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DNA N6-Methyladenine (6mA) is a common epigenetic modification, which plays some
significant roles in the growth and development of plants. It is crucial to identify 6mA
sites for elucidating the functions of 6mA. In this article, a novel model named i6MA-
vote is developed to predict 6mA sites of plants. Firstly, DNA sequences were coded
into six feature vectors with diverse strategies based on density, physicochemical
properties, and position of nucleotides, respectively. To find the best coding strategy,
the feature vectors were compared on several machine learning classifiers. The results
suggested that the position of nucleotides has a significant positive effect on 6mA
sites identification. Thus, the dinucleotide one-hot strategy which can describe position
characteristics of nucleotides well was employed to extract DNA features in our method.
Secondly, DNA sequences of Rosaceae were divided into a training dataset and a test
dataset randomly. Finally, ibmA-vote was constructed by combining five different base-
classifiers under a majority voting strategy and trained on the Rosaceae training dataset.
The iBmMA-vote was evaluated on the task of predicting 6mA sites from the genome
of the Rosaceae, Rice, and Arabidopsis separately. In Rosaceae, the performances of
iBmA-vote were 0.955 on accuracy (ACC), 0.909 on Matthew correlation coefficients
(MCC), 0.955 on sensitivity (SN), and 0.954 on specificity (SP). Those indicators, in the
order of ACC, MCC, SN, SP, were 0.882, 0.774, 0.961, and 0.803 on Rice while they
were 0.798, 0.617, 0.666, and 0.929 on Arabidopsis. According to the indicators, our
method was effectiveness and better than other concerned methods. The results also
illustrated that iBmA-vote does not only well in 6mA sites prediction of intraspecies but
also interspecies plants. Moreover, it can be seen that the specificity is distinctly lower
than the sensitivity in Rice while it is just the opposite in Arabidopsis. It may be resulted
from sequence similarity among Rosaceae, Rice and Arabidopsis.
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INTRODUCTION

DNA N6-methyladenine (6mA) is a methyl modification at the
sixth position of the adenine ring, which was discovered by
Vanyushin et al. (1968). 6mA is widely found in prokaryotes
and eukaryotes (Fu et al., 2015; Greer et al., 2015; Zhang et al.,
2015). Itis reported that 6mA plays vital roles in DNA replication,
repairing nucleotide dislocations, and preventing the invasion of
foreign DNA (Wion and Casadesus, 2006). Although 6mA in
animal genomes studies have been well studied, those of plants
genomes have still known a little, which hampered to explore
their functions. To better understand the molecular mechanism
of 6mA in plants, it is the first step to determine the 6mA
sites accurately.

To detect 6mA sites, several biochemical methods were
developed, such as single-molecule real-time sequencing
technology (SMRT-seq) (Davis et al, 2013) and restriction
endonuclease-based 6mA sequencing (6MA-RE-seq) (Fu
et al, 2015). In SMRT-seq, single-nucleotide molecules
labeled by different fluorophores were paired with bases
of a DNA sequence, and the fluorescence signals were
recorded during the process of pairing. The fragment of
DNA sequence may be methylated if it showed the continuous
same signal during the process of pairing. 6mA-RE-seq
explored restriction enzymes to fragment genomic DNA
at “CATG” and “GATC” motifs that did not contain 6mA
and then retained these motifs containing 6mA. In this
way, after end-repair and other operations, the methylated
motifs would be enriched in the internal positions of DNA
fragments. However, these methods are hard to detect
6mA sites from high-throughput sequences because they
are time-consuming and expensive.

Therefore, some machine learning models have been
developed to identify 6mA sites in recent years because they
are efficient and cheap. At first, iDNA6mA-PseKNC (Feng
et al., 2019) was proposed to detect 6mA sites in the mouse
genome. In this model, DNA sequences were represented
by pseudo-k-tuple nucleotide composition incorporating
the physicochemical properties of nucleotides, and then
the sequences were classified by a support vector machine
(SVM). Subsequently, i6mA-Pred (Chen et al., 2019) trained
a novel SVM model to identify 6mA sites in the rice genome
based on the chemical properties of nucleotide such as the
loop structure, the hydrogen bond, and the amino groups,
and the nucleotide frequency of DNA sequences. To avoid
overfitting, ibmA-Pred used the maximum correlation maximum
distance approach to select the most representative features.
Afterward, iN6-methylate (Le, 2019), another novel SVM
model, used FastText to generate feature vectors for DNA
sequences based on the assumption that a DNA sequence is a
sentence and a nucleotide is a word. Unlike previous models,
MM-6mAPred (Pian et al., 2019) constructed Markov chains
based on DNA sequences with 6mA sites (positive samples)
and DNA sequences without 6mA sites (negative samples) in
the training dataset. Based on the Markov chains, the positive
and negative probabilities of a DNA sequence were calculated
separately. It is considered that a sequence contained 6mA site

if the ratio of positive probability against negative probability
is greater than 1.

