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Micronutrient malnutrition is a serious concern in many parts of the world; 

therefore, enhancing crop nutrient content is an important challenge. 

Chickpea (Cicer arietinum L.), a major food legume crop worldwide, is a vital 

source of protein and minerals in the vegetarian diet. This study evaluated a 

diverse set of 258 chickpea germplasm accessions for 12 key nutritional traits. 

A significant variation was observed for several nutritional traits, including 

crude protein (16.56–24.64/100  g), β-Carotene (0.003–0.104  mg/100  g), 

calcium (60.69–176.55  mg/100 g), and folate (0.413–6.537  mg/kg). These data, 

combined with the available whole-genome sequencing data for 318,644 

SNPs, were used in genome-wide association studies comprising single-locus 

and multi-locus models. We  also explored the effect of varying the minor 

allele frequency (MAF) levels and heterozygosity. We identified 62 significant 

marker-trait associations (MTAs) explaining up to 28.63% of the phenotypic 

variance (PV), of which nine were localized within genes regulating G protein-

coupled receptor signaling pathway, proteasome assembly, intracellular signal 

transduction, and oxidation–reduction process, among others. The significant 

effect MTAs were located primarily on Ca1, Ca3, Ca4, and Ca6. Importantly, 

varying the level of heterozygosity was found to significantly affect the 

detection of associations contributing to traits of interest. We further identified 

seven promising accessions (ICC10399, ICC1392, ICC1710, ICC2263, ICC1431, 

ICC4182, and ICC16915) with superior agronomic performance and high 

nutritional content as potential donors for developing nutrient-rich, high-

yielding chickpea varieties. Validation of the significant MTAs with higher PV 

could identify factors controlling the nutrient acquisition and facilitate the 

design of biofortified chickpeas for the future.
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Introduction

Malnutrition, also known as hidden hunger, is a global 
nutritional problem mainly affecting women, infants, children, 
and adolescents. One or more forms of malnutrition abound in 
every country, with multifaceted impacts on humans through 
increased morbidity, disability, stunted mental growth, reduced 
productivity and economic growth, and serious and lasting social 
and medical bearings (FAO, IFAD, UNICEF, WFP, and WHO, 
2017). Micronutrient malnutrition affects more than 2  billion 
people globally (Ritchie and Roser, 2020). Approximately every 
second pregnant woman and 40% of pre-school children in 
developing countries are anemic. According to the World Health 
Organization (WHO) projections, neonatal deaths will increase 
from 46% in 2016 to 52% in 2030 (FAO, IFAD, UNICEF, WFP, and 
WHO, 2017). In 2020, WHO estimated that about 149 million 
children under 5 years suffer from stunting, while 38.9 million are 
overweight or obese. The Global Hidden Hunger Index, one of 
several metrics indicating the severity of micronutrient 
malnutrition, is defined as “alarmingly high” across several 
countries in South Asia (SA) and sub-Saharan Africa (SSA). 
Modern breeding strategies and agronomic practices during the 
Green Revolution have significantly increased major cereal crop 
productivity (Bouis and Welch, 2010), but a simultaneous increase 
in micronutrient malnutrition in many nations, calls for a 
re-evaluation of agricultural efforts to provide a healthy mix of 
sufficient calories and essential nutrients. A sustainable solution 
to malnutrition should link agriculture to nutrition and health 
(Jones and Ejeta, 2016).

Among food crops, legumes serve as an inexpensive and key 
source of protein (20–25%), minerals [iron (Fe), magnesium 
(Mg), potassium (K), phosphorus (P), and zinc (Zn)], vitamins 
(B1, B2, B3, B6, and B9), and omega-3 fatty acids, compared to 
cereals (White and Broadley, 2009). Numerous studies have 
documented the significance of legumes to complement starches 
derived from cereals and root crops, and facilitate nutrient 
absorption (Jukanti et  al., 2012; Mudryj et  al., 2014; Sánchez-
Chino et al., 2015; Foyer et al., 2016). In regions such as SA and 
SSA, legumes have a substantial socio-economic impact on 
driving food and nutritional security. To address the challenges 
related to micronutrient malnutrition and the non-availability of 
nutritious food, selective breeding approaches that tap into the 
genetic variation of nutritional traits in the legume germplasm 
pool will ensure nutritional balance even in adverse ecologies. 
This potential of conventional breeding to increase micronutrient 
density by exploiting and selecting genetic variation from breeding 
material has been established in different studies (Graham and 
Welch, 1996; Graham et al., 1999, 2001). Micronutrient density 
traits are stable across environments. Significant examples include 
identifying orange-flesh sweet potato lines with high levels of 
β-Carotene (>200 μg/g), beans with improved agronomic traits, 
seed type, and 50–70% more iron, and yellow cassava, orange 
maize, iron pearl millet, zinc rice, and zinc wheat bread using 
conventional breeding strategies by HarvestPlus (HarvestPlus 

Annual Report, 2015). Transgenic approaches are useful in this 
context and, in some cases, can be advantageous over conventional 
breeding. However, regulatory and political restrictions for using 
transgenic approaches limit their applicability, best exemplified by 
Golden Rice. However, there is compelling evidence, based on 
micronutrient deficiency rates, that biofortification is feasible for 
nutritional improvement without compromising agronomic traits, 
in addition to the current objectives of developing climate-resilient 
varieties with biotic and abiotic stress tolerance (Garcia-Casal 
et al., 2017; Rehman et al., 2019).

Chickpea (Cicer arietinum L.) is one of the largest cultivated 
food legumes globally and a major source of protein in the 
vegetarian diet (Jukanti et al., 2012). Chickpea protein is the best 
among all legume proteins, as it has good in vitro protein 
digestibility (Sánchez-Vioque et al., 1999; Yust et al., 2003). It is 
also a highly valued source of other nutrients, such as 
carbohydrates, minerals, vitamins, fats, fibers, lipids, and oils. 
Annual global chickpea production is about 14.25 million metric 
tons cultivated on 13.72 million hectares, with India accounting 
for about 70% of global production (FAOSTAT, 2019). However, 
many SA and SSA countries consume cereal-based diets deprived 
of nutrients and bioavailability.

The dawn of the genomics era in the 21st century has 
significantly increased the understanding of genomics research in 
bacterial, plant, and animal species. For example, crop 
improvement efforts in chickpea have greatly benefited from the 
rapid development of high-throughput genotyping technologies 
generating molecular markers to determine the origin and 
diversity of populations (Nayak et al., 2010; Thudi et al., 2011; 
Roorkiwal et al., 2013), elucidating gene expression of complex 
agronomic traits (Varshney et  al., 2013a; Mannur et  al., 2019; 
Rezaei et al., 2019; Bharadwaj et al., 2020; Roorkiwal et al., 2020; 
Barmukh et  al., 2022), and genome sequencing and 
characterization (Jain et al., 2013; Varshney et al., 2013b, 2019). 
These significant developments have irreversibly influenced plant 
breeding, redefining it as “genomics-assisted breeding” (GAB; 
Varshney et al., 2005). Shifting the plant breeding paradigm from 
“breeding by design” to “genome-wide approaches,” genome-wide 
association studies (GWAS) have become a popular approach to 
accelerate breeding, as selections are based on marker-trait 
associations (MTAs) as a response to the combined effect of all 
favorable alleles. Breeding programs for varietal development were 
initially challenged with a low transfer of well-characterized 
genes/QTL, as the genomic regions of interest were identified in 
biparental populations. Alternatively, association mapping in 
diversity panels has accelerated the identification of genomic 
regions associated with agronomic traits by detecting ancestral 
recombination events that caused the non-random association of 
alleles at different loci across the genome. Association mapping, 
in turn, enables a higher mapping resolution than the biparental 
linkage analysis (Zhu et al., 2008).

