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Fast and uniform seed germination is essential to stabilize crop yields in agricultural
production. It is important to understand the genetic basis of seed germination for
improving the vigor of crop seeds. However, little is known about the genetic basis of
seed vigor in cotton. In this study, we evaluated four seed germination-related traits of
a core collection consisting of 419 cotton accessions, and performed a genome-wide
association study (GWAS) to explore important loci associated with seed vigor using
3.66 million high-quality single nucleotide polymorphisms (SNPs). The results showed
that four traits, including germination potential, germination rate, germination index, and
vigor index, exhibited broad variations and high correlations. A total of 92 significantly
associated SNPs located within or near 723 genes were identified for these traits, of
which 13 SNPs could be detected in multiple traits. Among these candidate genes,
294 genes were expressed at seed germination stage. Further function validation of
the two genes of higher expression showed that Gh_A11G0176 encoding Hsp70-
Hsp90 organizing protein negatively regulated Arabidopsis seed germination, while
Gh_A09G1509 encoding glutathione transferase played a positive role in regulating
tobacco seed germination and seedling growth. Furthermore, Gh_A09G1509 might
promote seed germination and seedling establishment through regulating glutathione
metabolism in the imbibitional seeds. Our findings provide unprecedented information
for deciphering the genetic basis of seed germination and performing molecular
breeding to improve field emergence through genomic selection in cotton.

Keywords: cotton, seed germination, GWAS, SNP, candidate genes

INTRODUCTION

Cotton is an important fiber crop and a valuable oilseed crop. Among the cultivated species, upland
cotton (Gossypium hirsutum L.) has the largest cultivated areas and plays an essential part in daily
life and global textile industry (Fang et al., 2017; Naoumkina et al., 2019). Seed germination is
the beginning of the life cycle of seed plants, as well as an important link for high-yield and
resistance breeding of cotton. Seed vigor is an important character of seed quality that reflects
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seed germination rate and uniformity, as well as seedling
emergence and growth in the field. Hence, seedling vigor may
influence crop yield through both indirect and direct effects (Ellis,
1992; Foolad et al., 2007; Sun et al., 2007). In modern agricultural
cultivation practice, rapid and uniform seed germination is the
key factor to maximize crop yield potential. Seeds with high vigor
germinate quickly and result in uniform and strong seedlings,
which ultimately affect plant growth and development (Foolad
et al., 2007). With the rapid application of mechanized cultivation
and harvest, the quality and vitality of cotton seeds will be
particularly important to achieve precision sowing technology.

Seed vigor is a comprehensive embodiment that involves
many aspects from seed germination to seedling growth, such
as seed germination rate and uniformity, seedling growth rate,
and growth rhythm (Ellis, 1992). Seed germination trait is
under multiple-genes control and susceptible to environmental
factors (Yu et al., 2019a), and is the main component of
seed vigor. In previous studies, there have been reports on
seed vigor, seed germination, seed field emergence, exogenous
hormones, and hormone signaling pathways that regulate seed
germination in cotton and other species (Zhang et al., 2014; He
et al., 2019; Xiao et al., 2019; Yu et al., 2019a,b; Song et al.,
2020; Zhou et al., 2020). In cotton, cold atmospheric-pressure
plasma (CAP) treatment improved seed germination and chilling
tolerance (Groot et al., 2018). Matrix-localized heat shock
protein GhHSP24.7 mediated seed germination via temperature-
dependent reactive oxygen species (ROS) germination (Ma et al.,
2019). In rice, OsIPMS1 affected seed vigor associated with
amino acid and energy metabolism (He et al., 2019), osa-miR164c
and osa-miR168a played a key role in regulating seed vigor in
transgenic plants (Zhou et al., 2020). In soybean, quantitative
proteomic analyses of two low phytic acid mutants showed that
the high germination rate in the TW-1-M might be strongly
attributed to ROS-related and plant hormone-related genes (Yu
et al., 2019a). In addition, exogenous hormones and hormone
signaling pathways have also been reported to play a pivotal
role in the regulation of seed germination and dormancy. For
instance, exogenous melatonin promoted seed germination and
osmotic regulation under arid and salt stress (Xiao et al., 2019;
Bai et al., 2020; Chen et al., 2020). AtPER1 reduced primary seed
germination via suppressing ABA catabolism and promoting GA
biosynthesis in Arabidopsis seeds (Chen et al., 2019). OsRACK1A
positively regulated seed germination by means of changing the
endogenous amounts of ABA and ROS, as well as their interplay
(Zhang et al., 2014). OsMFT2 was involved in the regulation of
ABA signaling-mediated seed germination through interacting
with OsbZIP23/66/72 in rice (Song et al., 2020).

Glutathione S-transferases (GSTs) are multifunctional
enzymes that play important roles in biological processes such
as plant development, metabolism and abiotic, and biotic
stress responses by catalyzing the conjugation of electrophilic
substrates with glutathione (GSH), thereby reducing their
toxicity (Dixon et al., 2002; Moons, 2005; Frova, 2006; Kao et al.,
2016). It has been shown that GSTs promote seed germination
under abiotic stresses. Seed germination and seedling growth
of GST overexpressing tobacco was significantly improved
under stressful conditions (Roxas et al., 1997). Overexpression

of SbGSTU in tobacco enhanced seed germination under salt
stress (Jha et al., 2010). Atgstu17 regulated seed germination by
the combined effect of GSH and ABA (Chen et al., 2012), and
GSH treatment improved germination after seed dehydration
(Kalemba and Ratajczak, 2018). The functional deficiency of
AtGSTU7 resulted in increased GSH content and decreased
H2O2 content in germinating seeds, and GSH was involved in
seed germination under ABA treatment, implying that AtGSTU7
involvement in seed germination was mediated by GSH-ROS
homeostasis and ABA signaling (Wu et al., 2020).