To improve the performance of above methods, ensemble
learning has been increasingly applied to 6mA sites prediction.
In the beginning, iDNA6mA-Rice (Lv et al, 2019), a rice
6mA site classification model based on random forest, encoded
DNA sequences via three feature descriptors, namely the
k-nucleotide frequency, the mono-nucleotide binary coding, and
the natural vector containing the frequency, average position,
and second-order central moment of mono-nucleotides. Soon
afterward, on the basis of bagging with CART, i6mA-DNCP
(Kong and Zhang, 2019) represented rice DNA sequences
by two novel feature descriptors: dinucleotide frequency and
dinucleotide physicochemical properties. In addition, i6mA-
DNCP employed heuristic ideas to select the most representative
features. Several months later, i6mA-Fuse (Hasan et al., 2020)
was proposed to classify Rosaceae DNA sequences with random
forest and linear regression. Subsequently, a random forest-
based multi-species 6mA site prediction model 6mA-Finder
(Xu et al., 2020) was developed, which contained three
modules for mouse, rice, and a general species admixed
by mouse and rice DNA sequences, respectively. i6mA-
stack (Khanal et al., 2021) developed a two-level stacked
ensemble classifier based on linear regression, random forest,
support vector machine, and gaussian naive bayes to recognize
Rosaceae 6mA sites.

With the development of deep learning, some neural network
models were also developed for identifying 6mA sites. For
example, iDNA6mA (Tahir et al, 2019) is composed of four
layers: two convolution layers which extract features of DNA
sequences, a dropout layer which is used to avoid overfitting,
and a full-connection layer which performs classification
tasks. Subsequently, SNNRice6mA (Yu and Dai, 2019) was
improved iDNA6mA by adding a normalization layer and a
pooling layer between the convolution layer and the dropout
layer, which aimed to reduce redundant features of DNA
sequences according to the correlation of the features. i6bmA-
DNC (Park et al, 2020) is similar with the above two
models except it extracted features from nucleotide pairs
of DNA sequences rather than from single nucleotides.
It is worth noting that the three neural network models
mentioned above were all developed for predicting 6mA sites in
the rice genome.

Because the previously mentioned models are species-
specific, Meta-ibmA (Hasan et al., 2021) was proposed for
6mA site prediction from multiple plants. Although Meta-
ibmA has achieved encouraging results in intraspecies, it
still has room for improvement in interspecific. To solve
this problem, a novel classification model i6mA-vote was
developed based on an ensemble learning strategy. In this
model, DNA sequences were encoded by nucleotide position-
based feature descriptors, and then these sequences were
classified by an ensemble classifier integrating random
forest, linear discriminant analysis, multi-layer perceptron,
stochastic gradient descent, and extreme gradient boosting.
The details of i6mA-vote will be introduced in the
following sections.
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test dataset; In the DNA sequences, the letter “A” marked in red refers to the possible 6mA site, and the letter “N” indicates the unidentified nucleotide; In the feature
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MATERIALS AND METHODS

Framework of iGmA-Vote

In our study, as shown in Figure 1, i6mA-vote was constructed
by four steps. Firstly, positive samples of Rosaceae, Rice,
and Arabidopsis were derived from MDR (Liu et al., 2019),
GEO (Edgar et al, 2002), and MethSMRT (Ye et al., 2017)
databases, and negative samples of these plants were downloaded
from NCBI. For each plant, the positive and negative samples
were filtered by CD-HIT (Li and Godzik, 2006) to reduce
high similar samples. Then all samples were divided into
three datasets according to organisms for the subsequent
experiments. The Rosaceae dataset was split into a training
dataset and a test dataset, and datasets for the remaining
two species were used as cross-species evaluation datasets.
Secondly, to transform DNA sequences into feature vectors,