With the availability of this vast wealth of genomic 
resources, there is much scope to study the nutritional traits in 
chickpea, identify MTAs/QTL using molecular markers, and 
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integrate them in GAB programs (Rehman et  al., 2019; 
Roorkiwal et  al., 2021). GWAS has gained tremendous 
momentum in legumes, with numerous studies reporting 
markers linked to Fe and Zn concentration in lentils (Lens 
culinaris Medik; Khazaei et al., 2017), seed copper (Cu), P and 
K concentrations in chickpea (Ozkuru et al., 2018), Fe chlorosis 
in soybean (Mamidi et al., 2014; Assefa et al., 2020), and Fe 
bioavailability in cooked dry beans (Phaseolus vulgaris L.; 
Katuuramu et al., 2018).

In view of the above, the present study aimed to identify 
MTAs for 12 nutritional traits in the chickpea reference set 
(Upadhyaya et al., 2008), using three different algorithms. These 
include one single-locus [mixed linear model (MLM)] and two 
multi-locus [multi-locus mixed model (MLMM) and Bayesian-
information and linkage-disequilibrium iteratively nested keyway 
(BLINK)] algorithms. Furthermore, we  explored the effect of 
markers by varying the minor allele frequency levels and 
heterozygosity parameters. The latter was found to significantly 
affect the detection of associations contributing to the traits of 
interest. Finally, we identified some potential micronutrient-rich 
accessions that can be  used as donors in chickpea 
breeding programs.

Materials and methods

Germplasm accessions and evaluation

The chickpea genotype-based reference set comprises of 300 
diverse accessions (267 landraces, 13 advanced breeding lines and 
cultivars, seven accessions of wild Cicer, and 13 of unknown 
biological statuses), as described in Upadhyaya et al. (2008). Of 
these, 280 were evaluated in this study for 12 key nutritional traits, 
namely β-Carotene, calcium (Ca), crude protein, folate/vitamin 
B9 (Fo), iron (Fe), magnesium (Mg), manganese (Mn), phytic 
acid, vitamin B1 (Vit B1), vitamin B2 (Vit B2), vitamin B6 (Vit 
B6), and zinc (Zn), at the National Collateral Management 
Services Ltd. (NCML), Vishakapatnam, India. Seeds of the 
accessions were acquired from the ICRISAT gene bank. The 
analyte concentration measurement procedures for unprecedented 
trace impurity detection and sensitive quantitation of nutrient 
elements, using different spectroscopy methods and combustion 
analyses, are explained below.

Elemental analysis for Ca, Fe, Mg, Mn, 
and Zn

About 0.5 g of homogenized seed sample was weighed into a 
digestion tube and digested with suprapure nitric acid using a 
microwave digester (Make: Anton Parr, Model: Multiwave Go). 
The digestate was filtered using Whatman® filter paper no. 42 and 
made up to a volume of 10 ml using ultrapure water in a calibrated 
volumetric flask.

Analyte concentrations were determined using inductively 
coupled plasma–optical emission spectroscopy (ICP-OES; Make: 
Perkin Elmer, Model: 7300DV). Calibration was performed using 
a blank and five matrix-matched standards. The calibration curve 
was fitted using linear regression with a minimum acceptable 
correlation coefficient of 0.995. Ca, Fe, Mg, Mn, and Zn were 
analyzed in radial mode using standard method (Method 984.27). 
Unknown samples were quantified using Winlab 32 software.

β-Carotene analysis

About 1 g of homogenized seed sample was placed into a 50 ml 
centrifuge tube with 6 ml of 1% ascorbic acid (prepared in ethanol) 
and then vortexed for 2 min. Next, 0.5 ml of 80% KOH was added 
to the mixture, vortexed, and heated at 80°C for 10 min. 
Subsequently, 3 ml of cool water and extraction solvent (n-hexane) 
was added, vortexed for 2 min, and centrifuged for 5 min at 
3,500 rpm.

The supernatant layer was collected for the Turbo evaporator 
in the Ria vial. The analysis was repeated by adding 3 ml n-hexane, 
then vortexing and centrifuging for 5 min at 3,500 rpm. The 
supernatant layer was separated into the previously transferred 
vial, and the sample was dried in a Turbo evaporator. The sample 
was reconstituted in 1 ml methanol, sonicated, and centrifuged for 
5 min at 3,500 rpm. Finally, the samples were transferred into 
instrument vials and injected into the ultra-performance liquid 
chromatography- photodiode array detector (UPLC-PDA) for 
analyzing the β-Carotene content (Make: Waters Acquity UPLC 
H-Class) following standard method as described earlier 
(Sundaresan, 2002).

B-complex analysis

About 1 g of homogenized seed sample was placed into a 50 ml 
centrifuge tube with 10 ml HPLC grade water. The sample was 
vortexed for 2 min and then centrifuged for 5 min at 3,500 rpm. 
The supernatant layer (1 ml) was collected in a 15 ml centrifuge 
tube containing 9 ml water. The sample was vortexed and filtered 
through 0.45 μm filter paper.

The filtered sample was collected in a Ria vial (500 μl), added 
500 μl of reagent water. The sample was mixed thoroughly and 
transferred into instrument vials. The prepared sample was 
injected into the liquid chromatography- tandem mass 
spectrometry detector (LC–MS/MS; Make: Waters XEVO TQ-S 
Micro) for B-complex analysis using standard protocol (Martin 
et al., 2016).

Phytic acid analysis

About 1.0 g of finely powdered seed sample was weighed into 
a centrifuge tube. An aqueous solution of 5% trichloroacetic acid 
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(TCA; 25 ml) was added to the sample, vortexed for 2 min, and 
placed in a water bath at 60°C. The mixture was cooled and 
vortexed again for 2 min and centrifuged at 3,000 rpm for 5 min. 
The precipitate was washed twice with 5% TCA and centrifuged 
at 3,000 rpm for 5 min. The supernatants were pooled, and the 
volume was made up to 50 ml with 5% TCA. An aliquot of 20 ml 
was placed into a centrifuge tube before adding 5 ml of 0.25% 
FeCl3. The tube was heated in a water bath at 95°C for 45 min. The 
contents were cooled, and volume made up to 100 ml with distilled 
water, prepared against reagent blank. The available ferric ion was 
determined by reaction with potassium thiocyanate (KSCN), 
which developed a blood-red color. A 1 ml aliquot was transferred 
to a 50 ml volumetric flask, and 10 ml of 29% KSCN was added. 
The solution was calibrated with distilled water and immediately 
read for color at 480 nm in a spectrophotometer (Thermo 
Evolution 201). A reagent blank was run with each set of samples, 
and a standard curve was plotted into series (0.1–5.0 mg/L). A 
total of 10 ml of 29% KSCN was added to the mixture, and the 
samples were immediately analyzed at 480 nm. Phytate content 
was calculated from the iron concentration by assuming a constant 
Fe:P molecular ratio of 4:6  in the precipitate using standard 
method (Wheeler and Ferrel, 1971).

Crude protein analysis

About 0.5 g of finely powdered seed sample was weighed into 
a Pelican digestion tube before adding 0.7 g mercury oxide, 15 g 
powdered anhydrous sodium sulfate, and 25 ml H2SO4. The test 
tubes were placed on a heater in the digestion unit and gently 
heated until foaming ceased and then boiling vigorously until the 
solution became clear. It took about 2 h for the sample to turn pale 
green or light blue. After complete digestion, the digestion unit 
was switched off, and the insert rack with digested samples was 
lifted and placed on a rack stand with an exhaust manifold system. 
This facilitated fast cooling and removed scares acid fumes. In the 
distillation step, 0.1 N HCl was added from the reservoir’s hose to 
the receiver conical flask, and 40% NaOH was added to the located 
sample digestion tube. The ammonia and steam coming from the 
sample were consolidated in the distillation process. The ammonia 
was passed through a glass water condenser.

The ammonia was collected in the receiver solution, removed, 
and taken to a manual burette for titration with 0.1 N NaOH 
solution, using methyl red as an indicator. The equipment used 
was a Pelican Nitrogen Analyzer for combustion based analysis for 
nitrogen (CLASSIC-DX) using Indian standard method (IS: 
7219-1973).