In the past few years, QTL mapping based on biparental
linkage analysis has become an effective approach to identify
seed germination related genes in many crops, such as rice (Cui
et al., 2002; Jiang et al., 2017; Yang et al., 2019; Jiang et al.,
2020), barley (Moursi et al., 2020), and Brassica rapa (Basnet
et al., 2015), but it was usually limited by the number of markers
that could be employed along the chromosomes. As an excellent
complement to QTL, GWAS is an effective method to detect
mark-trait association (Zhao et al., 2011; Yu et al., 2017), it
has been successfully implemented in rice (Sales et al., 2017;
Shi et al., 2017; Yang et al., 2019), maize (Hu et al., 2017), oat
(Huang et al., 2020), Brassica napus (Hatzig et al., 2015; Tan
et al., 2017), soybean (Zhou et al., 2015; Liu et al., 2020), and
other crops during germination for the identification of single
nucleotide polymorphism (SNP) loci and candidate genes for
various ecological and agricultural traits. In conclusion, GWAS
has been successfully applied to identify the potential candidate
genes underlying important agronomic traits with high-density
SNPs from diverse germplasms. However, there are few studies
on the rapid and accurate identification of a large number of
candidate genes for seed germination in cotton, and the seed
germination mechanism is still unclear. In addition, previous
studies have shown that there is a very significant correlation
between seed germination potential and field seedling emergence
(Chen, 2012; Xie et al., 2019), and the germination rate measured
in sand bed is positively correlated with the seedling emergence
rate in the field (Wang, 2007). Therefore, GWAS analysis based
on genotypic and phenotypic data for large-scale accessions
and SNP markers should provide a powerful strategy to detect
candidate genes and unravel the molecular mechanism for seed
germination that is important for cotton improvement.

In the present study, we performed a GWAS for seed
germination traits based on 3,665,030 SNPs from a core collection
consisting of 419 diverse germplasm resources in G. hirsutum
L. (Ma et al., 2018). The objectives were to identify SNPs
significantly associated with germination capacity and candidate
genes, providing useful information for better understanding the
genetic mechanism of cotton seed germination so as to facilitate
molecular breeding with increased field emergence rate and
precision sowing.

MATERIALS AND METHODS

Plant Materials
In this study, a core collection comprising of 419 upland
cotton accessions was used to conduct GWAS. The 419
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accessions had abundant phenotypic variation and were used
to conduct GWAS for fiber quality, yield, and phosphorus
deficiency tolerance in the previous study of our group (Ma
et al., 2018; Gu et al., 2020). Among which, 317 accessions
were collected from different provinces of China and the
remaining accessions were derived from major cotton-growing
countries, including the United States, the former Soviet Union,
Pakistan, Turkey, Australia, Mexico, Brazil, Chad, Uganda,
Sudan, Bulgaria, and Spain.

Identification of Seed Germination
Relative Traits and Statistical Analysis
After the cotton seeds were delinted by sulfuric acid, 400 full
and uniform seeds were chosen from each accession. Four
replicates with 100 seeds each were used for each accession. The
seeds were placed evenly into a germination chamber containing
800 g dry quartz sand, then covered the seeds with 250 g of
dry quartz sand, finally added 250 mL double-distilled H2O.
The germination chambers were placed in a culture room with
25/20◦C temperature and 16/8 h light/dark regime during the
period of seed germination. Seeds were considered as germinated
when the radicle broke through the seed coat. Seedlings were
considered to be established when the root reached half of the
seed length. We counted the germinated seeds from the 3rd to
the 7th day. Germination potential (GP) refers to the ratio of the
number of normal germination seeds to the number of tested
seeds in the initial stage of seed germination, usually specified
as 3 days, that is, the germination rate (%) of the initial count
(Yang et al., 2019; Yuan et al., 2019). GP indicates the speed of
germination and the strength of seed vigor. Germination rate
(GRA) refers to the proportion of all normal germinated seeds
to the number of tested seeds at the end of the germination test,
usually specified as 7 days (Yang et al., 2019; Yuan et al., 2019).
A high seed germination rate means that there are more viable
seeds and more seedlings emergence after sowing. Germination
index (GI) represents the sum of the ratio of the number of
germinated seeds per day to the corresponding germinating days.
GI is calculated based on the formula: GI =6(Gt/Dt). In the
formula, Dt refers to the number of days to germinate; Gt is the
number of seeds germinated per day corresponding to Dt (Yuan
et al., 2019). Vigor index (VI) is a comprehensive reflection of
seed germination rate and growth, VI = GI × S, here, S refers
to the length (cm) or weight (g) of normal seedlings in a certain
period (Yang et al., 2019; Yuan et al., 2019). In this study, S is
calculated by mass. Statistical analysis of the GP, GRA, GI, and
VI were performed with SPSS 20.0. All of the phenotypic data
from 419 cotton accessions were used to calculate the frequency
distribution of each trait and descriptive statistics.

Genome-Wide Association Study and the
Identification of Candidate Genes
Association analysis was performed by the genome-wide efficient
mixed model association (GEMMA) package using the following
equation: y = Xα + Sβ + Kµ + e. Here, y represents the
phenotype; α and β are fixed effects, representing marker and
non-marker effects, respectively; µ represents unknown random

effects; and X, S, and K are the incidence matrices for α, β, and
µ, respectively; and e is the vector of random residual effects.
The top three PCs were used to build up the S matrix for
population-structure correction. The matrix of simple matching
coefficients was used to build up the K matrix. The analyses
were implemented in the GEMMA software package (Zhou
and Stephens, 2012). According to the Bonferroni correction
principle, −log10 (P) > 6.59 (P = 1/n, n is the number of
SNPs in this study) is too stringent that we could not find the
significant SNPs for four traits with this threshold. Thus, −log10
(P) > 5.0 was used to identify significant SNP markers with seed
germination related traits (Song et al., 2019; Abdelraheem et al.,
2021). We identified candidate genes within 300-kb flanking
significant-associated SNP loci as putative candidates based on
the decay of LD (Ma et al., 2021) and conducted gene annotation
based on G. hirsutum TM-1 genome (Zhang et al., 2015). LD
block identification was performed for associated SNPs using
Haploview 4.2 software (Bashir et al., 2018). Gene Ontology (GO)
enrichment and Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway analysis were carried out for all candidate genes
(Xie et al., 2011).