one-hot encoding method was performed on dinucleotides
(e.g, AA, AG, ...) of DNA sequences. Because the known
nucleotides can be represented by four symbols (A, G,
C, T) and other unknown nucleotides can be denoted by
symbol N, in this way, there were twenty-five dinucleotide
combinations. Thirdly, an ensemble learning model, named
ibmA-vote, was built by integrating random forest (RF), multi-
layer perceptron (MLP), stochastic gradient descent (SGD),
linear discriminant analysis (LDA), extreme gradient boosting
(XGB), based on majority voting strategy. Then all samples
were represented by feature vectors and the ensemble learning
model was trained on the samples. Finally, to evaluate the
performance of the model, i6mA-vote was used to perform
simulation a task on test datasets, and its superiority was
demonstrated by accuracy, Matthew correlation coefhicient,
sensitivity, and specificity. In the following sections, the
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TABLE 1 | Number of samples in each dataset.

Datasets Number of Number of Total
positive samples negative samples number
DS1 29237 29433 58670
DSs2 7298 7300 14598
DS3 153635 153629 307264
DS4 31414 31843 63257

detail process of constructing the i6mA-vote model will be
illustrated step by step.

Datasets

The quality of the dataset affects the performance of the
classification model. In this study, four high-quality datasets that
have been applied in the 6mA prediction domain were selected.

The Rosaceae dataset was collected, collated, and constructed
by Hasan’s team (Hasan et al, 2021). The part containing
6mA were derived from the MDR database (Liu et al., 2019).
After removing similar sequences and excluding 90% sequence
identity, 36,537 positive samples were obtained. The other part,
including the same number of negative ones, was taken from
NCBI, and it was generated by chromosomes with no 6mA
detected. Finally, 80% of this dataset was randomly selected as
the training dataset (DS1), and the remaining 20% was regarded
as the test dataset (DS2).

The Rice dataset (DS3) was created by Lin’s group (Lv et al,,
2019). The positive portion and the negative one were obtained
from the GEO database (Edgar et al., 2002) and NCBI. And they
both included 154000 samples.

The Arabidopsis dataset (DS4) was also constructed by
Hasan’s team (Hasan et al., 2021). It extracted 31,873 6mA sites
from the MethSMRT database (Ye et al., 2017) and replenished
the same number of negative samples from NCBI using the same
way as for the Rosaceae dataset.

Among them, DS1 was used for training the model, DS2, DS3,
and DS4 were used to evaluate the generalization performance
and cross-species prediction ability of the model.

All the above four datasets were downloaded from the
online server of model Meta-ibmA (Hasan et al., 2021)'. In
addition, these datasets were also processed as follows: (1)
Sequences longer than 41bp were removed. (2) If a sequence
was repeated multiple times, it would be deleted, leaving only
one copy. (3) If a sequence was present in both positive and
negative samples, it would be removed from both parts. Finally,
the number of samples included in each dataset is shown in
Table 1. Their sequences all consisted of 41 nucleotides with an
“A” in the middle.

Feature Extraction

To convert DNA sequences into feature vectors, One-hot
encoding method for dinucleotides was employed in our model.
This strategy and other concerned strategies will be described
in detail below.

Thttp://kuratal4.bio.kyutech.ac.jp/Meta-i6mA/download_file/Meta-6mA-
datasets.zip

Our Encoding Strategy

One-hot encoding method for dinucleotides (One-hot2) is based
on the one-hot encoding method in natural language processing.
The one-hot encoding method compiles a dictionary using the
words in the sentences and then encodes each word into a 0-1
vector through this dictionary. The length of the vector is equal to
that of the dictionary, and each bit in the vector corresponds to a
word in the dictionary. When encoding a word, its corresponding
bit is set to 1 in the vector, and the other bits are kept at
0. Similarly, One-hot2 treats DNA sequences as sentences and
dinucleotides as words.

A DNA sequence is usually composed of four standard
nucleotide symbols: A, C, G, and T. However, sometimes the
DNA sequence also include non-standard nucleotide symbol N,
which means that the nucleotide was not identified. Accordingly,
a DNA sequence may consist of 5 symbols, and it contains 25
possible symbol combinations of dinucleotides like AA, AC, AN.
In our method, the one-hot2 encoded each dinucleotide into a
25-dimensional 0-1 vector. The vector of each dinucleotide is
shown in Formula (1).