Analysis of phenotypic data

An initial diagnostic analysis was run on each trait using the 
“influence” option based on Mahalanobis distance using the 
R-MVN package (R. v.1.2.5001) to detect potential outliers among 

the individual data points. Based on the biological status of the 
accessions, eight accessions categorized as “others” were filtered 
out. A further quality check of the phenotypic data filtered out 14 
accessions to avoid spurious associations. The working set of 258 
accessions (G1) was used for further analyses. The “corrplot” 
package in R (R. v.1.2.5001) was used to estimate Pearson’s 
correlation among the measured traits, while the “Factoextra” R 
package was used to undertake the principal component analysis 
(PCA) for the filtered data. The frequency distribution plots were 
generated using the “ggplot2” package in the R environment.

Genotypic data

The genotypic data for the 280 accessions were obtained from 
the database of Centre of Excellence in Genomics and Systems 
Biology, ICRISAT (https://cegsb.icrisat.org/openaccessdata; 27). 
The raw genotypic data extracted from the database contained 
1,115,262 SNPs distributed on eight pseudomolecules, Ca1–Ca8. 
The filtering for missing data (≤20%) and minor allele frequency 
(MAF) ≥2% for Ca1–Ca8 using vcftools led to the first working 
set of 318,644 SNPs (referred to as 318 K) and an additional filter 
for the rate of heterozygosity (Ho) ≤0.5% led to a working set of 
73,968 SNPs (referred as 74 K) in the second working set. To 
further explore the effect of MAF and Ho levels, we generated 
matrices with MAF ≥5% and Ho ≤5% (Supplementary Table 1).

Genetic structure

Genetic diversity among the accessions of the working set was 
studied with the 318 K marker matrix using the neighbor-joining 
(NJ) clustering method in TASSEL 5 (Bradbury et al., 2007) and 
visualized using FigTree v1.4.3 (Rambaut, 2016). The population 
structure was assessed using ADMIXTURE v.1.3.0 (Alexander 
et al., 2009), with the results visualized using the R/pophelper 
(Francis, 2017) package. A series of models for K values ranging 
from 2 to 8 were run with 5-fold cross-validation to prime the 
main algorithm (QuasiNewton) for convergence acceleration. 
Accuracy and precision were ensured by performing 20 runs for 
each value of K, and the K value determined the optimal number 
of clusters with the least cross-validation error.

Association analysis

We performed GWAS with MLM, MLMM, and BLINK 
models using the R/GAPIT 3.0 package and visualization of 
circular Manhattan and Quantile-Quantile (Q-Q) plots using 
the rMVP package (0.99.17; https://github.com/xiaolei-lab/
rMVP). The spurious associations in GWAS were corrected 
using “Bonferroni Correction” (5% level of significance). 
Further, R2 values were generated using the lm function in 
R. The percent phenotypic variance (PV) explained by all 
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significant SNPs detected was output from all models used. The 
PV explained by each significant SNP was calculated as the 
squared correlation between the phenotype and genotype of 
the SNP.

Identification of candidate genes

The genes involving significant SNP markers were aligned 
against the NCBI non-redundant (nr) protein database using 
BLASTX to obtain functional annotations. Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
identification were conducted on these sequences in the KEGG 
pathways in-built in BLAST2GO. The SNPEff-4.3T open source 
program was used for variant annotation and prediction of 
significant SNP effects.

Selection of accessions as potential 
donors

Promising accessions were selected based on favorable alleles 
for nutritional traits and yield advantage, observed in phenotypic 
screening at different environments, as described in Thudi et al. 
(2014). The premise was to identify a set of accessions that can 
be  incorporated in breeding programs for enhancing 
micronutrient density without adversely affecting other agronomic 
traits screened in different environments. Thudi et  al. (2014) 
analyzed the chickpea reference set for 114 agronomic and 
physiological traits at four locations (Kenya, Ethiopia, and 
Patancheru and Kanpur in India) over five seasons (spanning 
2000–09) and two ecologies (rainfed and irrigated). We analyzed 
the nutritional traits dataset generated in the present study and 
datasets from Thudi et al. (2014) for agronomic traits to identify 
accessions as potential donors for breeding high-yielding varieties 
with enhanced micronutrient content.

We used two approaches to identify promising accessions 
from the set of 258 accessions, for superior nutritional and 
agronomic performance in different environments. In the first 
approach, accessions with trait values higher than the population 
median were identified for seed yield (SY; referred as G2) from 
different environments and the 11 nutritional traits, excluding 
phytic acid (referred to as G3). The common set of accessions 
between G2 and G3 were then analyzed for the presence of 
favorable alleles for superior agronomic performance and 
micronutrient content. In the second approach, the nutritional 
data for 12 traits and two agronomic traits, SY and 100-seed 
weight (100SW from Thudi et al., 2014), were used to identify 
superior accessions based on trait correlations and hierarchical 
clustering. A favorable combination of traits was established- 
higher trait values for SY, 100SW, β-Carotene, Ca, crude protein, 
Fo, Fe, Mg, Mn, phytic acid, Vit B1, Vit B2, Vit B6, and Zn, and a 
minimal content of phytic acid. Based on the presence of favorable 
combination of at least two or more traits, accessions were 

identified from each cluster for use as potential donors in breeding 
programs to enhance the genetic potential of chickpea.

Results

Distribution and correlation among 
nutrition traits

The range and population median for 12 phenotypic variables 
(β-Carotene, Ca, crude protein, Fo, Fe, Mg, Mn, Zn, phytic acid, 
and Vit B1, B2, and B6) in 258 accessions from the chickpea 
reference set are presented in Figure  1. Most traits exhibit a 
symmetric distribution, except for Fo and Vit B1, B2, and B6, 
which are skewed. Table 1 shows the broad range of variation in 
the 12 nutritional traits in the reference set, compared to the data 
available on the USDA Food Composition Database.1 This 
includes β-Carotene: 0.003–0.104 mg/100 g (mean 0.044), Ca: 
60.69–176.55 mg/100 g (108.69), crude protein: 16.56–
24.64 g/100 g (20.74), Fo: 0.41–6.54 mg/kg (1.61), Fe: 2.26–
7.25 mg/100 g (4.36), Mg: 64.08–134.57 mg/100 g (100.35), Mn: 
0.67–3.73 mg/100 g (1.78), phytic acid: 2.07–19.38 mg/g (10.68), 
Zn: 1.15–4.59 mg/100 g (2.76), Vit B1: 0.055–0.502 mg/100 g 
(0.189), Vit B2: 0.011–0.638 mg/100 g (0.111), and Vit B3: 0.116–
1.57 mg/100 g (0.411). The PCA of the nutrition traits showed that 
the first two axes explained 41.1% of the total phenotypic variance 
(Figure 2). The accessions did not cluster based on their biological 
status but had varying degrees of relatedness. While Mn and Mg 
contributed the most to the phenotypic variance, crude protein, 
Fo, and Vit B2 accounted for the least. Fo, Fe, Mg, Mn, and Zn 
were inversely related to the concentrations of other analyzed  
traits.

The correlation analysis revealed an interesting trend for the 
key nutritional traits. For instance, crude protein positively 
correlated with Ca (r = 0.3, p < 0.001), as did Ca with Mg (r = 0.47, 
p < 0.001), Mn with Zn (r = 0.43, p < 0.001), and β-Carotene with 
phytic acid (r = 0.45, p < 0.001). In contrast, β-Carotene negatively 
correlated with Mn (r = −0.37, p < 0.001), as did phytic acid with 
Vit B1 (r = −0.35, p < 0.001; Figure 3). These insights will be useful 
in targeting nutrient biofortification in breeding programs.

Genotypic characteristics of the 
population

The MAF and Ho density and distribution of the working set 
of 318 K loci are summarized in Supplementary Table 2. The Ho 
distribution varied among Ca1–Ca8, with an average of 0.72%, 
with more heterozygous calls identified mainly on Ca2, Ca3, Ca4, 
Ca7, and Ca8. Uneven distribution of markers along the genome 
was characterized by an average density of 644 markers per Mb. 

1 https://fdc.nal.usda.gov/fdc-app.html#/food-details/173756/nutrients
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Genomic regions with high marker density were observed on Ca1 
and Ca4, with an average magnitude of 766 and 1,364 markers per 
Mb and high-density regions between 1–8  Mb on Ca1 and 
26–46 Mb on Ca4. The distribution of markers along the eight 
linkage groups is depicted in Supplementary Figure 1.