Expression Profile of Candidate Genes
To screen the possible candidate genes involving in the seed
germination, the expression level of these genes were analyzed
based on the transcriptomic data from the seeds soaking in water
for 0, 5, and 10 h. Transcriptome data of gene expression in
different tissues and different germination periods was obtained
from a previous study (Zhang et al., 2015) and the fragments
per kilobase of transcript per million mapped reads (FPKM)
values of putative candidate genes were extracted for comparison
between different tissues and different germination periods. The
heat maps were generated with HemI version 1.0.1

In order to verify the expression trend of the candidate genes,
two cotton varieties with fast germination (Jinmian2) and slow
germination (Qunkemian) were chosen for expression analysis
with qRT-PCR. The seeds of selected varieties were spread evenly
on the sterilized gauze in the germination chamber, sprayed
enough sterile water to keep seeds moist during the whole
germination period. Imbibitional seeds were taken at 0, 6, 12, 24,
36, 48, 60, and 72 h, respectively. The samples were immediately
frozen in liquid nitrogen and stored at−80◦C for RNA extraction
with three replicates. Total RNA was extracted with an EASYspin
Plus Plant RNA purification kit (Aidlab, Beijing, China). Total
cDNA was synthesized with the PrimerScriptTM RT Reagent
Kit together with gDNA Eraser (TaKaRa, Dalian, China).
Quantitative real-time PCR was performed with Auge GreenTM

qPCR Master Mix (US EVERBRIGHT RINC) on an ABI 7500
Real-Time PCR machine. The qRT-PCR mixtures consisted of
10 µl of AugeGreenTM Master Mix (US EVERBRIGHT RINC),
2.0 µL of ROX reference dye, 2.0 µL of cDNA, 1.0 µL of primers,
and ddH2O supplemented the volume to 20 µL. The reactions
were amplified at 95◦C for 30 s, followed by 40 cycles of 95◦C
for 5 s, 55◦C for 30 s, and 72◦C for 30 s. All the reactions were
performed as three technical replicates. Relative gene expression

1http://hemi.biocuckoo.org/
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levels were calculated with the 2−11CT method. The primers
used are listed in Supplementary Table 1.

Gene Cloning and Plant Transformation
The open reading frame (ORF) of Gh_A11G0176 was obtained
through PCR using cDNAs synthesized from RNA, the amplified
products were subsequently cloned into the pGreen vector
which was driven by the cauliflower mosaic virus (CaMV)
35S promoter. Using the floral dip method (Clough and Bent,
1998), the recombinant vector was transformed into Arabidopsis
thaliana Columbia type by Agrobacterium tumefaciens GV3101.
Transgenic plants were obtained by screening successive
generations on Basta. PCR was utilized to identify homozygous
T3 transgenic lines, which were subsequently employed in further
investigations. For the seed germination assay, thirty plump seeds
were surface-sterilized for 5 min in 30% NaClO and 1 min in
75% ethanol, washed at least five times with sterile water, plated
on Murashige and Skoog (MS) solid medium (with 1% sucrose)
and stratified at 4◦C for 48 h, then grown at 22◦C under long-
day conditions (16/8 h light/dark). For each germination assay,
biological triplicates were performed, and germination ability was
observed every 12 h until all seeds germinated after 24 h.

In addition, another target gene Gh_A09G1509 was selected
to validate with overexpressing transgenic tobacco which was
previously acquired by our research group (Li et al., 2019).
Approximately 50 plump seeds each from the wild-type (WT)
and over-expression (OE) tobacco were surfaced sterilized and
plated on MS media (pH 5.7–5.9) at 28◦C in the incubator
under long-day conditions (16/8 h light/dark), with independent
biological triplicates. Germination ability was observed every 24 h
until all seeds germinated after 2 days, and the method was
the same as above.

Measurement for Hormone Content
Gibberellin (GA) and abscisic acid (ABA) were extracted from
0.1 g germinating seeds using 1 mL precooling reagent one
(methanol: water: acetic acid = 80: 20: 1) overnight at 4◦C
and centrifuged at 8,000 g at 4◦C for 10 min. The residue was
collected and added 0.5 mL reagent one (methanol: water: acetic
acid = 80: 20: 1) for 2 h, then the supernatant was collected
after centrifugation. Two supernatants were combined for drying
with nitrogen at 40◦C until no organic phase remained. The
supernatants were added 0.5 mL reagent two (petroleum ether)
to extract and decolorize three times at 60–90◦C, the upper ether
phase was discarded, and the lower aqueous was adjusted to pH
2.8 with reagent three (saturated citric acid aqueous solution).
Next, the mixture was extracted three times with equal volume
of reagent four (ethyl acetate). After the organic phase with
nitrogen was blown dry, the extraction was diluted to 0.5 mL
with reagent five (methanol) through vortex oscillation, and
filtered by 0.22-µm membrane filter. A high-performance liquid
chromatography (HPLC) device was used to analyze the final
filtrate solution. The content of GA and ABA were determined
at 210 and 254 nm, respectively, and was expressed as µg/g
fresh weight (FW).