AA = (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0)
AC = (0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0,0, 0)
AG = (0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 0)
. (1)
NT = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1, 0)
NN = (0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, 1)

To show how One-hot2 encodes DNA sequences, an example
is given below. DNA sequence D = ACGTNA can be split into
five dinucleotides (AC, CG, GT, TN, NA), and then they are
replaced with their corresponding one-hot codes. In this way, a
vector with the dimension of 125 is generated.

Because the length of the DNA sequences in our datasets are
41bp, the sequences can be spliced into 40 dinucleotides and thus
the vectors of these dinucleotides were concatenated into a 1000-
dimensional feature vector to describe their primary sequence.

There are three reasons why One-hot2 was chosen: (1) It
can solve the problem that classifiers are not good at handling
continuous data. In addition, it generates sparse vectors, allowing
many machine learning problems to be linearly separated
and models more efficient to be stored. (2) It considers the
relationship between adjacent nucleotides as it is encoded
in dinucleotide. (3) Some studies (Chen et al, 2019; Feng
et al,, 2019) found position-specific features can better represent
sequences containing 6mA sites, and One-hot2 happens to be
this kind of method.

The Concerned Encoding Strategies

Density-Based Approach

Accumulated Mono-Nucleotide Frequency (AMNF)
represent the frequency of single nucleotides in the
subsequence which ranges from the first nucleotide to
the current nucleotide of the original sequence. Similarly,
Accumulated Di-Nucleotide Frequency (ADNF) (Chen
et al, 2017) denotes the nucleotide pairs which appears
before current nucleotide. For example, DNA sequence
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D = ACGTNA can be encoded as (1, 0.5, 0.33, 0.25,
0.2, 0.33) and (1, 0.5, 0.33, 0.25, 0.2) by AMNF and
ADNE respectively.

Physicochemical-Properties-Based Approach

Dinucleotide Physical-Chemical Properties (DPCP) and
Trinucleotide Physical-Chemical Properties (TPCP) (Manavalan
etal, 2019; Wei et al,, 2019) replace the DNA sequences with the
vectors calculated by Equation (2) using the physicochemical-
properties in Supplementary Tables 1,2. In Supplementary
Table 1, the columns represent 15 physicochemical properties,
and the rows represent 25 dinucleotides. In Supplementary
Table 2, the columns represent 11 physicochemical properties,
and the rows represent 125 trinucleotides.

xPCPi = Ni X xPCij (2)

where x = D refers to Dinucleotide and x = T denotes
Trinucleotide. When x = D, the values of i range from 1 to
25, the values of j range from 1 to 15, DPCP; is the DPCP value
of the ith dinucleotides, N; is the count of the ith dinucleotides
in the DNA sequence, and DPCj; is the jth properties of the ith
dinucleotides; When x = T, the values of i range from 1 to 125,
the values of j range from 1 to 11, TPCP; is the TPCP value of
the ith trinucleotides, N; is the count of the ith trinucleotides
in the DNA sequence, and TPCj; is the jth properties of the
ith trinucleotides.

Position-Based Approach

One-hot encoding method for mononucleotide (One-hotl) is
similar to One-hot2, except that its encoding unit is the
mononucleotide. It converts a mononucleotide into a one-hot
code with a length of five, corresponding to five mononucleotides
(A, C, G, T, and N). For instance, the encoded vector of
DNA sequence D = ACGTNA is (1,0,0,0,0] 0,1,0,0,0| 0,0,1,0,0|
0,0,0,1,0| 0,0,0,0,1| 1,0,0,0,0).

Classifier

To train a classification model with stable and good performance,
five machine learning algorithms was utilized to construct five
base-classifiers. Subsequently, majority voting was adopted to
integrate these five base-classifiers. Its detailed procedure is
illustrated in the following steps.

(1) The processed training dataset was inputted into five
machine learning algorithms, and five base-classifiers were
generated. These five algorithms were random forest (RF), multi-
layer perceptron (MLP), stochastic gradient descent (SGD), linear
discriminant analysis (LDA), extreme gradient boosting (XGB).
Among them, RF refers to one type of classifier that utilizes
multiple decision trees to train and predict samples. MLP, as a
simple neural network, contains three fully connected layers, the
input layer, the hidden layer, and the output layer. SGD is a kind
of support vector machine model. LDA is a classifier generated
according to Bayes’ rule. XGB is also based on trees, but unlike
random forests, its trees are regressive, and it also optimizes the
algorithm itself, the efficiency and robustness of the algorithm.