Phylogenetic diversity illustrated by the unweighted neighbor-
joining tree (Figure 4A) revealed that the reference set clustered 
independently to biological status and seed type. The clustering 
pattern was validated in the population structure analysis; with an 
optimal K value with the least cross-validation error of 3 
(Figures  4B,C). The PCA output of R/GAPIT (Figure  4D) 
illustrated an indistinct yet broad grouping into three clusters. 
Therefore, population stratification was accounted for using three 
principal components, included as covariates in models for 
association analyses.

GWAS reveals genomic regions 
associated with nutritional traits

Three models (MLM, MLMM, and BLINK) detected 11, 18, 
and 44 MTAs, respectively, for the 12 traits analyzed. Different 
thresholds of MAF and Ho significantly corrected for spurious 
associations in MTA detection using a stringent Ho threshold. The 

number of MTAs detected using genotypic parameters of 
MAF ≥ 0.02, MAF ≥ 0.02 + Ho ≤ 0.5, and MAF ≥ 0.02 + Ho ≤ 0.05 
were 73, 69, and 63, respectively, for all three models combined. 
The corresponding MTAs detected with genotypic parameters of 
MAF ≥ 0.05, MAF ≥ 0.05 + Ho ≤ 0.5, and MAF ≥ 0.05 + Ho ≤ 0.05 
were 41, 14, and 5, respectively, across all three models.

Here, we report the results using genotypic parameters of 
MAF ≥ 0.02 (318 K SNPs) and MAF ≥ 0.02 + Ho ≤ 0.05 (74 K 
SNPs) for the multi-locus methods (Table  2), based on 
inflation values of Q-Q plots. The Manhattan plots show 20 
significant MTAs detected for nine traits using BLINK with 
the 74 K matrix, explaining up to 12.18% PV (Figure 5), with 
five identified on both Ca1 and Ca4, followed by Ca5 (3), Ca6 
(3), Ca2 (2), and Ca3 (2). A SNP locus (Ca3_31771545) 
associated with Zn content explained 12.18% PV, while 
another (Ca2_7953148) linked to Mn content explained 
11.46% PV (Table  2). The MLMM with the 74 K matrix 
detected six significant MTAs for the same five traits, 
explaining 0.02–10.59% PV, with the MTAs for crude protein, 
Vit B6, and Zn validated across models. The 318 K SNP matrix 
detected 24 MTAs with BLINK, explaining up to 28.63% PV, 
and 12 MTAs with MLMM explaining 0.01–28.03% PV. Eight 
of these 36 MTAs were cross-validated across models for crude 
protein, Fo, and Vit B2 and B6. For instance, the MTA for Fo 

FIGURE 1

Phenotypic variation for 12 nutritional traits assayed within the chickpea reference set. Within each histogram plot, bold dashed line represents the 
median. The range and median for each trait are specified in the respective grid.
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content (Ca5_664616) using BLINK explained 28.63% PV, 
while MLMM explained 28.03% PV. Importantly, both 
matrices and models validated a single association detected for 
crude protein on Ca6_57802709 (Supplementary Figure 2). 
Eight significant associations for Fo were detected using 
BLINK with the 318 K matrix, with two validated using the 
MLMM model (Supplementary Figure  3). One significant 
MTA for Fe was detected using MLMM with the 318 K matrix, 
while one MTA for Mg was detected on Ca4 using the MLMM 
model with both matrices. Most of the significant MTAs 
detected (Table 2) concentrated on Ca1, Ca3, Ca4, and Ca6.

We assessed the favorable allelic combinations between 
nine significant marker loci for seven nutrition traits detected 
within the annotated genes and analyzed the effect of major 
and minor alleles on controlling favorable higher 
micronutrient concentrations. The effect of major allele “C” 
for Zn on Ca1_1204130 accounted for 77.9% of the reference 
set accessions, with a higher nutrient concentration (2.14–
4.58 mg/100 g) than the effect of minor allele “G” in the locus, 
which accounted for 13.6% of accessions. Four associations 
for Vit B1 were detected within the reported genes, with 
major alleles accounting for a high concentration range 
(0.15–0.5 mg/100 g). For example, major allele “T” on 
Ca1_13432853 accounted for 87% of population accessions 
with a high concentration range, while minor allele “C” 
accounted for 2.13%; major allele “T” on locus Ca1_32272158 
accounted for 54% of accessions, while minor allele  
“C” accounted for 31.9%; major allele “A” on locus 
Ca4_4224251 accounted for 81.2% of accessions, while minor 
allele “T” accounted for 6.7%; major allele “G” locus on 
Ca4_13749741 accounted for 41.7% of accessions, while 
minor allele “T” accounted for 41.3%. The association on 
Ca1_32272158 was co-localized for phytic acid and Vit B1, 
with major allele “T” (mentioned above for Vit B1) 
contributing to high phytic acid concentrations 

(9.61–19.38 mg/g). For the association between Ca3_3519666 
and Vit B2, the major allele “G” accounted for 50.9% of 
accessions, while minor allele “A” accounted for 49.8%, but 
there was no pronounced effect contributing to higher Vit B2 
concentration. Similarly, for Ca4_1677219 associated with Fo, 
the major allele “G” accounted for 50.9% of the accessions, 
while the minor allele “T” accounted for 49%. For the 
association between Ca4_17620596 and Vit B6, major allele 
“G” accounted for 87% of accessions contributing to high Vit 
B6 concentrations (0.3–1.4 mg/100 g), while minor allele “A” 
accounted for 3.6%. A single association detected for crude 
protein on Ca6_57802709 had major allele “T” accounting for 
87% of accessions contributing to a high protein concentration 
(19.98–25.41/100 g) and minor allele “A” accounting for 4.4%.

Further, we scrutinized the candidate genes associated with 
these nine significant MTAs detected for seven nutrition traits 
(Table 3). A SNP locus (Ca4_1677219) associated with seed Fo 
content was present within the Ca_07795 gene on Ca4 and 
explained 26.29% PV. A SNP locus (Ca3_3519666) linked to Vit 
B2 content was present within the Ca_12279 gene on Ca3 and 
explained 25.65% PV. In the case of Vit B1, four significant MTAs 
were present within Ca_03836, Ca_04599, Ca_14108, and 
Ca_26128 gene, explaining 6.18–0.002% PV. The association 
detected for phytic acid and Vit B1 were co-localized 
(Ca1_32272158) within the protein-coding sequence of Ca_26128 
gene coding for cytochrome P450 714A1-like. A SNP locus 
(Ca4_17620596) for Vit B6 was localized within the Ca_05368 
gene and explained 6.30% PV. Furthermore, a SNP locus for crude 
protein (Ca6_57802709) and Zn (Ca1_1204130) were present 
within Ca_13661 and Ca_00148 genes, explaining 2.41 and 0.03% 
PV, respectively.

Promising accessions with high nutrient 
content for chickpea improvement

Promising chickpea accessions with high nutrient content can 
be used as donors in breeding programs to develop improved 
varieties for meeting worldwide nutritional demand. Using the 
first approach, we identified 16 accessions from the reference set 
(referred to as G2, Supplementary Table 3) with trait values higher 
than the respective population median values for only SY, in 
different environments (Thudi et al., 2014).

Using data for 12 nutritional traits, a similar selection for 
superior trait range revealed 33 accessions (referred to as G3) with 
desirable trait values higher than the respective population 
median values. The selected accessions (Supplementary Table 4) 
were narrowed to three accessions (referred to as G4), by 
comparing G2 and G3, to identify accessions with superior 
performance for both the 12 nutritional traits and agronomic 
traits from different environments (Supplementary Table 5). An 
overview of the superior performance of G2, G3, and G4 over G1 
is presented in Figure 6. Figure 6A includes six nutrition traits 
(β-Carotene, Ca, crude protein, Fo, Mg, and Vit B2) and SY 

TABLE 1 Descriptive statistics for the key nutritional traits in the 
chickpea reference set.