H2O2 Extraction and Analysis
The H2O2 level was determined using commercial assay kits
according to the manufacturer’s instructions (Suzhou Keming
Bioengineering Company, China). Approximately 0.1 g FW of
each sample was quickly put into precooled acetone (4◦C) and
homogenized on ice bath. The reaction solutions were then mixed
into the homogenate. The mixture was centrifuged at 8,000 g
at 4◦C for 10 min, and the absorbance of the supernatant was
measured at 415 nm right away. The H2O2 content was expressed
as µmol/g FW.

Protein, Glucose, and Amylase Activity
Assays
Protein, glucose, and amylase activity were measured using
commercial assay kits following the manufacturer’s instructions
(Suzhou Keming Bioengineering Company, China). The levels of
protein and glucose were expressed as mg/g FW. One unit (U)
of amylase is defined as 1 mg of reducing sugar produced by
enzyme in 1 g FW of the sample in 1 min at 40◦C. The activity
of α-amylase were expressed as U/g FW.

Extraction and Measurement of
Glutathione and Enzymes Related to
Glutathione Metabolism
Glutathione, oxidized glutathione (CSSG), glutathione
peroxidase (GPX), glutathione reductase (GRE), and GST
were measured using commercial assay kits following the
manufacturer’s instructions (Suzhou Keming Bioengineering
Company, China). The levels of GSH and CSSG were expressed
as µ mol/g FW and nmol/g FW, respectively.

Glutathione reductase activity was determined following the
rate of NADPH oxidation at 340 nm. The GPX activity was
calculated by measuring the rate of disappearance of NADPH
at 340 nm. One unit (U) of GRE activity and GPX activity
was defined as each gram of sample catalyzed the oxidation of
1 nmol NADPH per minute. GST activity was calculated by
measuring the increase in absorbance at 340 nm. One unit (U)
of GST activity was defined as each gram of sample catalyzed
the combination of 1 nmol/L CDNB and GSH per minute. The
activities of GRE activity, GPX activity, and GST activity were
expressed as U/g FW.

RESULTS

Phenotypic Variation of Seed
Germination Related Traits
We analyzed the phenotypic variation of seed germination
relevant traits including GP, GRA, GI, and VI. The results showed
that all the traits displayed broad variations. The GP ranged
from 4.00 to 60.00% with an average of 25.41%, the GRA ranged
from 35.00 to 94.00% with an average of 75.04%, the GI ranged
from 7.52 to 20.41 with an average of 15.55, and the VI ranged
from 3.44 to 17.21 with an average of 9.85. The coefficient
of variation (CV) of GP, GRA, GI, and VI were 47.82, 11.75,
13.21, and 18.98%, respectively (Table 1). High correlations were
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observed among these seed germination traits (Figure 1). GP
was significantly (P < 0.001) and positively correlated with GRA
(r = 0.232∗∗), GI (r = 0.599∗∗) and VI (r = 0.449∗∗), and GRA
was significantly positively correlated with GI (r = 0. 910∗∗)
and VI (r = 0.677∗∗), which may facilitate the identification
of pleiotropic gene in response to seed germination. Moreover,
the phenotypic distribution of these traits displayed continuous
variation (Figure 1), indicating that seed germination related
traits were quantitatively inherited.

Identification of Significantly Associated
Single Nucleotide Polymorphisms and
Candidate Genes Related to Seed
Germination Traits
Genome-wide association study results showed that 92
significantly associated SNPs were identified, of which, 10
and 35, 24 and 36 were associated with GP, GRA, GI, and VI,
respectively, and distributed on 20 chromosomes (Figures 2A–
D). There were 69, 10, and 13 SNPs in the A-subgenome,
D-subgenome, and scaffolds, respectively (Supplementary
Table 2). Among them, the maximum number of associated
SNPs was detected on chromosome A09 (20), and no significant
SNPs were detected on chromosome D01, D03, D06, D08, D09,
or D10. In addition, 13 associated SNPs located on chromosomes
A01, A05, A08, A09, A10, and D13 were observed in multiple
traits (Supplementary Table 3). Among these, four SNPs on
chromosome A01 were found to be significantly associated with
GI and GRA, two SNPs on chromosome A08 with GI and GRA,
four SNPs on chromosome A09 with GRA and VI, and three
SNPs on chromosome A05, A10, and D13 with GRA and GI.

To explore the potential candidate genes related to seed
germination, we selected a 300-kb region flanking significant
SNPs according to the linkage decay value (Ma et al., 2018).
A total of 723 candidate genes were identified, of which, 569
and 154 were located on the A-subgenome and D-subgenome,
respectively (Supplementary Table 4). Their expression were
analyzed on the basis of the transcriptome data from cottonFGD
(Supplementary Figures 1, 2). For the A-subgenome, the
expressions patterns of all the genes could be divided into
five types according to the expression specificity from different
tissues and different germination periods. Type I were mainly
expressed in seed, and their expression gradually decreased with
the extension of seed imbibition time, such as Gh_A11G0176,
Gh_A11G0179, Gh_A11G0184, and Gh_A09G1510. Type II
displayed higher expression in root than in seed. Type III was
specifically expressed in cotyledon. Type IV was less expressed
in seed, but their expressions gradually increased with the
extension of seed imbibition time, such as Gh_A09G1508 and
Gh_A09G1509. Type V was mainly expressed in cotyledon
and seed, and the expression gradually decreased with the
extension of seed imbibition time, such as Gh_A11G0177
(Supplementary Figure 1). Similarly, the gene expressions in
the D-subgenome were also divided into five types the same
as to those in the A-subgenome (Supplementary Figure 2).
KEGG pathway analysis was performed to display the top
20 significantly enriched pathway, and thereinto, glutathione

