018). Overexpressing the full-length SYMRK/DMI2
or the intracellular kinase domain of SYMRK/DMI2 results in the
spontaneous nodule formation even in the absence of rhizobia
(Ried et al., 2014; Saha et al., 2014). Like dmi1, dmi2 mutants
interfere with the generation of Ca2+ spikes (Ehrhardt et al.,
1996; Wais et al., 2000; Shaw and Long, 2003; Lévy et al., 2004).

Mt-DMI3 and its ortholog Ps-SYM9 encode proteins with
strong similarity to Ca (2+)/calmodulin-dependent protein
kinase (CCaMK) (Lévy et al., 2004; Mitra et al., 2004). DMI3
plays a role downstream of the generation of Ca2+ spikes and
is hypothesized to translate the information encoded in the Ca2+

spikes into one or more phosphorylation events (Ehrhardt et al.,
1996; Wais et al., 2000; Lévy et al., 2004; Mitra et al., 2004).
DMI3 appears to decode and transmit the information DMI3
encoded in the Ca2+ spikes but does not generate them since
dmi3 mutants have no effect on Ca2+ spiking (Ehrhardt et al.,
1996; Wais et al., 2000; Lévy et al., 2004). This observation
contrasts with those made for dmi1 and dmi2 mutants which
perturb Ca2+ spiking (Ehrhardt et al., 1996; Cardenas et al.,

1999; Wais et al., 2000; Shaw and Long, 2003). Furthermore,
dmi3 mutants exhibit increased sensitivity to NFs indicating
signal transduction occurs at or downstream of DMI3 (Oldroyd
et al., 2001; Shaw and Long, 2003). The functional analyses
reveal the central regulatory position of CCaMK in connecting
the infection and organogenetic pathways in L. japonicus.
Additionally, components of the CSP upstream of Ca2+ spiking
are only required for activation of CCaMK (Horváth et al.,
2011).Mt-DMI1 andMt-DMI2, acting upstream of Ca2+ spiking,
suggests that Ca2+ is a component of the NF signal-transduction
pathway (Oldroyd and Downie, 2004). In contrast, Mt-DMI3
lying downstream of Ca2+ spiking suggests for its possible role
in perceiving the Ca2+ signal, decoding, and transducing the
signal into an output response (Oldroyd and Downie, 2004).
The absence of an Mt-DMI3 ortholog in Arabidopsis thaliana
may explain why it cannot establish symbiosis with AM fungi
(Zhu et al., 2006). In addition to promoting downstream gene
expression, DMI3 negatively regulates upstream signaling events,
as dmi3 mutants show an increased sensitivity for Ca2+ spiking
in response to NFs and altered transcription (Oldroyd et al., 2001;
Czaja et al., 2012).

AM and nodule symbioses are under competition by
pathogenic organisms that can detrimentally affect their
development (Winkler et al., 1994; Kennedy et al., 1999; Todd
et al., 2001). One of the best examples of these detrimental
relationships is with endoparasitic nematodes (EPNs) that in
some cases produce a nurse cell through their interactions with
the plant cell from which they feed. Like symbiosis, scientific
descriptions have identified EPN-governed nurse cell formation
occurring in all groups of land plants including bryophytes,
ferns, gymnosperms, angiosperms, and even multicellular algae
(Cobb, 1890, 1893, 1930; Barton, 1892; Dixon, 1908; Bird
and DiGennaro, 2012). These observations indicate that a
common and ancient circuitry is in place that regulates these
processes, but unlike symbiosis, EPNs would co-opt them to
facilitate parasitism. Several studies show nodulation and other
symbiotic processes to be affected by EPN infection, indicating
the organisms affect the same metabolic processes (Barker
et al., 1971, 1972; Lehman et al., 1971; Hussey and Barker,
1976; Huang and Barker, 1983; Ko et al., 1984; Pawlowski and
Hartman, 2020). This outcome is not surprising since AM and
nodulation involve inner cortical root cells occurring in the
vicinity of where syncytia (pericycle and surrounding cells) are
produced by syncytium-forming EPNs like Heterodera glycines
and vascular cells interacting with giant-cell producing EPNs
such asMeloidogyne sp.

Very little functional information exists on the genetic
program that underlies the compatibility of plants to EPNs even
though many plants are susceptible to their infection. In this
regard, G. max has become an important model for studying
plant-EPN activities because it can undergo compatible and
incompatible interactions with both giant cell and syncytium-
forming EPNs while still being able to undergo interactions with
symbiotic organisms (Rebois et al., 1970; Kirkpatrick and May,
1989; Opperman and Bird, 1998; Pueppke et al., 1998; Machado
and Krishnan, 2003; Niblack et al., 2006; Matsye et al., 2011,
2012; Cook et al., 2012; Liu et al., 2012). EPN-induced nurse
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cell formation, leading to the production of a syncytium or giant
cell-containing galls, involves reprogramming the metabolic
processes of those specific root cells to provide the EPN with
its nutritional needs (Balasubramanian and Rangaswami, 1962;
Chitwood and Lusby, 1991). The plant cell can interfere with
the deployment and engagement of these injected materials by
apparently transducing signals in some manner as an effective
defense response (Ross, 1958; Endo and Veech, 1970; Gipson
et al., 1971; Riggs et al., 1973; Endo, 1991). Such expressed defense
genes in G. max include alpha soluble NSF attachment protein
(α-SNAP), present in the resistance to heterodera glycines 1 (rhg1)
locus, and serine hydroxymethyltransferase (Rhg4) (Matsye et al.,
2011, 2012; Cook et al., 2012; Liu et al., 2012; Matthews et al.,
2013). Meanwhile, plants preserve their ability to engage in
symbiosis if they are genetically capable of doing so (Kennedy
et al., 1999).

Plant defense occurs through its perception of the pathogen.
One defense signaling branch involves plant pathogen
recognition receptors (PRRs) that recognize pathogen associated
molecular patterns (PAMPs) to effect PAMP triggered immunity
(PTI) (Jones and Dangl, 2006). Part of this response involves the
release of Ca2+ into the cytoplasm (Ranf et al., 2014). A second
branch, involving the perception of pathogen effectors, leads to
effector triggered immunity (ETI) which if strong enough results
in a hypersensitive response (HR) that leads to the sacrifice
(death) of the affected cells/tissues (Jones and Dangl, 2006). PTI
and ETI receptors signal through MAPKs leading to defense to
H. glycines (Gopalan et al., 1996; Desikan et al., 1998; Asai et al.,
2002; Day et al., 2006; Chinchilla et al., 2007; Aljaafri et al., 2017;
McNeece et al., 2017, 2019; Klink et al., 2021a). MAPK expression
leads to increased relative transcript abundances (RTAs) of genes
within the H. glycines-induced syncytia undergoing a defense
response that also have a demonstrated function in the defense
response (Matsye et al., 2012; Pant et al., 2014; Sharma et al.,
2016, 2020; Klink et al., 2017, 2021a; McNeece et al., 2017,
2019). Consequently, the identification of CSP gene expression
occurring in syncytia undergoing the defense response indicates
they may have a dual function in symbiosis and defense (Klink
et al., 2009, 2010a,b, 2011, 2021a,b). Importantly, symbiosis and
defense recruit calcium signaling with plant defense processes
recruiting Ca2+ signaling in the cytoplasm while symbiosis
employs nuclear Ca2+ signaling (Lévy et al., 2004; Mitra et al.,
2004; Kwaaitaal et al., 2011; Ranf et al., 2011, 2014; Maintz
et al., 2014; Keinath et al., 2015). Consequently, commonalities
between the two processes likely involve Ca2+ at some level.

In the analysis presented here,G.maxDMI1,DMI2, andDMI3
genes are shown to be expressed during its defense response
to H. glycines in parasitized root cells undergoing a defense
response. Several paralogs compose each of the G. max DMI1,
DMI2, and DMI3 gene families. Through transgenic analyses,
the DMI1-3, DMI2-7, and DMI3-2 paralogs expressed within the
H. glycines-parasitized syncytia undergoing the defense response
are shown to function in the defense process. RNA sequencing
(RNA-seq) analyses of RNA isolated from roots overexpressing
defense MAPKs also exhibit increased RTAs of some DMI
paralogs (McNeece et al., 2019). Furthermore, transgenic roots
overexpressing DMI1-3, DMI2-7, and DMI3-2 in some cases

exhibit increased MAPK3 RTAs. In contrast, transgenic roots
undergoing RNAi of DMI1-3, DMI2-7, and DMI3-2 in some
cases exhibit decreased MAPK3 RTAs. The combined results
indicate DMI gene expression correlates with their ability to
function in the defense response to H. glycines parasitism.
MAPKs which function in the defense response are shown to
regulate the expression of some of these DMI genes. Lastly,
DMI genes are shown to regulate the expression of MAPK3
which functions in the defense response possibly indicating the
DMI3-2 and MAPK3-1 genes function in a co-regulated signal
transduction loop.

MATERIALS AND METHODS

Selection of Candidate Genes
Laser microdissection (LM) of H. glycines-induced feeding
structures (syncytia) developing from parasitized root cells
(pericycle) undergoing the process of defense is part of the
experimental process used to identify theDMI genes under study
(Klink et al., 2005, 2010a, 2021a). Two different H. glycines-
resistant G. max genotypes are experimented on to identify
consistently expressed candidate defense genes (Klink et al.,
2011, 2021a; Matsye et al., 2011). To identify the DMI genes,
H. glycines-resistant G. max[Peking/PI548402] and G. max[PI88788]
are infected with H. glycines[NL1−Rhg/HG−type7/race3], generating
a defense response (Klink et al., 2021a). Roots are processed
for paraffin-embedding and histology, followed by LM (Klink
et al., 2005, 2007, 2009, 2010a,b, 2011, 2017, 2021a,b). RNA
is isolated from LM-collected control cells (pericycle) sampled
at 0-days post infection (dpi), prior to infection, and syncytia
undergoing the process of defense at 3- and 6 dpi. The 3-dpi
time point occurs prior to the onset of visible (histological)
signs of a defense response while by 6-dpi the defense response
is clearly different than a susceptible reaction (Ross, 1958;
Endo, 1965, 1991; Pant et al., 2014). RNA is isolated using the
PicoPure RNA Isolation kit (Molecular Devices R©) with a DNAse
treatment added just before the second column wash using
DNAfree R© (Ambion R©). RNA yield and quality are determined
using the RNA 6000 Pico Assay R© (Agilent Technologies R©)
using the Agilent 2100 Bioanalyzer R© according to manufacturer
protocol. The cDNA probe preparation and hybridization on
the Affymetrix R© Soybean GeneChip R© are performed according
to Affymetrix R© guidelines (Affymetrix R©), run in triplicate for
each of the G. max[Peking/PI548402] and G. max[PI88788] genotypes
(Klink et al., 2007, 2009, 2010a,b, 2011; Matsye et al., 2011).
Genes are considered expressed at a particular time point
in the detection call methodology (DCM) if probe signal is
measurable above threshold on all three arrays for that time
point for both G. max[Peking/PI548402] and G. max[PI88788] (6 total
arrays), p < 0.05 using the Bioconductor implementation of the
standard Affymetrix R© DCM (Klink et al., 2010a). The standard
Affymetrix R© microarray DCM analysis done in Bioconductor
consists of four steps including (1) saturated probe removal, (2)
discrimination score calculation, (3) Wilcoxon’s rank test p-value
calculation, and (4) detection call assignment. The quantitative
procedure determines if the gene’s expression is provably
different from zero (present [P]), has uncertain measurement
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(marginal [G]), or is not provably different from zero (absent
[A]). In the analysis presented here, a DMI gene meets the
measured [M] criteria when the probe signal is detectable above
threshold (p < 0.05) on all 6 arrays for a given time point.
In contrast, the expression of a DMI gene is considered not
measured (NM) if probe signal is not detected at a statistically
significant level (p ≥ 0.05) on any one of the 6 arrays using the
Mann–Whitney–Wilcoxon (MWW) Rank-Sum Test (Mann and
Whitney, 1947). The MWW Rank Sum Test is a non-parametric
test of the null hypothesis not requiring the assumption of
normal distributions (Mann and Whitney, 1947). Some genes
have no probe set fabricated onto the microarray. Consequently,
gene expression is not determined and is not applicable (n/a).
Gene accession numbers are provided from 2 different G. max
genome annotations. For the microarray analysis, the Affymetrix
annotations are mapped to the original G. max genome release
(Accession 1) Wm82.a1.v1.1 (2010). This annotation had to be
used at that time of publication of the work of Matsye et al.
(2011) because just that annotation had been available. These
older annotations have undergone a comparison here to update
the accessions to the more recent G. max Wm82.a2.v1 (2015)
genome assembly and annotation (Accession 2).