(2) The five base classifiers were combined into one ensemble
classifier by majority voting. That is, when three or more base

classifiers judge a sequence to be a positive (or negative) sample,
then their combination also treats this sequence as a positive (or
negative) sample.

It should be noted that the hyperparameters of the base-
learners were optimized by grid search strategy. After manually
specifying variation ranges of hyperparameters, this strategy
adopted an exhaustive method-like approach to find the
best-performing combination from these hyperparameters. In
addition, all classifier algorithms in this paper were implemented
by sklearn (Hinton, 1989; Belhumeur et al., 1997; Platt, 2000;
Breiman, 2001; Bengio and Glorot, 2010; Pedregosa et al., 2011;
Kingma and Ba, 2014; He et al., 2015; Chen and Guestrin, 2016).

Performance Evaluation

Our model was validated according to accuracy (ACC), Matthew
correlation coeflicient (MCC), Sensitivity (SN), Specificity (SP)
which had been widely adopted in the field of bioinformatics
(Huang and Gong, 2020; Liu et al, 2020; Smolarczyk et al,
2020; Wang H. et al.,, 2020; Wang J. et al., 2020; Shao and Liu,
2021; Zhang et al,, 2021). These metrics can be calculated by
equations (3) ~ (6).

nrp + NN

ACC = (3)
ntp + NEN + NN + NEp

MCC =
nrp X NN — NEN X NEp

(4)
V(nrp 4 npp) X (nrp + npy) X (nqy + npp) X (n1n + neN)

nrp

SN = ——— (5)
nrp + NEN

sp — "IN (6)
nrN + nrp

Where TP and TN refer to correctly predicted 6mA and non-
6mA; FP and FN denote incorrectly predicted non-6mA and
6mA; n, means the number of x.

RESULTS AND DISCUSSION
DNA Sequence Logos

To find optimal features of samples, the DNA sequences
of samples should be analyzed. Since these sequences were
of equal length, they could be analyzed sequence logos
(Schneider and Stephens, 1990). Two Sample Logo was employed
(Vacic et al., 2006), which calculated the statistical difference
between positive and negative samples at specific positions. The
logo consists of three parts, the upper and lower parts represent
the enriched and depleted nucleotides at specific positions, and
the middle part denotes the consistent results of positive and
negative samples. The x-axis indicates the position. The length
of DNA sequences in our datasets is 41bp, so there are 41
scales on the x-axis. Additionally, as the middle nucleotide is
consistent in both positive and negative samples, it is set to the
Oth scale. The y-axis represents the amount of information at
the position. The higher the symbol in a position, the more
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FIGURE 2 | Sequence logos of Rosaceae (A), Rice (B), and Arabidopsis (C).

information the position contains. In addition, the relative size
of a base letter shows its relative frequency at one position. If
a letter is larger than the other letters in the column, it has a
high frequency in that position. At each position, the base letters
are arranged in the order of dominance from top to bottom.
Generally, the consensus motif can be found by reading the top
of each position.

Figures 2A-C are the sequence logos established for Rosaceae,
Rice, and Arabidopsis. From the three figures, it can be
seen that the sequences have a length of 41lbp with “A’s
at the center. In addition, “A” enriched at positions —6,
—4, =3, 4, 7, 8, 10, 11, 12, “C” enriched at positions —7,
-2, 2, 6, 9, “G” enriched at positions —8, —1, 2, 3, 5,
8, and “T” enriched at positions 3. Since these sequences
containing 6mA are enriched with some nucleotides at some
positions, it is speculated that position-based approaches are
more suitable for extracting information from the sequences
in our datasets.

Performance Evaluation of Models
To verify the conjecture in the previous section, six methods
were chosen to extract the datasets as features and then

they were applied to five commonly used well-performing
algorithms in sklearn. Since the conjecture is too intuitive
and may lead to some significant features being overlooked,
not only nucleotide position-based methods are compared, but
also density-based and physicochemical property-based methods
were also compared.