metabolism (KO00480) and circadian rhythm (KO04712) are
related to the multifunction of GST and seed germination
(Figure 2E). GO enrichment analysis was conducted to further
infer the functions of candidate genes (Figure 2F). At P < 0.05
and gene number > 3,723 candidate genes were classified
into three major categories: biological process (BP), molecular
function (MF), and cell component (CC). In the biological
process, transport (GO: 0006810), glutathione metabolic process
(GO: 0006749), and toxin catabolic process (GO: 0009407) were
the most functional terms associated with seed germination.
In the molecular function, protein binding (GO: 0005515),
dioxygenase activity (GO: 0051213), and glutathione transferase
activity (GO: 0004364) were the significantly enriched items.
In the cellular component (CC) category, chloroplast envelope
(GO: 0009941), and cytoplasm (GO: 0005737) were the two
most prevalent functional terms. GRE was mainly distributed
in chloroplast but also in cytoplasm, which related to the stress
tolerance and seed germination (Ding et al., 2009; Gill and Tuteja,
2011).

Functional Analysis of Candidate Genes
On chromosome A11, we focused on the locus mapped from
1.4 to 2.0 Mb, where a locus (A11:1681419) was significantly
associated with GRA (Figure 3A), and the two genotypes of
the locus showed significant difference (Figure 3B). A total of
135 candidate genes were identified within the LD region. We
focused on the expression of 23 candidate genes in the 50-kb
region flanking the significant SNP (Figure 3C). These genes
were involved in heat shock protein 70 (Hsp 70) family protein,
translation elongation factor EFG/EF2 protein, thioredoxin
family protein, AT motif nuclear localization protein, and other
proteins that performed molecular functions. It can be seen
from the heat map that the expression levels of Gh_A11G0176,
Gh_A11G0177, Gh_A11G0179, and Gh_A11G0184 gradually
decreased with the extension of seed imbibition time (Figure 3C).
Their expression patterns were analyzed via qRT-PCR using a
fast germinating and a slow germinating variety at 0, 6, 12, 18,
24, 36, 48, and 72 h after imbibition (HAI). Compared with
the fast germinating variety, Gh_A11G0176 and Gh_A11G0177
displayed a higher expression in the slow germinating variety
(Figures 3D,E). However, Gh_A11G0179 and Gh_A11G0184
exhibited higher expression in the fast germinating varieties
(Figures 3F,G). To understand the function of target gene
Gh_A11G0176 encoding Hsp70-Hsp90 organizing protein 3,
we overexpressed the gene in Arabidopsis and obtained the
homozygous lines. The OE Arabidopsis lines and WT were put
on MS medium for germination assays. The results showed that
the germination rates of OE were markedly reduced compared
with WT during germination (Figures 3H,I), that is, the OE
of Gh_A11G0176 caused delayed germination. At 24 HAI, the
germination rate of WT (78%) was approximately 4.3 times that
of OE-3 (18%). At 36 HAI, most of the OE and WT have already
germinated, and the germination rates of WT and OE were
almost the same.

On chromosome A09, we focused on the locus mapped
from 68.0 to 68.5 Mb with significant signals, of which SNP
A09:68240653 was significantly associated with GRA and VI
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TABLE 1 | Phenotypic variation statistics for seed germination traits.

Variable Minimum Maximum Mean Std. deviation CV% Skewness Kurtosis

GP, germination potential (%) 4.00 60.00 25.41 12.15 47.82 0.597 −0.205

GRA, germination rate (%) 35.00 94.00 75.04 8.82 11.75 −0.865 1.372

GI, germination index 7.52 20.41 15.55 2.05 13.18 −0.527 0.467

VI, vigor index 3.44 17.21 9.85 1.87 18.98 0.247 0.664

FIGURE 1 | Frequency distribution of phenotypic variation of four seed germination related traits and correlation coefficients among the traits in 419 accessions.
** indicates significance at the P < 0.01 level (two-tailed t-test). GP, germination potential; GRA, germination rate; GI, germination index; VI, vigor index.

(Figures 4A,B). Ninety-five candidate genes were identified
(Supplementary Table 4). The accessions carrying the alternate
genotype germinated faster than those with the reference
(Figure 4C). We analyzed the expression of 23 candidate genes
within the 50-kb region flanking the significant SNP and found
that glutathione transferase encoding genes, Gh_A09G1508 and
Gh_A09G1509, displayed an increased trend with the extension
of seed imbibition time excluding Gh_A09G1510 (Figure 4D).
We further analyzed the expression of three genes using a
fast germinating and a slow germinating variety at 0, 6, 12,
18, 24, 36, 48 and 72 HAI by qRT-PCR. The results showed
that the expression of Gh_A09G1508 and Gh_A09G1509 was
higher in the fast germinating variety, however, Gh_A09G1510
was higher in the slow germinating variety (Figures 4E–G).
Moreover, the OE of Gh_A09G1509 in tobacco resulted in

faster seed germination and seedling growth as well as longer
hypocotyls at 3 days after imbibition (DAI) compared with WT.
The cotyledons of transgenic tobacco unfolded earlier than WT
at 4 DAI (Figures 4H,I), indicating that Gh_A09G1509 promoted
the plant seed germination.

Effects of Gh_A09G1509 on Endogenous
Phytohormones, H2O2, Starch
Mobilization, and Soluble Sugar Content
During Germination
Abscisic acid and gibberellin are the key endogenous substances
that work antagonistically in the regulation of seed germination.
Furthermore, H2O2 in seeds as a signal can promote
germination and seedling growth (Barba-Espin et al., 2010;
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FIGURE 2 | Manhattan plots of the four seed germination-related traits and GO function and KEGG pathway enrichment of candidate genes. (A) GP. (B) GRA. (C) GI.
(D) VI. (E) Statistics of KEGG pathway enrichment analysis of 723 genes detected in GWAS. (F) Gene Ontology (GO) functional enrichment analysis of 723 genes
detected in GWAS. Each point in the figure represents a GO channel, and the channel name is shown on the left axis. The abscissa is the enrichment factor, which
represents the ratio of the proportion of proteins annotated to this pathway in the differentially expressed protein to the proportion of proteins that are annotated to a
pathway of the species protein. The larger the enrichment factor, the more reliable the significance of the enrichment of differential proteins in this pathway.