G. max DMI Gene Identification
All of the G. max DMI1, DMI2, and DMI3 protein family
sequences are identified at Phytozome (https://phytozome.jgi.
doe.gov) using the 881 amino acid (aa) M. truncatula DMI1
(AAS49490), the 925 aa DMI2 (Q8L4H4), and the 523 aa DMI3
(Q6RET7) protein sequences (Schmutz et al., 2010; Goodstein
et al., 2012). The processes involved in the G. max proteome
query include the use of the Basic Local Alignment Search Tool
program (BLAST) (Altschul et al., 1990). The parameters of the
BLAST query are the default settings, including Target type:
Proteome; Program: BLASTP-protein query to protein database;
Expect (E) threshold:−1; Comparison matrix: BLOSUM62;
Word (W) length: default = 3; number of alignments to show:
100 allowing for gaps and filter query, in order that they appear
on the BLAST program.

PCR Primer Design
The G. max DMI1, DMI2, and DMI3 cDNA sequences are
acquired from Phytozome (Schmutz et al., 2010; Goodstein et al.,
2012). DNA primer sequences are designed for OE of the full
length targeted DMI genes in the pRAP15-ccdB destination
vector and RNAi in the pRAP17-ccdB RNAi destination vector
(Supplementary Table 1) (Klink et al., 2009, 2021a; Matsye et al.,
2012). The nucleotide sequence, CACC, is added to the 5’ end
of the forward PCR primer for directional cloning into the
pENTRTM entry vector (Invitrogen). The control used for the
RT-qPCR analyses is the G. max ribosomal protein gene RPS21
(Glyma.15G147700), proven to be transcribed into mRNA and
translated into protein (Morita-Yamamuro et al., 2004; Klink
et al., 2005; Matsye et al., 2012).

DMI Gene Cloning
The RNeasy Plus Mini Kit and protocol (Qiagen R©) are used
to isolate mRNA. SuperScript First Strand Synthesis System

for RT-PCR (Invitrogen R©) with oligo d(T) as the primer are
used with their protocol to make cDNA template for PCR
cloning using the appropriate primers (Supplementary Table 1).
Using designed PCR primers, genes are PCR-amplified from
the cDNA template (Niraula et al., 2020). PCR amplification
of targeted DMI genes occurs with high fidelity Platinum R©

taq (Invitrogen R©) according to their protocol. PCR conditions
include DNA dissociation for 10min at 96◦C with subsequent
PCR cycling and temperature set for denaturation for 30 s at
96◦C, annealing for 60 s at 55◦C and extension for 30 s at 72◦C
for 35 cycles, terminating at 4◦C. PCR reactions, separated by
gel electrophoresis, are run on a 1% TAE agarose gel. DMI gene
products (amplicons) corresponding to correct size are excised
from the gel with a fresh, unused, sterile razor blade. The DMI
DNA amplicons are isolated from the agarose gel using the
X-TRACTA gel extractor (USA Scientific) and purified using
the QIAquick Gel Extraction Kit (Qiagen R©) according to their
protocol. The purified DMI DNA is used for Gateway R© cloning
(Karimi et al., 2002, 2007; Curtis and Grossniklaus, 2003). The
purified, PCR-generated,DMI amplicons are directionally cloned
into the pENTRTM entry vector following the pENTRTM/D-
TOPO R© protocol (Invitrogen). Transformation of the entry
vector containing theDMI amplicon into One Shot R© chemically
competent E. coli cells is immediately followed by selection
on LB-kanamycin (LB-kan) plates, 50µg/ml (Invitrogen).
Subsequently, the selected colony is transferred to LB-kan broth,
50µg/ml, followed by incubation for 12–14 h in a 37◦C shaker
at 225 rpm. Plasmid DNA is isolated from selected colonies
using the Wizard Plus SV Minipreps DNA Purification System
(Promega) according to the manufacturer’s instructions. The
DMI genes are engineered into the pRAP15-ccdB destination
vector for OE of the gene and the pRAP17-ccdB destination
vector for RNAi of the gene following the LR Clonase II kit
and protocol (Invitrogen). The LR clonase reaction replaces
the ccdB gene with the DMI amplicon. The pRAP15-ccdB and
pRAP17-ccdB vectors have the figwort mosaic virus (FMV) sub-
genomic transcript (Sgt) promoter to drive target (DMI) gene
expression (Klink et al., 2009, 2021a; Matsye et al., 2012). The
FMV-Sgt sequence is a 301-bp FMV-Sgt promoter fragment
(sequence −270 to +31 from the transcription start site [TSS])
(Bhattacharyya et al., 2002). The pRAP15 and pRAP17 plasmids
contain an enhanced green fluorescent protein (eGFP) gene
driven by the rolD promoter and which is terminated by t35S
translational terminator for effective visual reporting in plant
tissue (White et al., 1985; Elmayan and Tepfer, 1995; Haseloff
et al., 1997; Klink et al., 2021a). The reaction contents containing
the pRAP15 and pRAP17 destination vectors undergoing the LR
reaction to ligate the DMI gene amplicons are then transformed
using One Shot R© chemically competent E. coli cells and protocol
(Invitrogen). Colony selection is performed on LB-tet plates,
5µg/ml. Transformed One Shot R© E. coli bacteria having the
plasmid DNA are used to inoculate LB-tet broth, 5µg/ml,
incubated for 12–14 h in a 37◦C shaker at 225 rpm. The plasmid
DNA is isolated as described and confirmed for the presence
of the DMI gene by PCR using the appropriate PCR primers.
The DMI gene-containing destination vector DNA is used to
transformAgrobacterium rhizogenes (K599) using the freeze thaw
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method (Hofgen and Willmitzer, 1988). Colonies are selected
on LB-tet plates, 5µg/ml. Positive colonies are tested for the
presence of eGFP, root inducing (Ri) plasmid, and the DMI gene
by PCR using the appropriate primers (Ryder et al., 1985; Haseloff
et al., 1997; Hodges et al., 2004; Pant et al., 2016; McNeece
et al., 2019) (Supplementary Table 1). Details of the pRAP15 and
pRAP17 plasmids are available (Klink et al., 2021a).

G. max Genetic Transformations
Transgenic OE and RNAi for the respective DMI genes began
when the G. max root of a 1-week-old plant is removed at the
hypocotyl with a new, sterile razor blade (Pant et al., 2014).
The H. glycines-susceptible, resistant to Heterodera glycines1
(rhg1)-lacking (-/-), (rhg1−/−), G. max[Williams82/PI518671] genetic
background is used in the OE experiments of DMI1-3, DMI2-
7, and DMI3-2 (Bernard and Cremeens, 1988; Atkinson and
Harris, 1989; Schmutz et al., 2010). The H. glycines-resistant
rhg1-containing (+/+), (rhg1+/+),G. max[Peking/PI548402] genetic
background is used for RNAi studies of DMI1-3, DMI2-7,
and DMI3-2 (Ross, 1958). To control for non-specific effects
of target gene expression, controls for each experiment are
constructed by transforming the respective genotype with
pRAP15 or pRAP17 vector having the ccdB gene in place of
the DMI gene sequence (pRAP15-ccdB or pRAP17-ccdB) (Pant
et al., 2014). The pRAP15-ccdB OE control is produced in
G. max[Williams82/PI518671]. The pRAP17-ccdB RNAi control is
produced inG.max[Peking/PI548402]. The hypocotyl is immersed in
the transformed K599 cell solution inMurashige and Skoog (MS)
medium in suspension in a Petri dish with the root then being
removed to permit the transformed K599 cells to gain access to
the plant tissue (Murashige and Skoog, 1962). A group of 25
root-less plants is placed in a 140-ml glass beaker containing
25ml of transformed K599 cells in MS medium in suspension.
The plants are placed under vacuum using the VP60 Two Stage
Vacuum Pump (CPS Products, Inc.) in a Bel-Art Space Saver
polycarbonate vacuum desiccator with a clear polycarbonate
bottom for 5min and then left under vacuum for 10min. The
vacuum is then slowly released to allow the transformed K599
cells to further enter the plant tissue. After this cocultivation
period, the cut ends of the root-less plants are individually placed
3–4 cm deep into fresh coarse grade A-3 vermiculite (Palmetto
Vermiculite). The vermiculite is placed in and then pre-wetted
with distilled water in 50-cell propagation trays (725602C) held in
standard fats (710245C) with holes in the bottom (T.O. Plastics).
The plant trays are placed in Sterlite R© 25-qt./23-L modular
latched boxes then covered with their lids. The covered modular
latched boxes are placed 20 cm from standard fluorescent cool
white 4,100-K/32-W bulbs emitting 2,800 lumens (Sylvania). The
boxes remain under the lights for 5 days at ambient laboratory
temperature (22◦C). The plants are subsequently transferred to
the greenhouse where the plants in the trays are removed from
the modular latched boxes. The plants recover in the greenhouse
for 1 week. Visual selection of transgenic G. max roots is carried
out using the eGFP reporter, employing a Dark Reader Spot
Lamp (SL10S) (Clare Chemical Research) (Klink et al., 2021a).
Roots exhibiting eGFP reporter expression also possess the
DMI gene expression cassette, each having their own promoter

and terminator sequences (Klink et al., 2021a). Gene transfer
happens because the K599 cells have the capability to facilitate
the transport of the DNA cassettes present between the left and
right borders of the pRAP15 and pRAP17 destination vectors into
the somatic root cell chromosomal DNA. Even though the DNA
cassette is not incorporated into the germline, the result is a stable
transformation event occurring in the root somatic cell. Roots
subsequently develop from the transgenic cell over a period of
a few weeks. The resultant genetically mosaic plants have a non-
transgenic shoot with a transgenic root system. Therefore, each
individual transgenic root system is an independent transformant
line. The transgenic plants are each planted in a Ray Leach
Conetainer (SC10) (Stuewe and Sons, Inc.) having a cell diameter
of 3.81 cm (1.5 in), a depth of 20.96 cm (8.25 in), and a volume of
164ml in sandy (93.00% sand, 5.75% silt, and 1.25% clay) soil and
allowed to recover for 2 weeks prior to the start of the experiment.
The conetainers are secured in a Ray Leach Tray (RL98) (Stuewe
and Sons, Inc.). The functionality of the genetic constructs (i.e.,
RTA increased in OE roots and RTA decreased in RNAi roots) in
G. max is confirmed by real-time quantitative PCR [RT-qPCR].

Real-Time Quantitative PCR
Gene-specific RT-qPCR primers are designed for the DMI1-3,
DMI2-7, and DMI3-2 gene family members, to carry out the
RTA analyses (Supplementary Table 1). The cDNA prepared in
the experiments is constructed from mRNA collected from the
transgenic roots at 0-dpi, prior to infection but mock-inoculated,
and used to confirm the expression of the respective targeted
OE or RNAi of the DMI transgenes as described. The RTA of
the candidate defense genes in the transgenic roots is confirmed
using the already-described G. max RPS21. Analyses of the
non-targeted DMI genes, and remaining genes in the G. max
genome is beyond the scope of the confirmation process. The
RT-qPCR experiments utilize the Taqman 6 carboxyfluorescein
(6-FAM) probes with the Black Hole Quencher (BHQ1) (MWG
Operon; Birmingham, AL). The qPCR reaction is accomplished
by preincubation at 50◦C for 2min, followed by 95◦C for 10min.
Proceeding from this step is alternating 95◦C for 15 s then 60◦C
for 1min for 40 cycles (Matsye et al., 2012). The statistical analysis
using 2−11CT to calculate fold change is followed according to
the derived formula presented in Livak and Schmittgen (2001).
The results have been tested statistically using the Student’s t-test
(p < 0.05) (Yuan et al., 2006).