Trait Range Mean Standard 
deviation

β-Carotene (mg/100 g) 0.003–0.104 0.044 0.022

Calcium (mg/100 g) 60.693–176.550 108.686 25.995

Crude protein (g/100 g) 16.560–24.640 20.738 1.721

Folate (mg/kg) 0.413–6.537 1.609 0.798

Iron (mg/100 g) 2.260–7.248 4.359 1.083

Magnesium (mg/100 g) 64.075–134.566 100.345 14.389

Manganese (mg/100 g) 0.672–3.728 1.782 0.618

Phytic acid (mg/g) 2.070–19.380 10.675 4.095

Vitamin B1 (mg/100 g) 0.055–0.502 0.189 0.113

Vitamin B2 (mg/100 g) 0.011–0.638 0.111 0.091

Vitamin B6 (mg/100 g) 0.116–1.570 0.411 0.243

Zinc (mg/100 g) 1.149–4.585 2.762 0.696
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recorded at three locations under rainfed ecology (Patancheru, 
Kanpur, and Egerton University, Kenya). The 33 accessions in G3 
selected for superior nutritional traits had higher mean 
performance and narrower range than G1 for the six nutrition 
traits depicted.

Similarly, the G2 accessions had higher mean performance 
and a narrower range than G1 for various agronomic and 
physiological traits. However, G2 accessions had a lower mean 
performance for nutritional traits than G3 accessions. Thus, 
we  identified three accessions with superior performance for 
agronomic and nutritional traits (G4). Supplementary Figure 4 
shows the correlation between nutrition and agronomic traits, 
with negative correlations for some traits (crude protein, Fe, Mn, 
and Zn). The G4 accessions will be  a major advantage for 
incorporating into breeding programs targeting abiotic stress 
tolerance and biofortification.

The contribution of major alleles identified in G1–G4 for the 
nine significant MTAs detected within reported genes is depicted 
in Figure 6B. The major alleles at each locus in all four groups 
made varying yet significant contributions to the favorable higher 
trait range. Of the nine loci analyzed, only one (Ca1_32272158) 
had a lower major allele contribution in G4 than G3, while the 
remainder had similar contributions, validating the premise of 
selecting superior accessions for nutrition and agronomic traits.

In the second approach to identify potential donors, 
we analyzed the correlations between the 12 nutritional traits, and 
SY and 100SW from different environments, as described in Thudi 
et al. (2014). The PCA factor graph showed that PC1 and PC2 
accounted for 21.5 and 16.6% of the variation in the measured 
traits, respectively (Supplementary Figure 5). Here, SY and 100SW 
were closely related to Vit B1 and B6 and distantly related to crude 
protein and phytic acid content. β-Carotene content was closely 

FIGURE 2

Principal component analysis for 12 nutritional traits. Projection of 258 accessions in the reference set on the first plane of principal component 
analysis using phenotypic data for 12 traits [β-Carotene, calcium (Ca), crude protein, folate (Fo), iron (Fe), magnesium (Mg), manganese (Mn), phytic 
acid, vitamin B1 (Vit B1), vitamin B2 (Vit B2), vitamin B6 (Vit B6), and zinc (Zn)]. The first two components, PC1 and PC2, explain 41.1% of the 
variance between genotypes.
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associated with phytic acid levels in chickpea seeds. Moreover, Fo 
was closely related to Zn, Fe, and Mg levels. Hierarchical cluster 
analysis classified the 14 traits into three distinct clusters: (1) 
100SW, crude protein, and phytic acid; (2) Mn, Fo, Zn, Fe, 
β-Carotene, SY, and Vit B1, B2, and B6; and (3) Mg and Ca 
(Supplementary Figure 6). The top 30 accessions (1% of reference 
set) were selected based on phenotypic performance for these 14 
traits. Accessions grouped in the same cluster were compared to 
identify accessions for favorable combinations of two or more 
traits. For instance, cluster 1 had two accessions with higher 
100SW, crude protein and lower phytic acid content, four 
accessions with higher 100SW and crude protein, four accessions 
had higher crude protein and lower phytic acid, and three 
accessions with higher 100SW and minimal phytic acid content 
(Supplementary Table 6). Cluster 2 had one accession had higher 

Fe, Zn, Mn, and Vit B1 and B6, one accession had higher Fe, Vit 
B1, Fo, and Mn, one accession had higher Fe, Zn, and Vit B1 and 
B2, one accession had higher Fe, Fo, and Vit B1 and B2, one 
accession had higher Zn, Mn, and Vit B1 and B6, one accession 
had higher β-Carotene, Fo, and B1 and B6, and one accession had 
higher Zn, Fo, Mn, and Vit B1 (Supplementary Table 7). In cluster 
3, eight accessions had higher Ca and Mg content 
(Supplementary Table 8).

Selected intercrossing may facilitate the development of 
improved accessions harboring beneficial alleles for nutritional 
and yield traits in chickpea. For example, ICC15406 and 
ICC13124 (cluster 1) could be crossed with ICC6279, ICC3582, 
ICC2720, ICC8752, ICC16915, ICC11584, ICC7413, or 
ICC2679 (cluster 3) to breed large-seeded chickpea varieties 
with high Ca, Mg, and crude protein, and low phytic acid 

FIGURE 3

Correlation analysis of 12 nutritional traits evaluated using the chickpea reference set. Pearson’s r-values showing correlations between 12 
traits [β-Carotene, calcium (Ca), crude protein, folate (Fo), iron (Fe), magnesium (Mg), manganese (Mn), phytic acid, vitamin B1 (Vit B1), 
vitamin B2 (Vit B2), vitamin B6 (Vit B6), and zinc (Zn)]. Blue indicates positive correlations, and red indicates negative correlations among 
traits; color intensity depicts correlation strength. *significant at < 0.05 level, **significant at <0.01 level, *** significant at < 0.001 level, blank 
for non-significant.
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content. ICC6875 (cluster 2) could be crossed with ICC15406 
or ICC13124 (cluster 1) to breed high Fe, Zn, Mn, Vit B1 and 
B6, 100SW, crude protein, and low phytic acid varieties. 
ICC10755, ICC7272, ICC6306, and ICC8350 (cluster 1) could 
be  crossed with the high-yielding accession (ICC12037). 
ICC13816 could be  crossed with high-yielding accessions 
(ICC1164 and ICC13764) to breed high-yielding large-seeded 
varieties with enhanced crude protein and Vit B1 and B6. 
We also compared the accessions identified in both approaches 
to reveal common accessions—seven accessions (ICC10399, 
ICC1392, ICC1710, ICC2263, ICC1431, ICC4182, and 
ICC16915)—that could be  used in breeding programs as 
potential donors to enhance both, chickpea micronutrient 
content and productivity.

Discussion

Micronutrient malnutrition is characterized by a chronic lack 
of vitamins and minerals in the human diet. For instance, a lack 
of micronutrients, such as Fe, Fo, β-Carotene, and Vit B12 can 
cause anemia. An estimated 42% of children under 5 years of age 
and 40% of pregnant women suffer from anemia globally (World 
Bank Data, 2016). Notably, iron-folic acid supplementation is 
crucial for pregnant women to avoid maternal anemia, puerperal 
sepsis, low birth weight, and preterm birth (WHO, 2016). 
Therefore, enriching chickpea seeds with such micronutrients 
would make it a complete dietary source to address micronutrient 
malnutrition in developing countries. A broad range of variation 
in the 12 nutritional traits was observed in the chickpea reference 
set in the present study. Furthermore, we report SNPs associated 

with 12 nutritional traits and potential donors that can be deployed 
in breeding programs to develop biofortified chickpeas.

Understanding the genetic basis of interactions between 
micronutrients, such as the synergistic effect of Fe, crude protein, 
and the vitamin complex or the competitive effect of β–Carotene 
and phytic acid with the vitamin complex and bioconversion 
factors, is crucial for developing nutrient-rich crops. Nutrient 
bioavailability depends on endogenous (phytic acid, fiber, amino 
acids, and proteins) and exogenous factors in seeds. Legumes 
contain some promoters that enhance mineral bioavailability, even 
in the presence of anti-nutrients. Promoter compounds are natural 
plant metabolites, and only minor changes in their accumulation 
in seeds may be  necessary to impact the bioavailability of 
micronutrients such as inulin, found in small quantities in raw 
samples of lentil, chickpea, red kidney bean, common white bean, 
white bean, and faba bean (Rastall and Gibson, 2015). The present 
study provided important insights into the relationships among 
different nutrition traits in chickpeas.