The experimental results of 5-fold cross-validation are
displayed in Table 2. The columns indicate the feature
extraction methods which have been introduced in the “Feature
Extraction” section. The rows denote classifier algorithms
and their evaluation metrics, and they have been briefly
described in the “Classifiers” section and the “Performance
Evaluation” section.

As can be seen in Table 2, whichever classifier algorithm
is selected, the ACCs, SNs, SPs, and MCCs of AMNE
ADNE DPCP and TPCP are all lower than 0.80, 0.79, 0.83,
and 0.60, whereas them of One-hotl and One-hot2 are all
higher than 0.93, 0.93, 0.91, and 0.86. These illustrate that
compared with density-based and physicochemical property-
based approaches, position-based ways can better express
the characteristics contained in DNA sequences in our
datasets. XGB performed slightly better with one-hotl than
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TABLE 2 | Indicators of different features and classifier algorithms.

AMNF ADNF DPCP TPCP One-hot1 One-hot2
Random ACC 0.786 0.642 0.594 0.669 0.935 0.938
forest
SN  0.746 0.627 0.587 0.683 0.937 0.939
SP 0825 0.655 0.602 0.656 0.933 0.937
MCC 0573 0.283 0.189 0.339 0.870 0.877
Linear ACC 0.643 0609 0.614 0.660 0.908 0.931
discriminant
analysis
SN 0.650 0.624 0597 0.629 0.937 0.945
SP  0.637 0.594 0.632 0.692 0.879 0.917
MCC 0.287 0.219 0.228 0.321 0.818 0.862
Multi-layer ACC 0.755 0.627 0.602 0.625 0.937 0.939
perceptron
SN 0743 0.602 0.576 0.621 0.936 0.942
SP  0.767 0.652 0.628 0.629 0.939 0.937
MCC 0510 0.255 0.204 0.250 0.875 0.878
Stochastic  ACC 0.643 0.605 0.549 0.577 0.910 0.931
gradient
descent
SN 0.631 0.647 0.561 0.481 0.917 0.936
SP 0654 0.563 0.538 0.672 0.904 0.926
MCC 0.287 0.212 0.099 0.157 0.821 0.861
Extreme ACC 0.790 0.647 0.616 0.673 0.944 0.940
gradient
boosting
SN 0.788 0.650 0.617 0.672 0.948 0.942
SP  0.791 0.644 0.616 0.675 0.939 0.937
MCC 0579 0.294 0.233 0.346 0.888 0.880

Bold values indicate the best performance.

one-hot2. This may be because XGB may lose some valuable
information when it was applied on high-dimensional one-
hot2 features. Specifically, XGB divides the high-dimensional
feature space into many small parts which may be treated
as noise. In addition, if the feature descriptor is One-hotl
or One-hot2, all classifiers show good performance, which
indicates that all these algorithms are appropriate for this
classification task.

Moreover, to judge intuitively whether the above six feature
extraction methods were good at distinguishing between positive
and negative samples, the tSNE (van der Maaten and Hinton,
2008) technique in sklearn (Pedregosa et al., 2011) was used
to project the sample points of these methods from the high-
dimensional space to the two-dimensional space. If the positive
and negative sample points can be well separated in the
two-dimensional space, they are also separable in the high-
dimensional space. The visualization plots of the projection are
shown in Figure 3. It can be seen from Figure 3 that the
samples of the two labels are separated by certain dividing lines
in Figures 3E,F, while in other subgraphs, the negative sample
points are almost covered by the positive ones. These illustrate
that One-hotl and One-hot2 can better discriminate the sample
points of the two labels in a high dimensional space than the
other four methods.

Through these arguments, the nucleotide position-based
methods are indeed more suitable for extracting features from
DNA sequences in our datasets, and the assumptions that
was made in the previous section are proved to be correct.
Therefore, in the subsequent analysis, only One-hotl and One-
hot2 would be considered.

Comparison of Features

In the previous section, it has been learned that the position-
based approaches express the information contained in our
DNA sequences well. However, it is not sure which is the best
among One-hotl, One-hot2, and their fusion. Therefore, in this
subsection, they are compared. The comparison results are shown
in Figure 4.

As can be seen from Figure 4, only when the classifier
is XGB, the effect of the other two is slightly better
than One-hot2; when the classifier is RF, LDA, MLP, or
SGD, One-hot2 is significantly better than One-hotl and
slightly better than the fusion. The reason for this is
that when encoding a dinucleotide, some information about
the mononucleotide is involved. Therefore, in most cases,
One-hotl is not as good as One-hot2, and their fusion
produces some redundant information. Consequently, One-hot2
is the best answer.