The Infection of G. max by H. glycines,
Cyst Extraction, Female Index Calculation
and Root Mass Determination
The H. glycines[NL1−Rhg/HG−type7/race3] is used for the infection
of the transgenic roots. This choice is made because of its
effectiveness in parasitizing G. max[Williams82/PI518671] and
failure to successfully parasitize G. max[Peking/PI548402]. H.
glycines females are isolated by sucrose flotation (Jenkins,
1964; Matsye et al., 2012). The standard H. glycines-
susceptible G. max[Williams82/PI518671] is used for experiments
requiring a susceptible genotype. The H. glycines-resistant G.
max[Peking/PI548402] is used for experiments requiring a resistant
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genotype. The second stage juveniles (J2s) are hatched and
concentrated to a final inoculum concentration of 2,000 J2s/ml
(Matsye et al., 2012). The inoculum (1ml) is dispensed into
7mm diameter holes made near the base of the plant. This
procedure directs the J2s to the root system. Once the inoculum
is dispensed and absorbed into the soil, the holes are covered
to prevent expulsion of the nematodes by subsequent watering.
After 30 days, test roots are stained with acid fuschin to confirm
infection (Byrd et al., 1983). The remaining roots from that
replicate experiment are then processed for extraction of cysts
from the soil to calculate the female index (FI) (Golden et al.,
1970). H. glycines cyst extraction involves taking each individual
plant and massaging the transgenic root to release the cysts from
the soil/root system (Klink et al., 2009). The soil containing the
cysts is repeatedly washed and the rinsed water filtered over a
20-mesh sieve nested within a 100-mesh sieve (Matsye et al.,
2012). The outcome is the collection of all cysts (Matsye et al.,
2012).

H. glycines cyst count and root mass are enumerated for
each plant and used to calculate the female index (FI) as it
relates to the whole root (wr) system and cysts per gram (pg)
of root system (McNeece et al., 2019). The FI is the community
standard, acknowledged evaluation for interpreting the effects of
a condition on H. glycines (Golden et al., 1970). The approach
is used in order to standardize the enumeration of cysts for
the FI calculation. The wr analysis procedure is the historically
performed method used to enumerate cysts which does not
consider the effect the plant genotype or transgenic event has
on H. glycines parasitism (McNeece et al., 2019). The pg analysis
procedure is employed in order to consider the effect the plant
genotype or transgenic event has on H. glycines parasitism since
the calculation of the FI adjusts for root mass (McNeece et al.,
2019).

The FI is calculated as FI = (Nx/Ns) X 100 (Golden et al.,
1970). Nx is the average number of females on the test cultivar
(Golden et al., 1970). Ns is the average number of females
on the standard susceptible cultivar (Golden et al., 1970). Nx
in the experiments presented here accounts for the pRAP15
containing the DMI where it is being overexpressed (DMI-OE)
for its targeted increase in RTA or pRAP17 containing the DMI
RNAi (DMI-RNAi) where the gene is targeted to decrease its
RTA. Ns accounts for the engineered OE control containing
the pRAP15-ccdB or RNAi control containing the pRAP17-
ccdB non-engineered, empty vectors described previously. The
pRAP15 and pRAP17 plasmids are not empty per se as they
have the ccdB gene that functions as a control. The wr and pg
FI calculations are tested statistically using the Mann–Whitney–
Wilcoxon (MWW) Rank-Sum Test, p < 0.05 (Mann and
Whitney, 1947; Matsye et al., 2012). The study incorporates three
biological replicates, with at least 10 individual experimental
replicates in each biological replicate. In the study presented here,
the number of analyzed transgenic roots for DMI1-3-OE (n =

30), DMI2-7-OE (n = 30), and DMI3-2-OE (n = 30), (10 roots
per replicate) are compared to the pRAP15-ccdB control (n =

36) (at least 10 roots per replicate). The number of transgenic
roots analyzed for DMI1-3-RNAi (n = 30), DMI2-7-RNAi (n
= 30), and DMI3-2-RNAi (n = 30), (10 roots per replicate) are

compared to the pRAP17-ccdB control (n = 34), having at least
10 roots per replicate.

RNA-Seq Gene Expression Analyses of
Transgenic Root RNA
Prior functional transgenic analyses of the 32-member
G. max MAPK gene family determine that 9 of them
function in the defense response to H. glycines parasitism
and are referred to as defense MAPKs (McNeece et al.,
2019). The defense MAPKs undergoing overexpression
(OE) or RNA interference (RNAi) include MAPK2
(Glyma.06G029700), MAPK3-1 (Glyma.U021800), MAPK
3-2 (Glyma.12G073000),MAPK 4-1 (Glyma.07G066800),MAPK
5-3 (Glyma.08G017400), MAPK6-2 (Glyma.07G206200), MAPK
13-1 (Glyma.12G073700), MAPK16-4 (Glyma.07G255400),
and MAPK20-2 (Glyma.14G028100) with OE and RNAi root
samples collected from each for RNA-seq. The pRAP15-ccdB and
pRAP17-ccdB control root samples are collected for RNA-seq
(Alshehri et al., 2019). RNA is isolated from the collected root
samples as already described. The collected samples are validated,
sequenced, and analyzed, producing Illumina R© RNA-seq data
for use in examining gene expression of the 55,022 genes in the
G. max genome (Alshehri et al., 2019). The RNA-seq fold change
(FC) data, representing the relative transcript abundance (RTA)
is mined specifically for DMI gene paralog expression (Wang
and Wang, 2021). The FC for the OE experiments is determined
in comparisons of the transgenic MAPK-OE RNA-seq data as
compared to the RNA-seq data obtained from the transgenic
pRAP15-ccdB (overexpression) control (Wang andWang, 2021).
The FC for the RNAi experiments is determined in comparisons
of the transgenic MAPK-RNAi RNA-seq data as compared to
the RNA-seq data obtained from the transgenic pRAP17-ccdB
(RNAi) control (Wang and Wang, 2021). When presented,
confirmation of the RNA-seq RTAs, given as FC, is performed by
RT-qPCR as described (Livak and Schmittgen, 2001; Klink et al.,
2021a).

Proteome Mining
DMI homologs and splice variants from various agricultural
crops of international importance and select importance in
the U.S. are identified (Tilman et al., 2011; Ray et al., 2013,
2019; Burkhead and Klink, 2018). Analyses are performed by
BLASTing selected conceptually translated genes to the described
protein coding regions of genomes with theM. truncatulaDMI1,
DMI2, and DMI3 protein sequences. The proteomes, in addition
to G. max (G.max Wm82.a2.v1), include Manihot esculenta
(M.esculenta v8.1), Zea mays (Z.mays RefGen_V4), Oryza
sativa (O.sativa v7.0), Triticum aestivum (T.aestivum v2.2),
Hordeum vulgare (H.vulgare r1), Sorghum bicolor (S.bicolor
v3.1.1), Brassica rapa (B.rapaFPsc v1.3), Solanum tuberosum
(S.tuberosum v6.1), S. lycopersicum (S.lycopersicum ITAG4.0),
Gossypium hirsutum (G.hirsutum v2.1), and B. vulgaris
(B.vulgaris EL10_1.0) which are housed at Phytozome under
default settings (Goodstein et al., 2012).
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TABLE 1 | G. max DMI genes identified as being expressed in syncytia that were

undergoing a defense response to H. glycines parasitism.

Gene 0 3 6

Time point

DMI1-3 NM M M

DMI2-7 NM NM M

DMI3-2 NM NM M

The conceptually translated DMI genes were used to identify their protein family paralogs

from the G. max proteome according to the procedures outlined in the Materials and

Methods subsection: G. max DMI gene identification. The DCM data for the DMI genes

were obtained according to the procedures outlined in the Materials and Methods

subsection: Selection of candidate genes. Terminology: Time points, the time (dpi) of

H. glycines infection (0, 3, and 6 dpi) at which the G. max root cells were collected by

laser microdissection (LM), and their isolated RNA used for the gene expression studies.

Expression, not measured (NM) to statistically significant probability (p) value (p-value)

levels (p ≥ 0.05); measured (M) to statistically significant levels (p < 0.05). Expression

significance was calculated using the Mann–Whitney–Wilcoxon (MWW) Rank-Sum Test,

significance at p < 0.05 (Mann and Whitney, 1947). Accompanying data has been

presented in Supplementary Tables 2, 3.

RESULTS

The Identification of DMI Gene Families
and Root Cell-Specific Expression
An analysis was performed that compared the gene expression
which occurred in control (pericycle) cells (0 dpi), and within
H. glycines-induced syncytia at 3, and 6 dpi in 2 different
genotypes (G. max[Peking/PI548402] and G. max[PI88788]), each
capable of mounting a defense response. The two different H.
glycines-resistant G. max genotypes were experimented on to
identify consistently expressed candidate defense genes (Klink
et al., 2011, 2021a; Matsye et al., 2011). The results from
those experiments led to the identification of an annotated
G. max gene homologous to the M. truncatula DMI3. DMI3
did not exhibit expression at the 0 dpi time point but
exhibited expression in syncytia that has undergone the defense
response in G. max[Peking/PI548402] and G. max[PI88788] at 3,
and 6 dpi (Table 1 and Supplementary Table 2). The CSP
has 3 different DMI genes, DMI1, DMI2, and DMI3. BLAST
analyses of the G. max proteome identified 3 DMI1, 12 DMI2,
and an additional DMI3 paralog (Supplementary Tables 2, 3).
Further examination of previously generated transcriptomic
data identified the expression activity for the G. max DMI1,
DMI2, and DMI3 paralogs that occurred while a defense
response was mounted to H. glycines parasitism (Table 1 and
Supplementary Tables 2, 3). The experiment demonstrated at
least one paralog for each DMI gene family gene underwent
expression during the defense response.

BLAST queries of globally important crop proteomes, and
some with more importance to U.S. production, identified DMI1,
DMI2, and DMI3 homologs, and in some cases, additional
paralogs (Table 2 and Supplementary Tables 4–6). Genomic
data on alternative splice variants were also identified, provided
here since alternate splice variants of other G. max genes
function in the defense response that G. max has to H. glycines
(Supplementary Tables 4–6). The DMI1-3 (Glyma.19G263500),

TABLE 2 | DMI paralogs present in select crop species.

Species DMI1 DMI2 DMI3

G. max 3 2 (11) 2

G. hirsutum 4 2 (6) 2

M. esculenta 2 1 (9) 1

Z. mays 2 2 1 (2)

O. sativa 2 1 (5) 1

T. aestivum 7 (8) 3 (7) 3

H. vulgare 2 1 (5) 2

S. bicolor 2 1 (8) 1

B. rapa 1 0 (16) 0

B. vulgaris 1 0 (3) 0

S. lycopersicon 1 1 (4) 1

S. tuberosum 2 1 (4) 1

Values not in parentheses had a Blast of e-0. Numbers in parentheses had a

Blast cutoff of > e-0. Please refer to Materials and Methods subsections: G. max

DMI gene identification, and Proteome mining, for details. Raw Blast data has

been provided (DMI1-Supplementary Table 4, DMI2-Supplementary Table 5, DMI3-

Supplementary Table 6).

DMI2-7 (Glyma.11G246200), and DMI3-2 (Glyma.15G222300)
paralogs that exhibited expression during the defense response
in syncytia were selected for functional transgenic experiments
as the approach serves as an effective strategy in identifying
defense genes.

DMI Relative Transcript Abundance
Changes Occurred When Experimentally
Targeted
The DMI1-3, DMI2-7, and DMI3-2 genes were targeted
for experimentally altering their RTA through transgenic
manipulation, presented as a fold change (FC) in expression
as compared to the appropriate control. The DMI1-3, DMI2-7,
and DMI3-2 genes were engineered for OE in the H. glycines-
susceptible G. max[Williams82/PI518671], based on the hypothesis
that their increase in RTA would make theH. glycines-susceptible
G. max[Williams82/PI518671] resemble the observed H. glycines
defense response that occurs in G. max[Peking/PI548402]. In
contrast, DMI1-3, DMI2-7, and DMI3-2 genes were engineered
for RNAi in theH. glycines-resistantG. max[Peking/PI548402], based
on the hypothesis that their decrease in RTA would make the
H. glycines-resistantG.max[Peking/PI548402] resemble the observed
H. glycines susceptibility that occurs in G. max[Williams82/PI518671].
The combination of the hypothesized increase inDMI1-3,DMI2-
7, and DMI3-2 RTA in G. max[Williams82/PI518671] that would
lead to more H. glycines-resistant roots, and decrease in DMI1-
3, DMI2-7, and DMI3-2 RTA in the G. max[Peking/PI548402]
that would lead to more H. glycines-susceptible roots would
be evidence that the targeted gene functioned in the defense
response. Transgenic DMI1-3, DMI2-7, and DMI3-2 -OE roots,
and their respective transgenic pRAP15-ccdB OE control roots,
were made (Figure 1). TransgenicDMI1-3,DMI2-7, andDMI3-2
-RNAi roots, and their respective transgenic pRAP17-ccdB RNAi
control roots, had then also been made (Figure 1). The expected
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FIGURE 1 | Transgenic roots obtained from chimeric plants having genetically engineered roots and un-engineered shoots that were generated through the

K599-mediated genetic transformation procedure. Please refer to Materials and Methods subsections: DMI gene cloning, and G. max genetic transformations, for

details. The presented values represent the numbers of plants used in the image generation, and those roots studied in the H. glycines infection analyses.