Population stratification has been established in the chickpea 
reference set (Thudi et  al., 2021), with three clusters/
subpopulations independent of biological status and seed type. In 
the present study, we  detected three subpopulations with 
ADMIXTURE in the reference set, including 258 accessions. In 
accordance with the results obtained in this study, a recent study 
by Varshney et  al. (2019) also reported the presence of three 
subpopulations using genome-wide SNP markers. In another 
study, four subpopulations were revealed in a diverse set consisting 
of 186 chickpea genotypes, using DArT-seq markers (Farahani 
et al., 2019).

Integrating genome-wide sequence information with precise 
phenotypic variation has the potential to detect accessions with 

A B

C D

FIGURE 4

Genetic relatedness and population structure of the reference set. (A) Diversity using unweighted neighbor-joining tree method. (B) Ancestry 
proportions from ADMIXTURE analysis (k = 3), optimal with lowest cross-validation error. Each colored vertical line indicates the proportion of 
ancestral population (k) for each accession. The numbers on X-axis represent the reference set accessions. (C) Cross-validation error for k = 2–8 
from ADMIXTURE analysis. (D) Variation depicted as PCA plot. Clustering pattern independent of biological status and seed type.
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TABLE 2 The MTAs detected for 12 nutritional traits using two multi-locus algorithms and two genotypic matrices based on two levels of Ho 
(≤ default in data and 0.05) with MAF ≥ 0.02.

S No Marker ID Linkage 
group

Position 
(bp)