Katsuya-Gaviria et al., 2020), which was induced by GA
but suppressed by ABA (Ishibashi et al., 2012). Therefore,
endogenous GA3, ABA, and H2O2 contents were measured
during seed germination. Compared with WT, the OE transgenic
tobacco showed significantly higher GA3 contents (Figure 5A).
For ABA contents, it was significantly lower in the transgenic
tobacco at 48 HAI (Figure 5B). At 48 HAI, the hypocotyl of the
tobacco broken through the seed coat and reached to protrusion.
As similar to GA3, the endogenous H2O2 was significantly
higher at 48 HAI in transgenic tobacco than WT (Figure 5C).
Imbibition and starch hydrolysis are the critical steps during seed
germination. We further compared the changes of α-amylase
and glucose contents between the transgenic tobacco and the
WT. The content of α-amylase was significantly higher in the
OE lines at 48 HAI (Figure 5D). Furthermore, we observed

that the content of glucose appeared an apparent increase at 48
HAI (Figure 5E). These results indicated that Gh_A09G1509
regulated seed vigor through adjusting the relative contents of
endogenous phytohormones and altering starch hydrolysis and
glucose contents in germinating seeds.

Changes of Substances Related to
Glutathione Metabolism During
Germination
Doubled glutathione improved the germination capacity
(Kalemba and Ratajczak, 2018), and GRE and GPX regulated
the balance between the reduced and oxidized forms of
glutathione in plants (Zhao et al., 2021), which is crucial
for cellular redox state homeostasis and plant development
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FIGURE 3 | Identification and expression analysis of candidate genes related to seed germination on chromosome A11. (A) Local Manhattan plot (top) for GRA and
LD heat map (bottom) surrounding the peak region (1.4–2.0 Mb) on A11. Red dotted lines indicate the candidate region, and the red arrows indicate A11:1681226,
A11:1681264, A11:1681275, A11:1681285, A11:1681287, A11:1681352, A11:1681419, A11:1681428, and A11:1681444. (B) Box plots for GRA, based on the
significantly associated SNP on A11, n indicates the number of accessions with the same genotype. REF, the reference TT; ALT, the alternate TC. Significant
difference was analyzed with a two-tailed t-test. (C) Heat map of the candidate gene expression of chromosome A11 at different cotton seed imbibition stage based
on the FPKM value. Red indicates high expression, and blue indicates low expression. (D–G) Relative expression of four candidate genes (Gh_A11G0176,
Gh_A11G0177, Gh_A11G0179, and Gh_A11G0184) between F (cotton variety with fast germination: Jinmian2) and S (cotton variety with slow germination:
Qunkemian) via qRT-PCR at 0, 6, 12, 24, 36, 48, 60, and 72 h, Ghhistone3b was used as an internal control. The data were normalized to the maximum value. The
error bars indicate ± SE; n = 3 independent biological replicates. (H) Germination phenotype of Gh_A11G0176 overexpressing lines and the WT at the seed
germinating stage 24 and 36 h in Arabidopsis. WT, wild-type plants. (I) GRA of overexpressing lines and the WT in Arabidopsis.

(Hernandez et al., 2015). Since Gh_A09G1509 belonged to GST
gene family, the related substances of glutathione metabolism
were measured during germination. There was no significant
difference in GRE between the OE tobacco plants and the
WT (Figure 5F), but the activities of GPX and GST decreased
during germination, and the activities of GPX and GST in the
OE plants were significantly lower than those in WT plants at
48 HAI (Figures 5G,H), when the hypocotyl broken through
the seed coat. Compared with WT, the content of GSH and
GSSG were also significantly higher in transgenic tobacco at
48 HAI (Figures 5I,J). Similarly, the ratio of GSH/GSSG in the
OE tobacco plants was significantly higher during the whole
germination period, especially at 48 HAI (Figure 5K). The
results suggested that Gh_A09G1509 might facilitate glutathione
metabolism during seed germination.

DISCUSSION

Rapid and uniform seed germination under various conditions is
an agronomically important trait for high yield of crops (Foolad
et al., 2007). Seeds with high vigor have obvious production
advantages and potential, thus, it is critical to identify and
utilize seed vigor related genes for improving seed vigor (He
et al., 2019). The development of seedlings with enhanced vigor
could allow for earlier planting, extended agricultural growing
seasons for crops and the expansion of crop production in
marginal locations (Roxas et al., 1997). In the present study,
a total of 92 significantly associated SNPs located within or
near 723 genes were identified for seed germination traits on
the basis of a core collection containing 419 cotton accessions
with 3.66 million high-quality SNPs. More associated SNPs were

Frontiers in Plant Science | www.frontiersin.org 8 March 2022 | Volume 13 | Article 844946

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-844946 March 16, 2022 Time: 10:49 # 9