Terminology: overexpression (OE); RNA interference (RNAi); relative transcript abundance (RTA); fold change (FC); probability (p) value (p-value;); female index (FI). (A)

pRAP15-ccdB (OE control) (n = 36); (B) DMI1-3-OE (n = 30); (C) DMI2-7-OE (n = 30); (D) DMI3-2-OE (n = 30); (E) pRAP17-ccdB (RNAi control) (n = 34); (F)

DMI1-3-RNAi (n = 30); (G) DMI2-7-RNAi (n = 30); (H) DMI3-2-RNAi (n = 30). Bars = 1 cm. (I) The expected change in DMI1-3, DMI2-7, and DMI3-2 RTA, presented

as FC, for the -OE and -RNAi roots, as compared to their pRAP15-ccdB and pRAP17-ccdB overexpression and RNAI controls, respectively, was calculated by

2−11CT to determine FC (Livak and Schmittgen, 2001; Klink et al., 2021a). The RTA of the candidate defense genes, presented as a FC, in the transgenic roots was

compared using the G. max ribosomal protein gene RPS21 (Glyma.15G147700). The RT-qPCR analyses examined 3 experimental replicates (individual root systems)

of DMI1-3, DMI2-7, and DMI3-2 -OE or -RNAi roots as compared to their pRAP15-ccdB, and pRAP17-ccdB controls, respectively, from each of the 3 biological

replicates. Each experimental replicate was run in triplicate using the same RNA. (*), statistical significance of p < 0.05, Student’s t-test (Yuan et al., 2006). Please refer

to Materials and Methods subsection: Real-time quantitative PCR (RT-qPCR), for details. (J) The effect that the expression of the DMI1-3, DMI2-7, or DMI3-2 -OE or

-RNAi cassettes had on root mass as compared to their respective pRAP15-ccdB or pRAP17-ccdB controls. The statistical significance (*) for the change in root

mass was determined using the MWW Rank-Sum Test, p < 0.05 (Mann and Whitney, 1947). Please refer to Materials and Methods subsection: The infection of G.

max by H. glycines, cyst extraction, FI calculation, and root mass, for details.

change in DMI1-3, DMI2-7, and DMI3-2 RTA, presented as
a FC in gene expression for the -OE and -RNAi roots as
compared to their respective transgenic controls using the G.
max RPS21 were determined (Figure 1). The increase in RTA
in the DMI1-3, DMI2-7, and DMI3-2 -OE roots ranged from
3 to 18-fold while the change in RTA in the DMI1-3, DMI2-7,
andDMI3-2 -RNAi roots ranged from−4 to−9-fold as compared
to their controls (Figure 1). DMI1-3, DMI2-7, and DMI3-2
RTAs have also been determined at 6 dpi H. glycines infection
in cDNA generated from their respective RNAs isolated from
their OE and RNAi transgenic roots as compared to their
controls (Supplementary Table 1). An examination of the effect
that DMI1-3, DMI2-7, and DMI3-2 -OE or-RNAi had on the
remaining DMI genes were not performed.

An examination of root mass from DMI1-3, DMI2-7, and
DMI3-2 -OE and -RNAi roots as compared to their respective
pRAP15-ccdB OE and pRAP17-ccdB RNAi controls presented

in Figure 1 were performed. The analyses identified DMI1-3-
OE transgenic roots exhibited affected growth to a statistically
significant level as compared to the respective transgenic
pRAP15-ccdB OE control roots. In this case, the statistically
significant change in root mass observed for DMI1-3-OE roots
was an increase of 2.10 fold as compared to its control (Figure 1).
The remaining analyses of the other DMI -OE and -RNAi roots
did not lead to the identification of a statistically significant effect
on root mass as compared to their appropriate controls.

Altering G. max DMI RTA Changes the
Capability of H. glycines to Parasitize
Roots
The FI studies of H. glycines parasitism in relation to the altered
expression of theDMI1-3 genes were performed, examining their
pathogenic ability in relation to the enumerated cyst numbers
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FIGURE 2 | The FI for DMI1-3, DMI2-7, and DMI3-2 -OE and -RNAi roots as compared to their respective pRAP15-ccdB and pRAP17-ccdB controls. The statistical

significance (*) was determined by the MWW Rank-Sum Test, p < 0.05 (Mann and Whitney, 1947). The analyzed transgenic roots for DMI1-3-OE (n = 30),

DMI2-7-OE (n = 30), and DMI3-2-OE (n = 30) were compared to the pRAP15-ccdB control (n = 36). The analyzed transgenic roots for DMI1-3-RNAi (n = 30),

DMI2-7-RNAi (n = 30), and DMI3-2-RNAi (n = 30) were compared to the pRAP17-ccdB control (n = 34). Please refer to Materials and Methods subsection: The

infection of G. max by H. glycines, cyst extraction and female index calculation, for details.

in the wr and pg of root analyses. The analyses were done in
this manner to gain insight as to whether the expression of
the DMI-OE or DMI-RNAi gene cassettes affected root mass as
compared to their controls and therefore skewed the FI analysis.
The generation of DMI1-3, DMI2-7, DMI3-2 -OE, and pRAP15-
ccdB OE control roots occurred in the H. glycines susceptible
G. max[Williams 82/PI518671]. In comparison to the generated
pRAP15-ccdB OE control, the experimentally increased DMI1-
3, DMI2-7, and DMI3-2 RTA that occurred through their OE
led to a statistically significant 52-63% suppression of H. glycines
parasitism as compared to the control (Figure 2). In contrast, the
generation of DMI1-3, DMI2-7, DMI3-2 -RNAi, and pRAP17-
ccdB RNAi control roots were made in the H. glycines-resistant
G. max[Peking/PI548402]. In comparison to the pRAP17-ccdB RNAi
controls, experimentally decreased DMI1-3, DMI2-7, and DMI3-
2 RTA that occurred by RNAi led to a statistically significant
2.1-to-4.6-fold increase in H. glycines parasitism as compared
to te control (Figure 2). The combination of the two outcomes,

opposite in nature, is taken as evidence that the gene functions
during the defense response.

MAPKs Influence DMI Expression
In G. max, MAPK gene expression had occurred in syncytia
undergoing parasitism by H. glycines but while undergoing a
defense response. These syncytium-expressed defense MAPK
genes included MAPK2, MAPK3-1, MAPK4-1, MAPK6-2,
MAPK13-1, MAPK16-4, and MAPK20-2. Two other MAPKs,
MAPK3-2, and MAPK5-3, whose expression in syncytia that
underwent the defense process could not be confirmed due to
the original analysis procedures which lacked probe sets on
the microarray, had also functioned in defense. RNA-seq data
was available for G. max defense MAPK-OE and MAPK-RNAi
roots, which includedMAPK2,MAPK3-1,MAPK3-2,MAPK4-1,
MAPK5-3, MAPK6-2, MAPK13-1, MAPK16-4, and MAPK20-2
as well as their OE (pRAP15-ccdB) and RNAi (pRAP17-ccdB)
controls, respectively. The data was examined here for RTAs
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FIGURE 3 | The RTA results, presented as FC, for the DMI1, DMI2, and DMI3 gene family members that had exhibited differential expression in the defense

MAPK-OE roots measured by RNA-seq and confirmed by RT-qPCR (Livak and Schmittgen, 2001; Wang and Wang, 2021). The data presented in this figure analyzes

the MAPK-OE root RNA by RNA-seq and RT-qPCR. The sample analysis type presented below the x-axis provides the analysis parameter as MAPK-OE with the

presented gene expression for the specific DMI gene denoted after the arrow (→) giving the sample designation as MAPK(specific gene)-OE→DMI(specific gene). (*)

The RNA-seq result was considered statistically significant at p < 0.001, Student’s t-test; RT-qPCR expression was calculated by 2−11CT to enumerate the RTA,

presented as FC in the y-axis (Livak and Schmittgen, 2001; Klink et al., 2021a). (*) The result is statistically significant at p < 0.05, Student’s t-test (Yuan et al., 2006).

The DMI genes that had contrasting expression (an FC that was increased [I] in the MAPK-OE RNA-seq and RT-qPCR analyses (Figure), and an FC that was

decreased [D] in MAPK-RNAi RNA-seq, and RT-qPCR analyses (Figure 4) have been referred to as an MAPK-OE:RNAi couplet as designated in the Results

subsection: Cross-comparative analyses involving MAPK-OE and MAPK-RNAi experiments) have been indicated with the designated black triangle (N). This

designation was made for MAPK2-OE:RNAi→DMI2-3 (I:D), MAPK3-2-OE:RNAi→DMI2-3 (I:D), MAPK4-1-OE:RNAi→DMI2-3 (I:D), MAPK4-1-OE:RNAi→DMI2-4

(I:D), MAPK4-1-OE:RNAi→DMI2-11 (I:D), MAPK5-3-OE:RNAi→DMI2-3 (I:D), and MAPK20-2-OE:RNAi→DMI2-3 (I:D). (Figure) presents data for 20 couplets. Details

for these experiments can be found in Supplementary Table 6. Please refer to the Materials and Methods subsections: RNA-seq gene expression analyses of

transgenic MAPK -OE and -RNAi root RNA, and Real-time quantitative PCR (RT-qPCR), for details. Inset, upper left corner of the histogram provides that flow chart

that relates to the sample naming scheme found at the x-axis.
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FIGURE 4 | The results for the DMI1, DMI2, and DMI3 gene family members that had exhibited differential expression in the defense MAPK-RNAi roots measured by

RNA-seq and confirmed by RT-qPCR (Livak and Schmittgen, 2001; Wang and Wang, 2021). The data presented in (Figure) analyzes the MAPK-RNAi root RNA by

RNA-seq and RT-qPCR. The sample analysis type presented below the x-axis provides the analysis parameter as MAPK-RNAi with the presented gene expression for

the specific DMI gene denoted by an arrow (→) giving MAPK(specific gene)-RNAi→DMI(specific gene). (*) The RNA-seq result is statistically significant at p < 0.001,

Student’s t-test. RT-qPCR expression was calculated by 2−11CT to enumerate the RTA as presented as the FC (Livak and Schmittgen, 2001; Klink et al., 2021a). (*)

RT-qPCR result statistically significant at p < 0.05, Student’s t-test (Yuan et al., 2006). The DMI genes that had contrasting expression (an FC that was increased [I] in

the MAPK-OE RNA-seq and RT-qPCR analyses (Figure 3), and an FC that was decreased [D] in MAPK-RNAi RNA-seq, and RT-qPCR analyses (Figure 4), referred to

as an MAPK-OE:RNAi couplet as designated in the Results subsection: Cross-comparative analyses involving MAPK-OE and MAPK-RNAi experiments) were

indicated with a black triangle (N). An arrow (→) denotes the DMI gene whose expression was examined in relation to the MAPK-OE:RNAi RNA-seq and RT-qPCR

analyses. This designation was made for MAPK2-OE:RNAi→DMI2-3 (I:D), MAPK3-2-OE:RNAi→DMI2-3 (I:D), MAPK4-1-OE:RNAi→DMI2-3 (I:D),

MAPK4-1-OE:RNAi→DMI2-4 (I:D), MAPK4-1-OE:RNAi→DMI2-11 (I:D), MAPK5-3-OE:RNAi→DMI2-3 (I:D) and MAPK20-2-OE:RNAi→DMI2-3 (I:D). This figure

presents data for 46 couplets. Details have been provided in Supplementary Table 7. Please refer to Materials and Methods subsections: RNA-seq gene expression

analyses of transgenic MAPK-OE and RNAi root RNA, and Real-time quantitative PCR (RT-qPCR), for details. Inset, upper left corner of the histogram provides that

flow chart that relates to the sample naming scheme found at the x-axis.

that occurred among the parologous members of the DMI1,
DMI2, and DMI3 gene families (Supplementary Tables 7, 8).
RT-qPCR confirmed the identified DMI1, DMI2, and DMI3
gene family member RTAs that exhibited differential expression
in the MAPK-OE RNA-seq analyses as compared to the
control (Figure 3). There were 153MAPK-OE andMAPK-RNAi
comparisons made between the 3 different DMI1 paralogs (n
= 27), 12 different DMI2 paralogs (n = 108), and 2 different
DMI3 paralogs (n = 18) (Supplementary Tables 7, 8). RNA-
seq experiments of RNA that was isolated from the MAPK-
OE roots had identified 20 instances of differentially expressed