p Value FDR 
Adjusted 
p values

R2 Genotypic 
parameter

Matrix 
size

Method Trait

1 Ca1_1,204,130 Ca1 1,204,130 3.46E-09 0.000 0.026 MAF_2 318,644 Blink Zinc

2 Ca1_1,234,549 Ca1 1,234,549 0.000000114 0.036 0.008 MAF_2 318,644 MLMM Iron

3 Ca1_6,576,624 Ca1 6,576,624 0.000000502 0.037 0.019 MAF_2_Ho_0.5 73,968 MLMM Vitamin B2

4 Ca1_6,685,915 Ca1 6,685,915 1.37E-10 0.000 0.434 MAF_2 318,644 Blink Vitamin B6

5 Ca1_7,031,080 Ca1 7,031,080 2.75E-12 0.000 0.000 MAF_2 318,644 Blink Zinc

6 Ca1_13,432,853 Ca1 13,432,853 1.03E-08 0.000 0.112 MAF_2_Ho_0.5 73,968 Blink Vitamin B1

7 Ca1_13,610,484 Ca1 13,610,484 1.84E-10 0.000 3.242 MAF_2_Ho_0.5 73,968 Blink Manganese

8 Ca1_23,566,184 Ca1 23,566,184 6.66E-09 0.000 1.934 MAF_2_Ho_0.5 73,968 Blink Vitamin B2

9 Ca1_32,272,158 Ca1 32,272,158 2.15E-09 0.000 0.002 MAF_2_Ho_0.5 73,968 Blink Phytic acid

10 Ca1_32,272,158 Ca1 32,272,158 3.38E-10 0.000 0.002 MAF_2_Ho_0.5 73,968 Blink Vitamin B1

11 Ca1_34,135,643 Ca1 34,135,643 1.02E-08 0.001 0.962 MAF_2 318,644 Blink Vitamin B2

12 Ca2_7,953,148 Ca2 7,953,148 2.72E-09 0.000 11.455 MAF_2_Ho_0.5 73,968 Blink Manganese

13 Ca2_30,146,046 Ca2 30,146,046 2.72E-08 0.001 9.314 MAF_2 318,644 Blink Folate

14 Ca2_33,654,122 Ca2 33,654,122 6.14E-08 0.001 7.121 MAF_2_Ho_0.5 73,968 Blink Vitamin B1

15 Ca2_34,025,270 Ca2 34,025,270 1.46E-08 0.002 10.977 MAF_2 318,644 MLMM Vitamin B6

16 Ca3_3,519,666 Ca3 3,519,666 8.18E-13 0.000 25.651 MAF_2 318,644 Blink Vitamin B2

17 Ca3_3,519,666 Ca3 3,519,666 5.88E-12 0.000 20.149 MAF_2 318,644 MLMM Vitamin B2

18 Ca3_12,856,827 Ca3 12,856,827 4.86E-09 0.000 9.521 MAF_2_Ho_0.5 73,968 MLMM Vitamin B6

19 Ca3_12,856,827 Ca3 12,856,827 8.35E-09 0.000 8.919 MAF_2 318,644 Blink Vitamin B6

20 Ca3_31,771,545 Ca3 31,771,545 4.75E-11 0.000 12.180 MAF_2_Ho_0.5 73,968 Blink Zinc

21 Ca3_31,771,545 Ca3 31,771,545 0.000000215 0.016 10.585 MAF_2_Ho_0.5 73,968 MLMM Zinc

22 Ca3_31,771,545 Ca3 31,771,545 3.02E-08 0.002 11.023 MAF_2 318,644 Blink Zinc

23 Ca3_37,989,135 Ca3 37,989,135 0.000000134 0.003 8.023 MAF_2_Ho_0.5 73,968 Blink Vitamin B6

24 Ca3_37,989,135 Ca3 37,989,135 0.00000051 0.019 8.095 MAF_2_Ho_0.5 73,968 MLMM Vitamin B6

25 Ca4_1,677,219 Ca4 1,677,219 6.83E-10 0.000 26.292 MAF_2 318,644 Blink Folate

26 Ca4_4,224,251 Ca4 4,224,251 4.63E-08 0.001 6.181 MAF_2_Ho_0.5 73,968 Blink Vitamin B1

27 Ca4_11,561,528 Ca4 11,561,528 0.000000166 0.003 0.675 MAF_2_Ho_0.5 73,968 Blink Manganese

28 Ca4_13,749,741 Ca4 13,749,741 0.000000211 0.003 1.280 MAF_2_Ho_0.5 73,968 Blink Vitamin B1

29 Ca4_14,274,204 Ca4 14,274,204 2.6E-09 0.000 3.516 MAF_2 318,644 Blink Vitamin B6

30 Ca4_16,525,546 Ca4 16,525,546 6.65E-08 0.002 7.957 MAF_2_Ho_0.5 73,968 Blink Vitamin B6

31 Ca4_17,620,596 Ca4 17,620,596 6.86E-10 0.000 6.297 MAF_2 318,644 Blink Vitamin B6

32 Ca4_22,136,316 Ca4 22,136,316 4.15E-12 0.000 24.093 MAF_2 318,644 Blink Vitamin B2

33 Ca4_22,136,316 Ca4 22,136,316 1.66E-11 0.000 22.984 MAF_2 318,644 MLMM Vitamin B2

34 Ca4_25,983,206 Ca4 25,983,206 5.46E-08 0.017 8.554 MAF_2 318,644 MLMM Magnesium

35 Ca4_29,622,277 Ca4 29,622,277 1.56E-09 0.000 4.554 MAF_2 318,644 Blink Vitamin B6

36 Ca4_29,622,277 Ca4 29,622,277 1.48E-10 0.000 4.020 MAF_2 318,644 MLMM Vitamin B6

37 Ca4_30,171,713 Ca4 30,171,713 2.73E-10 0.000 3.874 MAF_2 318,644 Blink Vitamin B6

38 Ca4_37,846,900 Ca4 37,846,900 3.85E-09 0.000 2.335 MAF_2 318,644 Blink Folate

39 Ca4_38,936,863 Ca4 38,936,863 0.000000673 0.050 4.577 MAF_2_Ho_0.5 73,968 MLMM Magnesium

40 Ca4_40,475,284 Ca4 40,475,284 5.69E-09 0.000 2.419 MAF_2_Ho_0.5 73,968 Blink β-Carotene

41 Ca4_42,574,243 Ca4 42,574,243 3.67E-20 0.000 8.488 MAF_2 318,644 Blink Folate

42 Ca4_42,574,243 Ca4 42,574,243 3.2E-11 0.000 7.214 MAF_2 318,644 MLMM Folate

43 Ca5_664,616 Ca5 664,616 1.82E-12 0.000 28.631 MAF_2 318,644 Blink Folate

44 Ca5_664,616 Ca5 664,616 4.93E-13 0.000 28.025 MAF_2 318,644 MLMM Folate

45 Ca5_4,272,745 Ca5 4,272,745 0.000000142 0.006 9.051 MAF_2 318,644 Blink Folate

46 Ca5_13,877,854 Ca5 13,877,854 1.51E-11 0.000 1.438 MAF_2_Ho_0.5 73,968 Blink β-Carotene

47 Ca5_21,506,706 Ca5 21,506,706 2.62E-09 0.000 0.000 MAF_2_Ho_0.5 73,968 Blink Vitamin B6

(Continued)
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casual variants that may be responsible for essential phenotypes 
such as enhanced micronutrient concentration. GWAS overcomes 
two common limitations of the traditional linkage mapping (viz. 
restricted allelic diversity and limited genetic resolution; Brachi 
et al., 2011; Huang and Han, 2014). Owing to its high resolution, 
cost effectiveness and non-essential pedigrees, association 
mapping has been able to dissect many important traits in 
chickpea, such as concentration of mineral nutrients (Diapari 
et al., 2014; Upadhyaya et al., 2016; Fayaz et al., 2022; Samineni 
et al., 2022); seed yield (Basu et al., 2018); drought tolerance (Li 
et al., 2018); root morphology, phosphorous acquisition, and use 
efficiency (Thudi et  al., 2021); and salinity tolerance (Ahmed 
et al., 2021).

The major challenge for GWAS is to control the false 
positives, primarily caused by population structure and family 
relatedness (Kaler et al., 2020). While the single-locus methods 
(like mixed linear model, MLM) address this challenge by 
incorporating the two confounding factors as covariates (Price 
et  al., 2006), overfitting in the model frequently results in 
false-negatives that might exclude key loci. In this regard, the 
multi-locus models are a better alternative to overcome the 
false-negatives (Zhang et al., 2019). Among the multi-locus 
GWAS methodologies, MLMM uses marker-trait association 
tests to select associated markers that are fitted as cofactors. 
These cofactors are then adjusted in the mixed model by 
forward and backward stepwise regression (Segura et  al., 
2012). Another multi-locus method, BLINK, developed 
recently has demonstrated improved statistical power 
compared to other multi-locus methods. BLINK removes the 
assumption that causal variants be evenly distributed across 
the genome, as required by the SUPER (settlement of MLM 
under progressively exclusive relationship) and FarmCPU 

(fixed and random model circulating probability unification) 
methods, making the model superior in statistical power with 
discovery of less false positives. In addition, BLINK reduces 
the computing time remarkably (Huang et al., 2019). Taking 
this into consideration, three statistical algorithms—one 
single-locus (MLM) and two multi-locus (MLMM and 
BLINK)—were utilized in the present study to detect genome-
wide association signals for 12 nutritional traits. As reflected 
in Table  2, BLINK method was superior out of the three 
statistical algorithms used the present study, detecting 44 of 
the 62 MTAs reported using 318 and 74 K matrices. Out of 
these 44 MTAs, one (Ca1_32272158) co-localized for Vit B1 
and phytic acid; eight (Ca3_3519666, Ca4_22136316, 
Ca4_29622277, Ca4_42574243, Ca5_664616, Ca6_28329273, 
Ca6_30884344, and Ca6_57802709 for Vit B2, Vit B2, Vit B6, 
Fo, Fo, Vit B2, Zn, and crude protein, respectively) were 
validated by both MLMM and BLINK algorithms with 318 K 
matrix; and three (Ca3_31771545, Ca3_37989135, and 
Ca6_57802709 for Zn, Vit B6, and crude protein, respectively) 
were validated by both MLMM and BLINK algorithms for 
74 K matrix. To ascertain the validity of our results, the MTAs 
for various nutritional traits identified in the present study 
were compared with some previous association mapping 
studies in chickpea. Under control conditions, Samineni et al. 
(2022) identified MTAs for Fe on Ca4; for Zn on Ca1, Ca4, 
and Ca7; while majority of the MTAs for protein content were 
identified on Ca1, Ca4, and Ca6. Furthermore, seven MTAs 
for seed protein content were mapped on five kabuli 
chromosomes including Ca1, Ca2, Ca4, Ca6, and Ca7 
(Upadhyaya et al., 2016). In accordance with these studies, the 
present study identified a key MTA for crude protein content 
on Ca6 using BLINK and MLMM algorithms, for both 74 and 

S No Marker ID Linkage 
group

Position 
(bp)

p Value FDR 
Adjusted 
p values

R2 Genotypic 
parameter

Matrix 
size

Method Trait

48 Ca5_28,949,260 Ca5 28,949,260 0.000000291 0.022 1.593 MAF_2_Ho_0.5 73,968 Blink Calcium

49 Ca6_3,377,773 Ca6 3,377,773 2.41E-09 0.000 3.588 MAF_2 318,644 Blink Folate

50 Ca6_8,778,763 Ca6 8,778,763 0.000000227 0.003 4.549 MAF_2_Ho_0.5 73,968 Blink Manganese

51 Ca6_13,906,696 Ca6 13,906,696 1.55E-08 0.001 5.912 MAF_2 318,644 Blink Folate

52 Ca6_28,329,273 Ca6 28,329,273 6.93E-08 0.006 9.146 MAF_2 318,644 Blink Vitamin B2

53 Ca6_28,329,273 Ca6 28,329,273 2.35E-09 0.000 9.785 MAF_2 318,644 MLMM Vitamin B2

54 Ca6_30,884,344 Ca6 30,884,344 5.38E-11 0.000 11.014 MAF_2 318,644 Blink Zinc

55 Ca6_30,884,344 Ca6 30,884,344 0.000000138 0.044 10.896 MAF_2 318,644 MLMM Zinc

56 Ca6_53,593,815 Ca6 53,593,815 9.95E-11 0.000 4.994 MAF_2_Ho_0.5 73,968 Blink Manganese

57 Ca6_57,141,662 Ca6 57,141,662 0.000000133 0.011 3.345 MAF_2 318,644 MLMM Vitamin B2

58 Ca6_57,802,709 Ca6 57,802,709 0.000000516 0.038 2.410 MAF_2_Ho_0.5 73,968 MLMM Crude protein

59 Ca6_57,802,709 Ca6 57,802,709 0.000000106 0.034 1.743 MAF_2 318,644 Blink Crude protein

60 Ca6_57,802,709 Ca6 57,802,709 5.76E-08 0.018 2.398 MAF_2 318,644 MLMM Crude protein

61 Ca6_57,802,709 Ca6 57,802,709 1.04E-08 0.001 2.093 MAF_2_Ho_0.5 73,968 Blink Crude protein

62 Ca7_46,160,992 Ca7 46,160,992 7.8E-11 0.000 6.647 MAF_2 318,644 Blink Vitamin B6

TABLE 2 (Continued)
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318 K matrices. Therefore, the tightly linked marker for the 
MTA on Ca6 (Ca6_57802709) holds promise for further 
validation using diverse populations and could be deployed 
for early generation selections in breeding programs. The 
MTAs identified for remaining 11 nutritional traits in the 
present study have not been reported previously and seem to 
represent novel genetic loci controlling grain nutritional 
content in chickpea.