Si et al. GWAS for Cotton Seed Germination

FIGURE 4 | Identification and expression analysis of candidate genes related to seed germination on chromosome A09. (A) Local Manhattan plot (top) for GRA and
LD heat map (bottom) surrounding the peak region (68.0–68.5 Mb) on A09, and red arrow 1, 2, and 3 indicate the position of associated SNP A09:68240653,
A09:68257990, and A09:68258389, respectively. (B) Local Manhattan plot (top) for VI and LD heat map (bottom) surrounding the peak region (68.0–68.5 Mb) on
A09. (C) Box plots for VI, based on the significantly associated SNP on A09, n indicates the number of accessions with the same genotype. REF, the reference GG;
ALT, the alternate GA. Significant difference was analyzed with a two-tailed t-test. (D) Heat map of the candidate gene expression of chromosome A09 at different
cotton seed imbibition stage based on the FPKM value. Red indicates high expression, and blue indicates low expression. (E–G) Expression analysis of three
candidate genes (Gh_A09G1508, Gh_A09G1509, and Gh_A09G1510) between F (cotton variety with fast germination: Jinmian2) and S (cotton variety with slow
germination: Qunkemian) via qRT-PCR at 0, 6, 12, 24, 36, 48, 60, and 72 h, Ghhistone3b was used as an internal control. The data were normalized to the
maximum value. The error bars indicate ± SE; n = 3 independent biological replicates. (H) Germination phenotype of Gh_A09G1509 overexpressing lines and the
WT at the seed germinating stage 48, 72, and 96 h in tobacco. WT, wild-type plants. (I) GRA of overexpressing lines and the WT in tobacoo.

located in the A-subgenome than D-subgenome. The candidate
genes were involved in various metabolic pathways, including
toxin metabolism, toxin decomposition, glutathione metabolism,
and circadian rhythms with plants. Some of these candidate
genes related to germination have been identified in rice and
other plant species (Guo et al., 2011; Kaur et al., 2015; Wang
et al., 2015). The results provide new insights into the genetic
basis of seed germination vigor and molecular tools for crop
improvement in cotton.

On chromosome A09 and A11, Gh_A09G1499,
Gh_A09G1610, Gh_A11G0179, and Gh_A11G0252 belonged
to the protein kinase superfamily which played fundamental
roles in the modulation of plant growth and development,

including seed development, dormancy and germination,
seedling and root growth, flowering, fruit development,
and ripening and leaf senescence (Halford and Hey, 2009;
Wang et al., 2020). Overexpression of the receptor protein
kinase gene ZmRLK7 in Arabidopsis reduced the plant
height, organ size (e.g., petals, silique, and seeds) and
seed weight (He et al., 2020). The kinase-associated protein
phosphatase (KAPP) in Arabidopsis was negatively involved
in ABA-mediated seed germination and early seedling
growth (Lu et al., 2020). SnRK2 regulated key traits of crop
improvement and production such as seed maturation and
germination via ABA-dependent or ABA-independent pathways
(Mao et al., 2020).
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FIGURE 5 | Comparison of endogenous hormones, H2O2, starch mobilization, glucose, and glutathione metabolism between the overexpressing lines and the WT
during seed germination of tobacco. (A) GA3 content; (B) ABA content; (C) H2O2 content; (D) α-amylase activity; (E) Glucose content; (F) Glutathione reductase;
(G) Glutathione peroxidase; (H) Glutathione S-transferase; (I) Reduced glutathione; (J) Oxidized glutathione; (K) the ratio of reduced glutathione and oxidized
glutathione. Each column represents the means ± SD. * and ** indicate the significant difference compared to WT at 5 and 1% levels, respectively.

Gh_A11G0180 and Gh_A09G1503 encoded thioredoxin (Trx)
family proteins. During seed germination, Trx acts as a
signal in early germination to promote amylase and proteinase
activities and initiated the hydrolysis of storage materials, thereby
promoting seed germination (Smiri et al., 2010; Guo et al., 2011).
Trx has been observed to accelerate germination and α-amylase
synthesis in some transgenic studies (Cho et al., 1999; Wong
et al., 2002; Kim et al., 2003). Trx h present in starchy endosperm
functions in germination and early seedling development in
cereals (Jiao et al., 1992; Kobrehel et al., 1992; Besse et al., 1996;
Bewley, 1997; Cho et al., 1999; Wong et al., 2003). Overexpression
of Trx in barley (Hordeum vulgare) endosperm accelerated
germination (Wong et al., 2002), and suppressed expression
of Trx in wheat (Triticum aestivum) inhibited germination
(Guo et al., 2007).

Gh_A09G1506 encoding a seed storage protein (SSP) was
deposited in the protein bodies of developing seeds and
subsequently utilized during the germination of plant as a
source of nitrogen and carbon (Kawakatsu et al., 2010).
In peanut, embryonic properties could be suppressed via

repression of SSP genes during germination (Yang et al.,
2015). Ectopic expression analysis of PtCP5 showed decreased
storage protein accumulation, delayed seed germination, and
seedling development in OX-PtCP5 transgenic Arabidopsis
(Liu et al., 2021). Research on rice mutants and transgenic
complementary mutants suggested that OsTudor-SN functioned
in post-transcriptional regulation of storage protein expression
and seed development (Chou et al., 2019).

Four candidate genes, Gh_A11G0171, Gh_A11G0174,
Gh_A11G0176, and Gh_A11G0181, belonged to the heat shock
protein (HSP) family that responded to abiotic stress and
protected plants from adverse environmental effects (Charng
et al., 2006; Sun et al., 2012). Recent studies showed that HSP
played an important role in seed germination. Overexpression
of ZmHSP16.9 in transgenic tobacco increased seed germination
rate (Sun et al., 2012), and overexpression of CaHsp25.9 in
A. thaliana resulted in increased germination and root length
under abiotic stress (Feng et al., 2019). CsHSP transformed
plants improved seed germination vigor under heat stress (Wang
et al., 2017), and GhHSP24.7 mediated seed germination via
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thermal sensing. Under rugged environmental conditions,
the OsHSP18.2 positively controlled the germination and
cotyledon emergence (Kaur et al., 2015). In the present study,
we validated the function of Gh_A11G0176, and the OE
Arabidopsis lines showed delayed germination compared with
the WT, indicating Gh_A11G0176 might play a negative role
duringseed germination.