DMI genes that met the set criteria as compared to the control
(Figure 3). Please refer to the figure legend and figure inset
for the explanation of the examined RNA sample and tested
DMI gene name designations found at the x-axis. The RTAs of
those DMI genes as compared to their control were confirmed
by RT-qPCR (Figure 3). RNA-seq data was also available for
the 9 defense MAPKs undergoing RNAi. RNA-seq experiments
of RNA isolated from the MAPK-RNAi roots identified 46
instances of differentially expressed DMI genes that met the set
criteria as compared to their control (Figure 4). Please refer to
the figure legend and figure inset for the explanation of the
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FIGURE 5 | Flow chart of the cross comparison analyses made that used data

presented in Figures 3, 4. The condition represents the MAPK (MK) -OE or

-RNAi sample under study. The examined DMI gene expression represents the

various examined DMI1, DMI2, or DMI3 paralogs. The black, red, and blue

arrows and text were used to distinguish between the different DMI (DMI1,

DMI2, and DMI3) genes. The notation of the cross comparisons took into

consideration that data from both the MK-OE and MK-RNAi analyses were

used in examining the DMI gene expression (i.e., MK-OE:RNAi→DMI).

name designations found at the X-axis. Among the identified
DMI genes that were found in the MAPK-OE analyses was one
instance, DMI1-1, that had an altered RTA caused by MAPK3-1
OE that met the set criteria as compared to its control (Figure 3).
There were 16 instances of a DMI2 gene, that involved DMI2-
3, DMI2-4, DMI2-9, DMI2-10, and DMI2-11, that had an altered
RTA caused by MAPK OE that met the set criteria as compared
to its control (Figure 3). There were three instances of a DMI3
gene, that involvedDMI3-1, andDMI3-2, that had an altered RTA
caused by MAPK OE that met the set criteria as compared to its
control (Figure 3). In contrast, there were 2 instances of a DMI1
gene, DMI1-1, and DMI1-2, that had an altered RTA that was
caused byMAPK RNAi that met the set criteria as compared to its
control (Figure 4). There were 35 instances of a DMI2 gene, that
involved DMI2-3, DMI2-4, DMI2-6, DMI2-7, DMI2-8, DMI2-
9, DMI2-10, DMI2-11, and DMI2-12, that had an altered RTA
caused byMAPK RNAi that met the set criteria as compared to its
control (Figure 4). There were 9 instances of a DMI3 gene, that
involvedDMI3-1 andDMI3-2, that had an altered RTA caused by
MAPK RNAi that met the set criteria as compared to its control
(Figure 4).

Cross-Comparative Analyses Made
Between the MAPK-OE and MAPK-RNAi
Experiments
Cross-comparative analyses were done between the MAPK-OE,
and MAPK-RNAi experiments. The analyses were done to
determine whether the experimentally-alteredMAPK expression
(OE or RNAi) exerted contrasting effects on DMI RTAs as

compared to their controls as might be expected (i.e., increased
RTA in the OE sample and decreased RTA in the RNAi sample).
Seven instances, referred to as couplets, were identified where the
defense MAPK-OE increased the DMI RTA, while RNAi of that
same MAPK led to a decreased DMI RTA as compared to their
controls (Figures 3, 4). All of these instances involved the plasma
membrane receptor DMI2. To describe these outcomes, the DMI
genes that had contrasting expression (an FC that was increased
[I] in theMAPK-OE RNA-seq and RT-qPCR analyses (Figure 3),
and an FC that was decreased [D] in MAPK-RNAi RNA-seq
and RT-qPCR analyses (Figure 4) had been referred to as an
MAPK-OE:RNAi couplet, indicated with a black triangle [see
figure legend]). A flow chart representing the analysis parameters
that merge (cross-compare) the OE and RNAi analyses has
been provided (Figure 5). An arrow (→) was used to denote
the DMI gene whose expression was examined in relation to
the MAPK-OE:RNAi RNA-seq and RT-qPCR analyses. This
designation was made for MAPK2-OE:RNAi→F0E0DMI2-
3 (I:D), MAPK3-2-OE:RNAi→F0E0DMI2-3
(I:D), MAPK4-1-OE:RNAi→F0E0DMI2-3 (I:D),
MAPK4-1-OE:RNAi→F0E0DMI2-4 (I:D), MAPK4-
1-OE:RNAi→F0E0DMI2-11 (I:D), MAPK5-3-
OE:RNAi→F0E0DMI2-3 (I:D) and MAPK20-2-
OE:RNAi→F0E0DMI2-3 (I:D) (Figures 3, 4). No instances
existed under these conditions where defense MAPK OE
decreased the DMI RTA, and MAPK RNAi increased the DMI
RTA which was shown to happen in Type 1 expression found for
some MAPKs (McNeece et al., 2019). In McNeece et al. (2019)
Type 1 expression spanned the results of both the MAPK -OE
and -RNAi experiments and was defined that Type 1-OE genes
were induced (in their RTA [FC]) in the OE treatment, and were
also suppressed in the RNAi treatment or suppressed in the OE
treatment, and also induced in the RNAi treatment. Regarding
the RNAi experiments, Type 1-RNAi expression was suppressed
(in their RTA [FC]) in the RNAi treatment and induced in the OE
treatment or induced in the RNAi treatment, and also suppressed
in the OE treatment. There were 6 instances identified here
whereby the DMI gene was differentially expressed in the same
manner (increased, decreased) in the MAPK -OE, and -RNAi
roots as compared to the control under the set criteria. Three of
these instances involved increased DMI gene RTAs in theMAPK
-OE, and -RNAi roots. Perhaps importantly, differences in the
magnitude of these DMI RTAs were observed between the OE,
and RNAi experiments and presented subsequently for clarity.
The first occurrence was MAPK2-OE:RNAi→F0E0DMI3-2 that
exhibited a lower RTA in the DMI3-2-RNAi samples that met
the set criteria as compared to the controls (Figures 3, 4). The
second occurrence was MAPK5-3-OE:RNAi→F0E0DMI3-2 that
exhibited higher RTAs in the MAPK5-3-RNAi samples that met
the set criteria as compared to the controls (Figures 3, 4). The
third instance was MAPK6-2-OE:RNAi→F0E0DMI2-10, that
exhibited lower RTAs in theMAPK6-2-RNAi samples which met
the set criteria as compared to the controls (Figures 3, 4).

Three instances involved decreased DMI RTAs as compared
to the respective controls. The first instance was MAPK3-1-
OE:RNAi→F0E0DMI2-9, that had about the same RTAs between
the DMI2-9 -OE, and -RNAi samples and met the set criteria

Frontiers in Plant Science | www.frontiersin.org 13 May 2022 | Volume 13 | Article 842597

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Khatri et al. Symbiosis Genes Function in Defense

TABLE 3 | RNA-seq differential expression measurements of G. max DMI-3, DMI2-7, and DMI3-2 gene family members in the defense MAPK-OE and MAPK-RNAi root

RNA samples as compared to the pRAP15-ccdB (OE control) and pRAP17-ccdB (RNAi control) samples, p < 0.001 (Wang and Wang, 2021).

Condition Gene expression MK-OE→DMI FC MK-RNAi→DMI FC

Examined DMI

MK2-OE:RNAi DMI1-3 −0.509168236 −0.606009451

MK3-1-OE:RNAi DMI1-3 nde −0.258663037

MK3-2-OE:RNAi DMI1-3 nde 0.33078036

MK4-1-OE:RNAi DMI1-3 nde −0.64650619

MK5-3-OE:RNAi DMI1-3 nde 0.45370847

MK6-2-OE:RNAi DMI1-3 nde nde

MK13-1-OE:RNAi DMI1-3 nde 0.987644973

MK16-4-OE:RNAi DMI1-3 nde nde

MK20-2-OE:RNAi DMI1-3 nde 0.548846371

MK2-OE:RNAi DMI2-7 0.751995656 −2.094693822

MK3-1-OE:RNAi DMI2-7 nde nde

MK3-2-OE:RNAi DMI2-7 nde −0.991278883

MK4-1-OE:RNAi DMI2-7 nde −1.481257961

MK5-3-OE:RNAi DMI2-7 nde −1.320032574

MK6-2-OE:RNAi DMI2-7 nde −0.578103045

MK13-1-OE:RNAi DMI2-7 nde nde

MK16-4-OE:RNAi DMI2-7 1.158304234 −1.189694562

MK20-2-OE:RNAi DMI2-7 1.28018865 −0.863199158

MK2-OE:RNAi DMI3-2 6.082764374 2.052151835

MK3-1-OE:RNAi DMI3-2 2.131484967 1.405468239

MK3-2-OE:RNAi DMI3-2 nde 2.434281191

MK4-1-OE:RNAi DMI3-2 nde 3.417301738

MK5-3-OE:RNAi DMI3-2 1.601640755 2.903015546

MK6-2-OE:RNAi DMI3-2 nde 1.004285599

MK13-1-OE:RNAi DMI3-2 nde 3.916486594

MK16-4-OE:RNAi DMI3-2 nde 3.074298912

MK20-2-OE:RNAi DMI3-2 1.252369636 2.119541855

Terminology: relative transcript abundance (RTA); fold change (FC); not differentially expressed (nde); overexpression (OE); RNA interference (RNAi). The defense MAPK-OE RNA-seq data

were compared to the pRAP15-ccdB OE control RNA-seq data that were generated and analyzed as stated in the Materials and Methods subsections: G. max genetic transformations,

and RNA-seq gene expression analyses of transgenic MAPK-OE and RNAi root RNA, respectively. The defense MAPK-RNAi RNA-seq data were compared to the pRAP17-ccdB RNAi

control RNA-seq data generated and analyzed as stated in the Materials and Methods subsection: G. max genetic transformations, and RNA-seq gene expression analyses of transgenic

MAPK-OE and RNAi root RNA, respectively. ([* ] statistically significant with a FC > ± 1.5; p < 0.001) (Wang and Wang, 2021). The change in MAPK-OE RTA was presented as a FC

measured between the MAPK-OE RNA-seq data as compared to the pRAP15-ccdB control RNA-seq data (Wang and Wang, 2021). The change in MAPK-RNAi RTA was presented

as a change in the FC that occurred between the analysis of the MAPK-RNAi RNA-seq data as compared to the pRAP17-ccdB control RNA-seq data (Wang and Wang, 2021). Note,

these MAPK-OE, MAPK-RNAi, pRAP15-ccdB and pRAP17-ccdB roots were used in functional transgenic H. glycines infection analyses that determined their respective female index

(FI) with RNA-seq analyses performed on isolated RNA (Alshehri et al., 2019; McNeece et al., 2019). Note, the description of the condition is the same as described in Figures 3, 4. The

description was provided here for added clarity. The data presented in table analyzed the DMI gene (DMI1-3, DMI2-7, or DMI3-2) whose OE was examined in the RNA-seq samples

for the MAPK -OE or MAPK -RNAi RNA-seq data. The condition provided the analysis parameter as MAPK (MK) -OE with the presented gene expression for the specific DMI gene

denoted after the arrow (→) giving the sample designation as MK(specific gene)-OE→DMI(specific gene). (*) The RNA-seq result was considered statistically significant at p < 0.001,

Student’s t-test. The same analysis was done for the MK -RNAi. The RNAi condition provided the analysis parameter as MK-RNAi with the presented gene expression for the specific

DMI gene denoted after the arrow (→) giving the sample designation as MK(specific gene)-RNAi→DMI(specific gene). (*) The RNA-seq result was considered statistically significant at

p < 0.001, Student’s t-test.

as compared to the controls (Figures 3, 4). The second instance
was MAPK16-4-OE:RNAi→F0E0DMI29, that had lower RTAs
in the MAPK16-4-RNAi samples, which met the set criteria as
compared to the controls (Figures 3, 4). The third instance was
MAPK16-4-OE:RNAi →F0E0DMI2-10, which had higher RTAs
in the MAPK16-4-RNAi samples that met the set criteria as
compared to the controls (Figures 3, 4).