A total of nine significant MTAs for seven nutritional traits 
were associated with putative genes. For instance, one MTA 
detected for Fo on Ca1_1677219 was within the Ca_07795 gene, 
coding for guanine nucleotide-binding protein subunit gamma 2, 
with a molecular role in the G protein-coupled receptor signaling 
pathway. An association was identified between crude protein and 

the genomic region coding for a clast3-related protein responsible 
for proteasome assembly in the nucleus and cytosol. The 
association detected for phytic acid (Ca1_32272158) co-localized 
with the association for Vit B1 within the protein-coding sequence 
of cytochrome P450 714A1 gene (Ca_26128) involved in the 
oxidation–reduction process. This protein is an integral 
component of the cellular membrane and is responsible for 
regulating monooxygenase activity, iron ion binding, and 
oxidoreductase activity, acting on paired donors, incorporating or 
reducing molecular oxygen and heme-binding (Zhang et  al., 
2011). For Vit B1, three more associations were detected within 
Ca_14108, Ca_03836, and Ca_04599. The gene Ca_14108 codes 
for an intracellular vacuolar sorting-associated-like protein, 
Ca_03836 is responsible for coding ubiquitin carboxyl-terminal 
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FIGURE 5

Manhattan plots and Q-Q plots showing association in the diverse reference set for 12 nutritional traits. Manhattan and QQ-plots depicted for 
(A) β-Carotene, (B) calcium (Ca), (C) crude protein, (D) folate (Fo), (E) iron (Fe), (F) magnesium (Mg), (G) manganese (Mn), (H) phytic acid, (I) vitamin 
B1 (Vit B1), (J) vitamin B2 (Vit B2), (K) vitamin B6 (Vit B6), and (L) zinc (Zn). Associations were detected with 73,968 SNPs using the BLINK method 
for all traits except Fe and Mg; associations for Fe and Mg were detected with 318,644 SNPs using the MLMM method. Black solid line indicates 
Bonferroni threshold at 5% level, above which significant associations are depicted as red highlights.
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TABLE 3 Candidate gene analysis for significant MTAs detected for 12 nutritional traits in the chickpea reference set.

Marker ID P value R2 Matrix 

size

Method Trait Reference 

allele

Alternate 

allele

Effect Effect Impact Functional 

class

Codon 

change

Amino 

acid 

change

Gene name Transcript 

BioType

Gene coding Transcript 

ID

Sequence 

name

Sequence 

description

GO Biological 

process

GO Cellular 

component

GO Molecular  

function

Ca4_1,677,219 6.83E-10 26.29 318,644 Blink Folate T C INTRON MODIFIER Ca_07795 protein_

coding

CODING Ca_07795 Ca_07795 guanine 

nucleotide-binding 

protein subunit 

gamma 2

G protein-coupled 

receptor signaling 

pathway

Ca3_3,519,666 8.18E-13 25.65 318,644 Blink Vitamin B2 T A INTRON MODIFIER Ca_12279 protein_

coding

CODING Ca_12279 Ca_12279 PREDICTED: 

uncharacterized 

protein 

LOC105851819

Ca4_17,620,596 6.86E-10 6.30 318,644 Blink Vitamin B6 A G INTRON MODIFIER Ca_05368 protein_

coding

CODING Ca_05368 Ca_05368 dihydroorotate 

dehydrogenase 

(quinone)

‘de novo’ 

pyrimidine 

nucleobase 

biosynthetic 

process,'de novo’ 

UMP biosynthetic 

process,oxidation–

reduction process

mitochondrial inner 

membrane,plasma 

membrane

dihydroorotate 

dehydrogenase activity

Ca4_4,224,251 4.63E-08 6.18 73,968 Blink Vitamin B1 A T INTRON MODIFIER Ca_03836 protein_

coding

CODING Ca_03836 Ca_03836 ubiquitin carboxyl-

terminal 

hydrolase-like 

protein

ubiquitin-

dependent protein 

catabolic 

process,protein 

deubiquitination

thiol-dependent 

ubiquitin-specific 

protease activity

Ca6_57,802,709 0.000000516 2.41 73,968 MLMM Crude 

protein

T A INTRON MODIFIER Ca_13661 protein_

coding

CODING Ca_13661 Ca_13661 clast3, related 

protein

proteasome 

assembly

proteasome 

complex,nucleus,cytosol

Ca4_13,749,741 0.000000211 1.28 73,968 Blink Vitamin B1 T G SYNONYMOUS_

CODING

LOW SILENT Agg/

Cgg

R61 Ca_04599 protein_

coding

CODING Ca_04599 Ca_04599 probable serine/

threonine-protein 

kinase WNK9

protein 

phosphorylation, 

intracellular signal 

transduction

cytoplasm protein serine/threonine 

kinase activity, ATP 

binding

Ca1_13,432,853 1.03E-08 0.11 73,968 Blink Vitamin B1 T C INTRON MODIFIER Ca_14108 protein_

coding

CODING Ca_14108 Ca_14108 vacuolar sorting-

associated-like 

protein

intracellular protein 

transport, vesicle-

mediated transport

intracellular

Ca1_1,204,130 3.46E-09 0.03 318,644 Blink Zinc C G INTRON MODIFIER Ca_00148 protein_

coding

CODING Ca_00148 Ca_00148 (3S,6E)-nerolidol 

synthase 1-like

magnesium ion binding, 

terpene synthase activity, 

carboxy-lyase activity, and 

thiamine pyrophosphate 

binding

Ca1_32,272,158 2.15E-09 0.00 73,968 Blink Phytic acid C T SYNONYMOUS_

CODING

LOW SILENT cgC/cgT R177 Ca_26128 protein_

coding

CODING Ca_26128 Ca_26128 cytochrome P450 

714A1-like

oxidation–

reduction process

integral component of 

membrane

monooxygenase activity, 

iron ion binding, 

oxidoreductase activity, 

and acting on paired 

donors, with 

incorporation or 

reduction in molecular 

oxygen, heme binding

Ca1_32,272,158 3.38E-10 0.00 73,968 Blink Vitamin B1 C T SYNONYMOUS_

CODING

LOW SILENT cgC/cgT R177 Ca_26128 protein_

coding

CODING Ca_26128 Ca_26128 cytochrome P450 

714A1-like

oxidation–

reduction process

integral component of 

membrane

monooxygenase activity, 

iron ion binding, and 

oxidoreductase activity, 

acting on paired donors, 

with incorporation or 

reduction in molecular 

oxygen, heme binding
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hydrolase-like protein and is involved in protein deubiquitination, 
and Ca_04599 plays a role in protein phosphorylation and 
intracellular signal transduction via serine/threonine-protein 
kinase WNK9. For Vit B2, the MTA (Ca3_3519666) is present 
within Ca_12279, predicted to code for an uncharacterized 
protein. The MTA (Ca4_17620596) identified for Vit B6 lies 
within the Ca_05368 gene, responsible for producing 
dihydroorotate dehydrogenase (quinone) in mitochondrial inner 
membrane and plasma membrane for dihydroorotate 
dehydrogenase activity (Ullrich et  al., 2002). The MTA 
(Ca1_1204130), associated with Zn and detected within the 
Ca_00148 gene, codes for the (3S,6E)-nerolidol synthase 1-like 
protein involved in magnesium ion binding, terpene synthase 
activity, carboxylase activity, and thiamine synthesis (Degenhardt 
and Gershenzon, 2000). The incorporation of identified genes to 
develop nutrient-rich legume varieties through genetic 
engineering or molecular breeding in an integrated approach will 
provide effective and long-term solutions to the increasing 
problem of malnutrition.

Integrating genomic resources with breeding efforts by 
exploiting various diversity panels to develop superior, 
biofortified, and climate-resilient varieties is imperative for 
addressing the emerging constraints limiting chickpea production 
and micronutrient malnutrition (Roorkiwal et al., 2020; Varshney 
et al., 2021a,b,c). Based on nutritional and yield-related traits, the 
promising accessions identified in this study can serve as 
potential donors for designing nutrient-rich chickpea varieties 
for the future.
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FIGURE 6
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locations, highlighting that G4 accessions had a narrow range and comparable or higher mean than G1. (B) Variation in the major and minor allelic 
frequencies for the nine loci detected significance for six traits within the reported genes for G1–G4. The major allele was dominant for selected 
accessions in G2, G3, and G4, compared to the reference set, G1.
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