Several GST genes, including Gh_A09G1508, Gh_A09G1509,
Gh_A09G1510, Gh_A11G0199, and Gh_A11G0200 were
identified in the present study. GSTs are versatile enzymes and
catalyze the conjugation of electrophilic substrates to GSH
and thus reduce their toxicity (Frova, 2006). In addition to
glutathione transferase activity, some GSTs were found to
possess glutathione peroxidase activity (Bartling et al., 1993;
Xu et al., 2016) or be involved in light-dependent pathways
and circadian rhythm changes (Galle et al., 2018). GSTs were
activated by a variety of environmental stimuli and were
found to perform a direct function in lowering oxidative
damage and hazardous compounds produced during xenobiotic
metabolism (Dixon et al., 2002; Moons, 2005; Frova, 2006).
Seed germination and seedling growth were significantly
improved in transgenic tobacco lines that overexpressed plant
GST/GPX under stressful conditions (Roxas et al., 1997),
while overexpression of Gh_A09G1509 in tobacco resulted
in enhanced Verticillium wilt resistance (Li et al., 2019). In
the present study, Gh_A09G1509 was observed to have a
higher expression level in fast germinating varieties than in
slow germinating varieties, which was consistent with the
transcriptome results. Moreover, Gh_A09G1509 OE tobacco
resulted in faster seed germination and seedling growth as
well as longer hypocotyls, indicating that Gh_A09G1509
played a role in the positive regulation of promoting
seed germination.

Seed germination is a complex trait that not only affected
by temperature and environment, but also by endogenous
hormones, such as ABA and GA. The induction and maintenance
of dormancy are favorably regulated by ABA, while germination
is enhanced by GA. The time of germination depends on the
balance and the physiological interaction between ABA and GA
(Savage and Metzger, 2006). Researches in rice showed that
OsIPMS1 could promote the synthesis of GA3 biosynthesis-
related amino acids in germinated seeds, which resulted in an
increase in the amount of soluble sugars available for glycolysis
during seed germination. And then, the tricarboxylic acid
cycle (TCA) will be boosted, resulting in increased glycolysis
and TCA cycle metabolites, which contributed to quick seed
germination and strong seedling growth (He et al., 2019).
OsMFT2 positively regulated ABA response genes through
interacting with OsbZIP23/66/72 and negatively regulated seed
germination in rice (Song et al., 2020). In cotton, appropriate
melatonin may promote seed germination by regulating the
endogenous phytohormones GA3 and ABA (Xiao et al., 2019).
In the present study, it was demonstrated that Gh_A09G1509
improved seed germination by increasing GA3 content and
decreasing ABA content, in consistent with the literature
described on these hormones (Kucera et al., 2005; Tuan
et al., 2018). ROS triggered protein carbonization to release

dormancy, more and more evidence subsequently showed that
ROS homeostasis was essential for germination (Oracz et al.,
2007). Studies barley seeds found that dormant seeds had
low ROS content but high ABA content. Seed dormancy and
germination may be influenced by changes in the equilibrium
between ABA and ROS (Ishibashi et al., 2017). The activated
C kinase 1 (RACK1) receptor OsRACK1A positively regulated
seed germination by regulating endogenous levels of ABA and
ROS, as well as their interplay (Zhang et al., 2014). Additionally,
the H2O2 accumulation might change the hormone balance by
increasing GAs and decreasing ABA and ethylene, which was
crucial for seed dormancy and germination (Barba-Espin et al.,
2010, 2011; Jeevan et al., 2015). In the present study, we observed
that the H2O2 levels in overexpressed plants were significantly
higher compared to WT during the whole seed germination
stage. At the later stage of germination (48 h), GA3 induced
an increase in the activity of α-amylase which catalyzed the
hydrolysis of starch into glucose. Soluble sugars such as glucose,
serve as the primary energy source for seed germination (Ding
et al., 2012). We speculated that Gh_A09G1509 may regulate
seed germination through GA and reactive oxygen signaling
pathways. The interaction between GA and H2O2 promoted the
hydrolysis of starch, which increased the glucose content and thus
promoted seed germination.

Glutathione is not only an essential metabolite of plant
life, but also plays an important role in protein biosynthesis
of plant cells, the ratio of GSH to CSSG is the important
indicator reflecting the activity of glutathione in plants (Cairns
et al., 2006). At the early stage of seed germination, a high
ratio of GSH to CSSG is necessary for the synthesis of
proteins required for growth and development (Fahey et al.,
1980). During the germination process, GPX can catalyze GSH
to GSSG and reduce toxic peroxides to non-toxic hydroxyl
compounds, and GST can catalyze the combination of GSH
and toxic substances or peroxides to inactivate them, thereby
protecting cells from oxidative damage (Roxas et al., 2000;
Kalemba and Ratajczak, 2018), and promoting seed germination
(Wu et al., 2020). In silver maple, GSH treatment caused less
dehydration and increased germination (Kalemba and Ratajczak,
2018). In the present study, the activity of GRE gradually
increased, while the activities of GPX and GST gradually
decreased with the germinating of tobacco seeds. Moreover,
overexpression of GRE in transgenic plants leads to elevated
levels of GSH. Thereby, we speculated that Gh_A09G1509
might promote seed germination and seedling establishment by
glutathione metabolism.

CONCLUSION

In this study, a total of 92 significantly associated SNPs and 294
expressed genes at seed germination stage were screened out.
Gh_A11G0176 might play a negative role while Gh_A09G1509
play a positive role in regulating the germination of cotton
seeds. Gh_A09G1509 might regulate seed vigor and seedling
establishment mainly via glutathione metabolism and H2O2 level
in germinating seeds. This provides a valuable reference for
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understanding the molecular mechanism and facilitating crop
improvement of seed germination in cotton.
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