The remaining DMI genes satisfied the set differential
expression criteria in one of the two conditions (OE or RNAi)
but not both, in the manner that Type 2 expression had

been described in this pathosystem in McNeece et al. (2019)
but for MAPKs (Figures 3, 4). In McNeece et al. (2019),
Type 2 expression spanned the results of both OE and RNAi
experiments. Type 2-OE was expression that was induced (in
their RTA [FC]) in the OE treatment, and not differentially
expressed in the RNAi treatment or was suppressed in the OE
treatment, and not differentially expressed in RNAi treatment
(McNeece et al., 2019). Within Type 2 expression, Type 2-RNAi
had suppressed expression in the RNAi treatment while it was
not differentially expressed in the OE treatment or was induced
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in the RNAi treatment and was not differentially expressed in
the OE treatment (McNeece et al., 2019). An examination of
MAPK-OE data was made that resulted in the identification
that DMI1 had one case (DMI1-1) of an altered RTA but in
a MAPK-OE (MAPK3-1-OE) sample, and which met the set
criteria as compared to the controls (Figure 3). DMI2 had 9
cases involving DMI2-3, DMI2-4, DMI2-9, DMI2-10, and DMI2-
11 of an altered RTA but in a MAPK-OE, and which met
the set criteria as compared to the controls (Figure 3). DMI3
had 3 cases that involved DMI3-1, and DMI3-2 of an altered
RTA but in a MAPK-OE, and which met the set criteria as
compared to the controls (Figure 3). In contrast, an examination
of MAPK-RNAi RNA-seq data was made. DMI1 had 2 cases
(DMI1-1, and DMI1-2) of altered RTAs, that occurred in the
MAPK4-1-RNAi sample, and which met the set criteria as
compared to the controls (Figure 4). DMI2 had 28 cases that
involved DMI2-2, DMI2-3, DMI2-4, DMI2-7, DMI2-8, DMI2-
9, DMI2-10, DMI2-11, and DMI2-12 that had an altered RTA
but occurred in an examined MAPK-RNAi sample, and which
met the set criteria as compared to the controls (Figure 4).
DMI3 had 9 cases that involved DMI3-1, and DMI3-2 that
had an altered RTA but occurred in an examined MAPK-RNAi
sample and met the set criteria as compared to the controls
(Figure 4). These cases included the MAPK2-RNAi, MAPK3-
2-RNAi, MAPK4-1-RNAi, MAPK5-3-RNAi, MAPK13-1-RNAi,
MAPK16-4-RNAi, and MAPK20-2-RNAi samples (Figure 4).
Other examples of differentially expressed DMI genes that were
identified in the defense MAPK RNA-seq analyses existed, but
they had not met the set FC criteria, and were not examined
further (Supplementary Tables 7, 8). However, their expression
could be important and potential targets of future analyses.

The Identification of MAPK-Altered DMI

Expression to Below
Experimental-Threshold Levels
The RTAs of DMI1-3, DMI2-7, and DMI3-2 used in the
functional transgenic studies that examined H. glycines
infection were identified in the MAPK -OE, and MAPK -
RNAi RNA-seq experiments as compared to their respective
transgenic pRAP15-ccdB and pRAP17-ccdB controls (Table 3
and Supplementary Tables 7, 8). A number of instances of
statistically significant changes in DMI RTAs were noted but
occurred below the set FC criteria. Therefore, while noteworthy
were beyond the scope of further analysis here. Generally, the
DMI RTAs that occurred in the RNA-seq analyses were lower
than those found for the DMI1-3, DMI2-7, or DMI3-2 -OE
or -RNAi roots in the RT-qPCR quality control analyses of
the root RNA under comparison in the functional transgenic
infection studies.

Altered MAPK3 RTAs Occur in the DMI1,
DMI2, and DMI3 Transgenic Roots
The MAPK3 protein transduces signals from both PTI and
ETI branches of defense signaling that leads to an output
response that combats pathogen infection including parasitism
by pathogenic nematodes. RT-qPCR experiments that targeted

MAPK3-1 and MAPK3-2 were done that determined if genes
functioning to transduce defense signaling through PTI and
ETI were affected by OE, and/or RNAi of the syncytium-
expressed DMI1-3, DMI2-7, and DMI3-2. Those results that
employed RT-qPCR have been presented (Figure 6). The gene
expression experiments showedDMI1-3-OE increasedMAPK3-1
and MAPK3-2 RTA while, in contrast, DMI1-3-RNAi decreased
MAPK3-1, and MAPK3-2 RTA as compared to the controls
(Figure 6). DMI2-7-OE did not significantly affect MAPK3-1
or MAPK3-2 RTA, while DMI2-7-RNAi significantly decreased
both MAPK3-1 and MAPK3-2 RTA as compared to the controls
(Figure 6). DMI3-2-OE increased MAPK3-1 RTA but had no
effect on MAPK3-2 RTA as compared to the controls (Figure 6).
DMI3-2-RNAi decreased MAPK3-1 RTA but had no effect on
MAPK3-2 RTA as compared to the controls (Figure 6). The
results indicate DMI1-3, DMI2-7, and DMI3-2 had functions in
common with 2 major G. max defense genes (MAPK3-1, and
MAPK3-2) that act in PTI and ETI, but that there are important
differences possibly relating to the unique functions that theDMI
genes have in relation to the respectiveMAPK3-1, andMAPK3-2
paralogs. The results provide clear evidence that DMI1-3, DMI2-
7, and DMI3-2 influence the RTAs of MAPK genes that function
downstream during PTI and ETI. The unique functions of the
DMI paralogs as it relates to MAPK gene expression and gene
expression in general are discussed subsequently.

DISCUSSION

The capability of EPNs to impair symbioses indicates the
molecular signaling machinery responses associated with
symbiosis and pathogenicity are intertwined at some level. The
knowledge of different DMI genes functioning at different points
in the CSP and the expression of G. max homologs occurring
within syncytia undergoing a defense response were a reasonable
place to start an analysis. General aspects of plant signaling are
accomplished through a number of basic pathways. Among these
pathways is MAPK signaling, and several lines of evidence link
symbiosis to MAPK signaling. Analyses in theG. max-H. glycines
pathosystem demonstrate the importance of MAPK signaling to
its defense response so it is examined further here in relation to
the DMI genes.

Identification of G. max DMI Genes
The experimental analysis presented here explores a prior
observation of DMI3 expression occurring in syncytia
undergoing the defense process to H. glycines parasitism
(Klink et al., 2010b). Analyses presented here reveal that the
DMI3 identified in Klink et al. (2010b) is DMI3-2. The result
indicates that genes acting in the CSP may also function
in defense.. The experiments presented here focus in on a
specific subset of CSP genes, DMI1, DMI2, and DMI3. G. max
homologs of DMI1 (3 paralogs), DMI2 (12 paralogs), and
DMI3 (2 paralogs), while splice variants are also identified.
Analyses of other genomes of select agriculturally important
crops identify their DMI1, DMI2, and DMI3 gene families, and
splice variants. The examined genomes have between 1 and 7
(or more depending on stringency) DMI1 paralogs with the
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FIGURE 6 | The effect that DMI1, DMI2, and DMI3 -OE or -RNAi had on the RTA, presented as FC, of MAPK3-1, and MAPK3-2, confirmed by RT-qPCR as

calculated by 2−11CT (Livak and Schmittgen, 2001). (*) p < 0.05, Student’s t-test (Yuan et al., 2006). Please refer to Materials and Methods subsection: Real-time

quantitative PCR (RT-qPCR), for details.

hexaploid T. aestivum having by far the most (7). The examined
genomes have between 0 and 3 DMI2 and DMI3 paralogs with
B. rapa (rape seed) and B. vulgaris (sugarbeet) having none.
A. thaliana lacks DMI3, thought to explain one of the reasons
why it cannot establish symbiosis with AM fungi (Zhu et al.,
2006). This observation may also partially explain their absence
in B. rapa and B. vulgaris. Splice variants of conserved genes
are important in the plant defense process (Bazin et al., 2020).
Alternative spliced transcripts are present within the syncytium
and are an important feature that G. max employs in its defense
response toward H. glycines infection (Lawaju et al., 2020; Klink
et al., 2021b). The bioinformatics analyses presented here also
identify numerous splice variants of the DMI genes. Some of
the genomes, in particular T. aestivum, exhibit large numbers
of predicted splice variants, their nature requiring functional
experimentation to determine a biological role.

DMI Genes Are Expressed in Root Cells
Undergoing a Defense Function
Since a goal here is to examine the function of the G. max
DMI genes, comparisons to syncytium gene expression data
leads to the confirmation of one paralog of each gene family
being expressed within the syncytium undergoing the defense
response. This observation allows for narrowing down the
number of studied paralogs to one per gene family. However,
the expression of a number of DMI genes are not determined
because probe sets for those genes do not exist on those G. max
microarrays and, thus, require further analysis beyond this works’
scope. The functional examination of genes expressed in root
cells undergoing defense to H. glycines is a sound approach to
identify genes that function in impairing its parasitism (Matsye
et al., 2011, 2012; McNeece et al., 2019; Klink et al., 2021a).
Consequently, the DMI1-3, DMI2-7, and DMI3-2 genes have
been cloned and engineered here for OE and RNAi into G. max

in the targeted genotypes for functional transgenic studies as
compared to their respective controls. Transgenic OE and RNAi
of DMI1-3, DMI2-7, and DMI3-2 lead to the expected increase
in their RTAs while their RNAi leads to their expected decreased
RTAs. The effect that the DMI1-3, DMI2-7, and DMI3-2 OE
and RNAi cassettes have on expression is further shown here
to continue to occur at 6 dpi at a time point when the natural
defense response has concluded. The effect that the DMI1-3,
DMI2-7, and DMI3-2 OE and RNAi cassettes have on H. glycines
parasitism as compared to their respective controls (discussed
in the next section) are reflective of their expression within
syncytia undergoing a defense response. Among the transgenic
experiments,DMI1-3OE leads to a 2.1-fold increase in root mass.
This observation is not surprising since the stimulation of DMI1
and DMI2 signaling in M. truncatula results in an increase in
lateral root formation (Oláh et al., 2005).

Functional Transgenic Analyses Reveal a
Defense Role for G. max DMI Genes
The functional transgenic studies are the OE and RNAi of
the DMI1-3, DMI2-7, and DMI3-2 genes as compared to their
relevant transgenic controls. The analyses then follow infection
by H. glycines during a 30 day time course, leading to the
quantification of their effect on parasitism as measured through
the FI. The expected experimentally-affected increase in DMI
RTA in the OE roots is observed as compared to the controls,
as demonstrated by RT-qPCR of RNA sample template isolated
from in the H. glycines-susceptible G. max[Williams82/PI518671]. In
contrast, a decrease in DMI RTA is observed as compared to
the controls, as demonstrated by RT-qPCR using RNA template
isolated from the roots of the DMI -RNAi root RNA of the H.
glycines-resistant G. max[Peking/PI548402] (Livak and Schmittgen,
2001). These outcomes provide the set criteria required for the
infection of transgenic DMI1-3, DMI2-7, and DMI3-2 -OE and
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-RNAi roots and respective controls by H. glycines. Hundreds
of gene constructs, experimented on in this pathosystem once
these criteria have been met, include genes functioning in
the PTI and ETI defense branches which converge on the
MAPK signaling platform (McNeece et al., 2019; Klink et al.,
2021a). The experimentally-induced expression of G. max PTI
components including BRI1-ASSOCIATED RECEPTOR KINASE
1 (BAK1) BAK1-1, and BOTRYTIS INDUCED KINASE1 (BIK1),
BIK1-6, and ETI components including the bacterial effector
harpin,NON-RACE SPECIFIC DISEASE RESISTANCE 1 (NDR1)
NDR1-1, and the nitrate-induced (NOI) domain-containing,
intrinsically disordered, molecular recognition feature (MoRF)-
containing RPM1-INTERACTING PROTEIN 4 (RIN4) RIN4-4
all increase MAPK3-1 and MAPK3-2 RTA and function in the
defense response that G. max has to H. glycines parasitism (Wei
et al., 1992; Century et al., 1995, 1997; Gopalan et al., 1996; Li
and Chory, 1997; Desikan et al., 2001; Li et al., 2002; Mackey
et al., 2002, 2003; Day et al., 2006; Veronese et al., 2006; Pant
et al., 2014; Sun et al., 2014; Aljaafri et al., 2017; McNeece et al.,
2017, 2019; Klink et al., 2021a). The results of enumerating H.
glycines from the transgenic roots demonstrates that the OE
of DMI1-3, DMI2-7, and DMI3-2 genes leads to a significant
decrease in H. glycines parasitism as compared to the pRAP15-
ccdB OE control in the otherwise H. glycines-susceptible G.
max[Williams82/PI518671] genetic background. In contrast, RNAi of
DMI1-3, DMI2-7, and DMI3-2 genes, leads to an increase in
H. glycines parasitism as compared to the transgenic pRAP17-
ccdB RNAi control in the otherwise normallyH. glycines-resistant
G. max[Peking/PI548402] genetic background. The combination
of decreased parasitism in the otherwise normally H. glycines-
susceptible genetic background G. max[Williams82/PI518671] and
increased parasitism in the otherwise normally H. glycines-
resistant G. max[Peking/PI548402] genetic background are taken as
evidence that the gene functions in the defense response because
of the ability to obtain these opposite outcomes that are caused
by target gene OE and RNAi (Pant et al., 2014; Sharma et al.,
2016; McNeece et al., 2019; Klink et al., 2021a). DMI1, DMI2,
and DMI3 function at different stages of the CSP (Catoira et al.,
2000; Ané et al., 2002, 2004). This observation is similar to
those made by McNeece et al. (2019) for the MAPK defense
signaling pathway. Therefore, the CSP, containing theDMI genes,
appears to function in complex ways during the defense process
and whose understanding may benefit by examining their gene
regulation in relation to MAPK signaling (Francia et al., 2011).

The determination that the G. max DMI genes function
in complex ways began with the observation that a large
difference exists in the DMI1-3-OE pg FI analysis as compared
to the wr analysis. As stated, these observations are not
surprising since stimulation of DMI1 and DMI2 signaling in
M. truncatula results in an increase in lateral root formation
which would be expected to lead to an increase in root
mass (Oláh et al., 2005). The observation that the CCaMK
DMI3 has a defense role is consistent with observations
that a G. max calmodulin (Glyma.19G068300) also functions
in the defense process (Matthews et al., 2013). With the
demonstration that DMI1-3, DMI2-7, and DMI3-2 genes
function in defense, further characterization of the genes began in

order to understand the possible function(s) that they may have
in signaling.

MAPKs and Symbiosis
Lupinus albus (white lupine) is capable of undergoing a salt-
induced stress response that leads to the expression of MAPKs
(Fernandez-Pascual et al., 2006). Some of these MAPKs are
activated (phosphorylated) after host infection with the nodule-
inducing Bradyrhizobium sp. (Fernandez-Pascual et al., 2006).
The MAPK activation process happens in the root’s infection
zone and is impaired by MAPK inhibitors, indicating a positive
role that MAPKs have in this nodulation process (Fernandez-
Pascual et al., 2006). MAPKK inhibitors also alter the nodulation
pattern (Fernandez-Pascual et al., 2006). The altered nodulation
includes decreasing the number andmass of nodules in the upper
root while increasing them in the lower register of the root
zone, with MAPK inhibition blocking early infection events and
delaying the nodule developmental process (Fernandez-Pascual
et al., 2006).

In contrast, results demonstrate that MAPK signaling can
also interfere with nodulation. The M. truncatula MtMKK5-
MtMPK3/6 signaling module impairs the early symbiotic nodule
formation process, and it is believed the MAPK system’s role
occurs upstream of ERF Required for Nodulation 1 (ERN1)
and Nod factor Signaling Pathway 1 (NSP1) (Ryu et al., 2017).
MtMKK5 OE in M. truncatula stimulates stress and defense
signaling pathways, reducing nodule formation (Ryu et al.,
2017). Furthermore, treatment with the MAPK U0126 inhibitor
enhances nodule formation while increasing the RTA of the
early M. truncatula Nodule Inception nodulation (MtNIN) (Ryu
et al., 2017). MtMKK5 directly activates MtMPK3/6, promoting
their physical interaction with the early nodulation ERN1 and
NSP1 transcription factors (Ryu et al., 2017). The Sinorhizobium
sp. strain NGR234 Nodulation outer protein L (NopL) is a
Rhizobium-specific type 3 effector that acts in nodulation (Zhang
et al., 2011). Treatment of Phaseolus vulgaris (common bean)
with strain NGRΩnopL having a mutated nopL leads to the
development of ineffective, senescing nodules, indicating that
NopL antagonizes nodule senescence (Zhang et al., 2011). NopL
interferes with MAPK signaling in Nicotiana tabacum (tobacco),
suppressing apoptosis induced by the OE of the MAPK gene
Salicylic acid-induced protein kinase (SIPK) OE or constitutive
activity caused by a SIPK(DD) (mutation in the TXY motif)
(Zhang et al., 2011). NopL acts by mimicking a MAPK substrate
and by doing so, impairs MAPK signaling which results in
suppressing premature nodule senescence (Zhang et al., 2011).
A second type 3 secreted effector, the E3 ubiquitin ligase NopM,
is shown through In planta NopM expression in N. tabacum
to induce cell death, stimulating effector-triggered immunity
responses and NopM expression in L. japonicus reduces nodule
formation (Xu et al., 2018). Phosphorylation of NopM by the
salicylic acid-induced protein kinase (NtSIPK) MAPK occurs in
vitro (Xu et al., 2018). In L. japonicus, Symbiosis receptor-like
kinase (SymRK) mediates the legume-Rhizobium symbiosis (Yin
et al., 2019). SymRK is the ortholog of DMI2, interacting with
NFR1 and NFR5 in promoting NF signaling. The MAPKK SIP2
is a SymRK-interacting protein that positively regulates nodule
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organogenesis (Yin et al., 2019). This result directly links the
DMI2 membrane receptor to MAPK signaling. Furthermore,
LjMPK6 is a phosphorylation target of SIP2 (Yin et al., 2019).
LjMPK6 RNAi decreases nodule primordia (NP) and nodule
number, while LjMPK6-OE increases nodule, infection threads
(ITs), and NP numbers demonstrating a positive role for
LjMPK6 in nodulation (Yin et al., 2019). Further exploration
of the LjMPK6 phosphorylation in relation to nodulation
identify the LjMPK6-interacting type 2C protein phosphatase,
LjPP2C, which dephosphorylates LjMPK6 in vitro and in vivo
in, functioning to fine-tune nodule development after rhizobia
inoculation (Yan et al., 2020). Analysis of hairy root transformed
plants demonstrate a non-phosphorylatable mutant LjMPK6
(T224A Y226F) mimics LjPP2C, illustrating LjPP2C phosphatase
dephosphorylates LjMPK6 to fine tune nodule development in L.
japonicus (Yan et al., 2020). The upstream SIMK activator SIMK
kinase (SIMKK) infected with Sinorhizobium meliloti show in
SIMKK RNAi lines exhibiting downregulation of both SIMKK
and SIMK, having reduced root hair growth while also having
a decrease in ability to form infection threads and nodules
(Hrbáčková et al., 2021). Constitutive SIMK OE promotes root
hair growth, infection thread, and nodule clustering (Hrbáčková
et al., 2021). The results are consistent with the involvement of
DMI genes in G. max in AM symbioses (Navazio et al., 2007).
Furthermore, the results identify a link between DMI genes
and MAPKs.

Phosphoproteomic analyses made in conjunction with gene
expression studies of NF-induced control and dmi3 mutants
identify gene expression changes and phosphorylation events
correlating with nodulation (Rose et al., 2012). Consequently, not
only do the DMI genes function at specific stages of the CSP,
but also govern gene expression. A dmi3-mediated feedback loop
also exists and is present for interactions involving the response
to symbiotic AM fungi (Rose et al., 2012). DMI3 plays a role in
the epidermis and cortex during symbiosis (Rival et al., 2012).
DMI functions in the activation of downstream genes that act in
symbiosis (Czaja et al., 2012). Rhizobia and purified NFs induce
the expression of M. truncatula DMI3 leading to the expression
of AM symbiosis and nodulation ATP-binding cassette (ABC)
B-type transporters including ABCB for mycorrhization and
nodulation1-3 genes (AMN1, AMN2, and AMN3) (Roy et al.,
2021). DMI is also regulated by plant hormones, including
abscisic acid (ABA) (Ni et al., 2019). In O. sativa, ABA inhibits
rice protein phosphatase PP45 which occurs through H2O2

leading to relieving DMI3 repression (Ni et al., 2019). The
inactivation of DMI3 by PP45 occurs by dephosphorylating
Thr-263 in DMI3. ABA-induced H2O2 production occurring
through the NADPH oxidases inhibits the PP45 activity of PP45
by inhibiting PP45 expression and by oxidizing Cys-350 and
Cys-428 residues, forming PP45 intermolecular dimers, blocking
the interaction between PP45 and DMI3, preventing PP45-
mediated DMI3 activity inhibition. DMI3 also plays roles in the
regulation of genes whose expression is important to nodulation,
including CCAAT-box-binding transcription factors (Laloum
et al., 2014). Other downstream genes include M. truncatula
auxin resistant 1/like aux1 (AUX1/LAX) influx carriers, LAX
(MtLAX), M. truncatula pin-formed (PIN) efflux carriers

(MtPIN), and M. truncatula MtABCB gene families (Shen et al.,
2015). These genes, characterized in roots and shoots, indicate
that three representative auxin transporters (MtLAX3, MtPIN7,
and MtABCB1) have their plasma membrane localizations up-
regulated in the roots by Sinorhizobium meliloti infection in the
wild type (WT) but down-regulated in both the roots and shoots
of dmi3 (Shen et al., 2015). The impairment of symbiosis by
EPNs indicates the processes are antagonistic. Gene expression
studies would provide some evidence supporting the hypothesis.
The expression of the G. max DMI3-2 in syncytia experiencing
defense is consistent with the observation that symbiosis genes
can also have a dual function in defense (Mitra et al., 2004;
Klink et al., 2010b). The experiments presented here place those
observations into the context of gene defense function, gene
expression, and gene co-regulation.

MAPKs Regulate DMI Gene Expression to
Levels Below the Cutoff Threshold
An examination of the RNA-seq data identifies a lower threshold
of MAPK-regulated DMI expression occurring at a statistically
significant level for eachDMI gene. This description focuses in on
the syncytium-expressed DMI1-3, DMI2-7, and DMI3-2 genes.
RNA-seq analyses showDMI1-3 RTAs are affected to statistically-
significant levels by RNAi ofMAPK3-1 (FC,−0.6060),MAPK3-2
(FC,−0.2587), MAPK4-1 (FC, 0.3308), MAPK5-3 (FC,−0.6466),
MAPK13-1 (FC, 0.9876), and MAPK20-2 (FC, 0.5488) while
none of the MAPK overexpressing roots affect DMI1-3 RTAs.
Low levels of defense gene expression, including syncytium-
expressed conserved oligomeric Golgi (COG) complex members,
components of the exocyst, and various other genes are reported
(Niraula et al., 2020; Sharma et al., 2020; Klink et al., 2021b).

For DMI2-7, MAPK2-RNAi leads to a decrease in RTA,
confirmed by RT-qPCR and already discussed. However, RNA-
seq analyses show that MAPK2-OE leads to a statistically
significant increase in DMI2-7 RTA (FC, 0.7520). Therefore,
MAPK2 OE leads to an increase in DMI2-7 RTA while its RNAi
decreases its RTA. DMI2-7 is also affected by MAPK16-4-OE
(FC, 1.1583) and MAPK16-4-RNAi (FC,−1.1897) MAPK20-2-
OE (FC, 1.2802) and MAPK20-2-RNAi (FC,−0.8632). However,
while MAPK3-1, MAPK3-2, MAPK4-1, and MAPK6-2 do not
appear to affectDMI2-7 RTAs, expression of their RNAi cassettes
appear to have a negative impact. For example, RNAi of
MAPK3-2 (FC,−0.9913), MAPK4-1 (FC,−1.4813), MAPK5-3
(FC,−1.3200), and MAPK6-2 (FC,−0.5781) appear to decrease
DMI2-7 RTAs.

For DMI3-2, the OE of MAPK2, and MAPK5-3 and -RNAi
genetic cassettes have opposite effects on their RTA as described.
Other effects on DMI3-2 RTA are caused by MAPK20-2-OE
(FC, 1.2524), meaning its OE and RNAi have opposite effects as
well. Furthermore, MAPK3-1 RNAi increases DMI3-2 RTA (FC,
1.4055), but not as much as MAPK3-1 OE. While MAPK6-2-
OE has no effect on DMI3-2 RTA, its RNAi increases its RTA
(FC, 1.0043).

MAPK3 As It Relates to DMI Expression
MAPK3 is one of the most studied MAPKs as it relates to plant
defense (Desikan et al., 1998; Asai et al., 2002; McNeece et al.,
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2019). The expression of each of the G. max MAPK3 paralogs
(MAPK3-1, and MAPK3-2) in each of the DMI1-3, DMI2-7,
and DMI3-2 overexpressing and RNAi lines are examined here
to determine whether a relationship exists between them. The
results of those analyses show that DMI1-3 overexpressing roots
have an increase in transcript abundance for MAPK3-1, and
MAPK3-2. The results of those analyses also show that DMI1-3
RNAi roots have a decrease in RTA forMAPK3-1, andMAPK3-2.
Consequently, it is evident that altered DMI1-3 expression leads
to modulated MAPK3-1, and MAPK3-2 expression, linking the
two pathways from a transcriptomic level. As stated earlier, DMI1
is a nuclear membrane protein that is necessary for the initiation
of NF-induced Ca2+ spiking response in root hairs and functions
upstream of DMI3, NSP1, and NSP2 (Wais et al., 2000).

An examination of the DMI2-7-OE RNA shows no effect
on the RTA for MAPK3-1, and MAPK3-2. In contrast, DMI2-7
RNAi roots have a decrease in RTA for MAPK3-1, and MAPK3-
2. Therefore, it is clear that decreased DMI2-7 RTAs leads to
suppressed MAPK3-1, and MAPK3-2 expression in the RNAi
roots, while no effect is observed in the DMI2-7-OE roots.
These results also link the DMI and MAPK3 pathways from
a transcriptomic standpoint. The observation that DMI2-7 OE
does not affect MAPK3-1 or MAPK3-2 RTAs is noteworthy.
It is possible that the maximum number of DMI2-7 plasma

membrane receptors are already present, achieving maximum
sensitivity. Consequently, a further increase through OE does
not affect downstream MAPK3-1 or MAPK3-2 levels, indicating
a possible negative feedback regulation in this case.

An examination of the DMI3-2-OE RNA shows an increase
of the RTA, but only for MAPK3-1 while MAPK3-2 is not
affected. In contrast, an examination of the DMI3-2-RNAi RNA
shows a decrease of the RTA, but only for MAPK3-1 while
MAPK3-2 is not affected. This result demonstrates that there
is a level of specificity in relation to the direction of influence
that the DMI pathway has on defense. McNeece et al. (2019)
demonstrates that the plasma membrane protein NDR1, also
known as HARPIN INDUCED1 (HIN1), which can become
increased in its RTA by the bacterial effector harpin, leads
to co-regulated expression occurring between MAPK3-1, and
NDR1. Furthermore, MAPK3-1 OE leads to increased RTA
of the Rhg4 gene serine hydroxymethyltransferase, galactinol
synthase (GS-3), reticuline oxidase (RO-40), and xyloglucan
endotransglycosylase/hydrolase 43 (XTH43) (McNeece et al.,
2019). Each of these genes function effectively in the defense
response that G. max has toward H. glycines (Matthews et al.,
2013; Pant et al., 2014; Klink et al., 2017). In the case of XTH43,
it functions to shorten xyloglucan chains, create more of those
shorter chains, and make more xyloglucan (Niraula et al., 2021).

FIGURE 7 | Model. (A) The plasma membrane (PM) receptor DMI2 which interacts with HMG-CoA reductase (3-hydroxy-3-methyl-glutaryl-coenzyme A reductase)

(HMGR), and Nod factor receptors (NFR1 and NFR5), propagate signals that migrate either directly through the nuclear membrane or through nucleoporins (N),

leading to the generation of calcium waves that involve the Type IIA calcium ATPase MCA8, and necessary to activate calmodulin and DMI3. The process concludes

with an effective Rhizobium-legume symbiosis (RLS). The signaling process involves the engagement of the potassium channel DMI1. RNA-seq analyses, confirmed

by RT-qPCR experiments, highlighted that some of the MAPKs undergoing transgenically-altered expression affects DMI RTAs as presented as their FC. Some of the

involved MAPKs were determined to be expressed in syncytia undergoing the defense response (asterisk [*]) (McNeece et al., 2019). *expressed in syncytia

undergoing a defense response. (adapted from Genre and Russo, 2016). (B) The G. max CSP, PTI, and ETI pathways converge on MAPK signaling, leading to

downstream processes that function in defense to H. glycines parasitism. The hashed arrow between the CSP and PTI and ETI receptors is positioned because

questions remain whether they directly influence their relative abundances (?).
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The result provides actual biochemical support to the histological
and ultrastructural observations that the cell walls do not expand
during the defense response which normally happens during a
susceptible response (Ross, 1958; Endo and Veech, 1970; Gipson
et al., 1971; Riggs et al., 1973; Endo, 1991; Niraula et al., 2021).

The results presented here demonstrate that crosstalk occurs
between the DMI-containing CSP and MAPK pathways. These
results are significant because they point to the possible
interaction occurring between the CSP and defense signaling,
two ancient pathways found in land plants, and it is already
known that PTI and ETI function through MAPKs in the G.
max-H. glycines pathosystem (Figure 7). The results provide a
genetic basis to further examine the CSP. Functional experiments
aimed at examining all of the DMI1, DMI2, and DMI3 paralogs
would provide greater clarity on the roles of these genes in these
processes. Determining whether DMI2 functions analogously as
a co-receptor for NFR1 and NFR5 which bind NFs much like
BAK1 does to various PRRs including FLAGELLIN-SENSITIVE
2 (FLS2), EF-Tu RECEPTOR (EFR) and the DAMP PEPTIDE 1
RECEPTOR (At-PEPR1) during defense processes is of interest
(Li and Chory, 1997; Veronese et al., 2006; Zipfel et al., 2006;
Chinchilla et al., 2007; Zhang et al., 2010; Liu et al., 2013).
Like what has already been shown for H. glycines defense in G.
max, an examination of other genes in the nodulation or CSP
pathways would allow for greater resolution in understanding
the defense process (Klink et al., 2021a). Lastly, transcriptomic
analyses including RNA-seq of DMI1, DMI2, and DMI3 OE and
RNAi roots may also provide greater resolution in understanding
the intricacies of the roles these genes play in the defense process.
The results are consistent with experiments that show symbiosis-
inducing organisms (AM) are capable of propagating Ca2+ spikes
in G. max while also inducing the expression of heterologously
expressedM. truncatula DMI1, DMI2, and DMI3 (Navazio et al.,
2007). Recent experiments show a reduction of 59-81% in cysts
in AM-inoculated soybean, consistent with the results presented
here where molecular context is provided (Pant et al., 2014;
Aljaafri et al., 2017; McNeece et al., 2017, 2019; Pawlowski and
Hartman, 2020; Klink et al., 2021a). An examination of other
CSP genes and those that are not as well-conserved will provide
additional, needed detail. Both defense and symbiosis processes
involve the generation of Ca2+ signaling with defense involving
cytoplasmic signals and symbiosis involving nuclear signals. The
results presented here indicate the function and impact of the
CSP regarding the interconnectedness of symbiosis and defense
is far greater that previously appreciated. Part of its impact will
be generating symbiotic interactions and defense processes where
they currently do not exist or are not effective. Consequently, a
functional transgenic examination of all DMI1-3 paralogs and
additional CSP genes in relation to defense and symbiosis are
of interest.
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SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
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842597/full#supplementary-material

Supplementary Figure 1 | Transgenic roots obtained from 6 dpi H.

glycines-infected chimeric plants having genetically engineered roots and

un-engineered shoots that were generated through the K599-mediated genetic

transformation procedure. Please refer to Materials and Methods subsections:

DMI gene cloning, and G. max genetic transformations, for details. FC was

calculated by 2−11CT (Livak and Schmittgen, 2001; Klink et al., 2021a). The RTA

of the candidate defense genes, presented as a FC, in the transgenic roots was

compared using the G. max ribosomal protein gene RPS21 (Glyma.15G147700).

The RT-qPCR analyses examined 3 experimental replicates (individual root

systems) of DMI1-3, DMI2-7, and DMI3-2 -OE or -RNAi roots as compared to

their pRAP15-ccdB, and pRAP17-ccdB controls, respectively, from each of the 3

biological replicates. Each experimental replicate was run in triplicate using the

same RNA. (∗), statistical significance of p < 0.05, Student’s t-test (Yuan et al.,

2006). Please refer to Materials and Methods subsection: Real-time quantitative

PCR (RT-qPCR), for details.

Supplementary Table 1 | PCR, and RT-qPCR primers used in the analysis.

Supplementary Table 2 | Raw DMI DCM data. Each experiment was replicated

independently 3 times. Consequently, each experiment included three

independent biological replicates. The cell (pericycle control, or syncytium)

samples, obtained at different times have been presented as their respective time

point (dpi). The three independent biological replicates included RNA samples

isolated from the collected cells for each uninfected control (0 dpi), and H.

glycines-infected (3, and 6 dpi) sample for each G. max genotype (G.

max[Peking/PI548402], and G. max[PI88788]). The replicated experiments, enacted at

different times, were performed using three different microarrays (arrays) per H.

glycines-resistant G. max genotype. These H. glycines-resistant G. max genotypes

included G. max[Peking/PI548402], and G. max[PI88788]. Red, gene expression was

measured (M); blue, gene expression was not measured (NM); gray, not applicable

(n/a) because no probe set existed on the microarray to measure expression for

that gene (Klink et al., 2010a). The DCM analysis that led to the results occurred

using data derived from the three independent replicates with a statistical

significance threshold of p < 0.05, Mann–Whitney–Wilcoxon (MWW) Rank Sum

Test (Mann and Whitney, 1947). The genes highlighted in yellow were studied

subsequently in the functional transgenic experiments (presented in Figures 1, 2).

Accession 1: Wm82.a1.v1.1 (2010) annotation. Annotation 2: Wm82.a2.v1 (2015)

annotation. Please refer to Materials and Methods subsection: The identification of

DMI gene families and root cell-specific expression, for further details.

Supplementary Table 3 | Summarized G. max DMI genes expressed in

syncytia. Gene families and syncytium expression profiles were presented in

Supplementary Table 2. The DMI protein family members were identified from

the G. max genome through conceptual translation of their gene sequences

according to the procedures outlined in the Materials and Methods subsection:

Selection of candidate genes. The accessions had represented the gene identifier

obtained from the G. max genome. The Accession 1 identifier was obtained from

the later 2015 (Wm82.a2.v1) annotation. The Accession 2 identifier was obtained

from the earlier 2010 (Wm82.a1.v1.1) annotation. Annotation 2 relates directly to

the annotation used in the Klink et al. (2010a,b) Affymetrix® gene expression

study employed to generate the gene expression data for the syncytium

undergoing the defense process. Table header description: Affymetrix® p/s, probe

set identifier relating to the probe set that was fabricated onto the microarray and

used to generate the gene expression data. Annotation, the G. max genome

annotation of the gene. Time points, the time point (dpi), of H. glycines infection at

which time the G. max root cells was collected by LM with their isolated RNA used

for the gene expression study. Homologs identified to be expressed in syncytia

undergoing the defense response, and not in control cells, studied in the functional

transgenic analyses was highlighted in yellow. Blue, expression not measured

(NM) to statistically significant levels, p ≥ 0.05. Red, expression measured (M) to

statistically significant level, p < 0.05. The statistical significance (∗) was calculated

using the Mann–Whitney–Wilcoxon (MWW) Rank-Sum Test, p < 0.05 (Mann and

Whitney, 1947). Please refer to Materials and Methods subsection: The

identification of DMI gene families and root cell-specific expression, for details.

Supplementary Table 4 | DMI1 homologs that exist in select agriculturally

important crops (Tilman et al., 2011; Ray et al., 2013, 2019). Values not in

parentheses have a Blast of e-0. Numbers in parentheses have a Blast cutoff of >

e-0. Please refer to Materials and Methods subsections: G. max DMI gene

identification, and Proteome mining, for details.

Supplementary Table 5 | DMI2 homologs that exist in select agriculturally

important crops (Tilman et al., 2011; Ray et al., 2013, 2019). Values not in

parentheses have a Blast of e-0. Numbers in parentheses have a Blast cutoff of >

e-0. Please refer to Materials and Methods subsections: G. max DMI gene

identification, and Proteome mining, for details.

Supplementary Table 6 | DMI3 homologs that exist in agriculturally important

crops (Tilman et al., 2011; Ray et al., 2013, 2019). Values not in parentheses have

a Blast of e-0. Numbers in parentheses have a Blast cutoff of > e-0. Please refer

to Materials and Methods subsections: G. max DMI gene identification, and

Proteome mining, for details.

Supplementary Table 7 | DMI gene expression in defense MAPK-overexpressing

(MAPK-OE) root RNA as compared to the pRAP15-ccdB control root RNA.

RNA-seq data whose differential expression is presented as an RTA that

represents FC; obtained from Alshehri et al. (2019) (p < 0.001) (Wang and Wang,

2021). Please refer to Materials and Methods subsection: RNA-seq gene

expression analyses of transgenic MAPK -OE and -RNAi root RNA, for details.

Supplementary Table 8 | DMI gene expression in defense MAPK-RNA

interference (MAPK-RNAi) root RNA as compared to the pRAP17-ccdB control

root RNA. RNA-seq data whose differential expression was calculated as an RTA

has been presented as FC; obtained from Alshehri et al. (2019) (p < 0.001) (Wang

and Wang, 2021). Please refer to Materials and Methods subsection: RNA-seq

gene expression analyses of transgenic MAPK -OE and -RNAi root RNA,

for details.
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