Efficiency of Ensemble Strategy

Using One-hot2 to extract features and take RF, LDA, MLP,
SGD, and XGB as classifiers, five base models can be obtained.
As shown in Figure 5, except for some differences between
SN and SP of LDA and SGD, SN and SP for the other three
classifiers do not differ much, as well as these base models
are all with excellent performance, so they were tried to be
combined with the majority voting strategy. The integrated
results are also shown in Figure 5. It can be found that after
voting, except for no enhancement in SP, all the other three
metrics improved, which means that after this operation, the
performance of the whole classification system has been risen
to a higher level.

Comparison With Other Machine
Learning Models

To evaluate the generalization capability and cross-species
identification ability of our model, it was applied to three
test datasets, DS2, DS3, and DS4. Moreover, the test results
were compared with several other machine learning models to
demonstrate the advantages of our model. Table 3 shows the
comparative results on Rosaceae, Rice, Arabidopsis. The columns
indicate four evaluation indicators that have been introduced in
the “Performance Evaluation” section. The rows represent the
species and the models applied on these species. The models
include Meta-i6mA (Hasan et al., 2021), ibmA-Fuse (Hasan et al.,
2020), ibmA-stack (Khanal et al., 2021), i6mA-Pred (Chen et al.,
2019), iDNA6mA-Rice (Lv et al.,, 2019), MM-6mAPred (Pian
et al,, 2019), and 6mA-Finder (Xu et al.,, 2020). Among them,
ibmA-Fuse consists of two modules, which were trained by the
datasets of Fragaria Vesca and Rosa Chinensis, respectively. To
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samples with and without 6mA sites, respectively).

One-hotl

°  non-6mAs

FIGURE 3 | The tSNE scatterplots of AMNF (A), ADNF (B), DPCP (C), TPCP (D), One-hot1 (E), and One-hot2 (F). (Blue and pink dots indicate DNA sequence

=25

One-hot2
6mAs

I One-hotl I One-hot2 One-hot1+One-hot2

0.96

0.94
0.92
0.90
0.88
0.86
0.84
0.82
0.80 -
RF LDA MLP SGD XGB

FIGURE 4 | Comparison before and after feature fusion.

better distinguish them, i6mA-Fuse_FV and i6mA-Fuse_RC are
used instead. The same situation is true for ibmA-stack.

As can be seen from Table 3, when the species is Rosaceae,
although our SN and SP values only rank second, our ACC and
MCC values are the maximum, suggesting that our model has
the best overall performance in Rosaceae. It can be concluded
that our model can make cross-species predictions for Rice
as all four metrics of our model rank at the top. And it can
better find 6mA sites from unknown Rice sequences because

I RF MLP I XGB
s LDA SGD B Ensemble
0.95 1
0.90 A
0.85 1
0.80 -
ACC MCC Sn Sp

FIGURE 5 | Effects of the ensemble strategy.

our model has the highest SN value. Like Rosaceae, our model
predicts 6mA sites well in Arabidopsis, and with the highest SP,
our model can better screen out those sequences that do not
contain 6mA sites. Considering the comparative results on the
three species, our model has better generalization performance
and cross-species prediction ability than other methods. This
may be because only the best-performing feature descriptor was
selected to represent the DNA sequences rather than the fusion of
several well-performing features. Thereby, the risk of generating
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TABLE 3 | Comparison with other machine learning models on Rosaceae, Rice,
and Arabidopsis.

ACC MCC SN SP
Rosaceae Meta-iBmA 0.953 0.905 0.954 0.951
iBmA-Fuse_FV 0.943 0.887 0.924 0.962
iBmMA-Fuse_RC 0.893 0.786 0.890 0.895
iBmMA-stack_FV 0.928 0.856 0.928 0.927
iBmA-stack_RC 0.899 0.798 0.920 0.877
iBmMA-Pred 0.840 0.684 0.897 0.782
iDNABMA-Rice 0.878 0.764 0.951 0.805
MM-6mAPred 0.873 0.758 0.961 0.785
BmA-Finder 0.846 0.701 0.928 0.764
iBmMA-vote 0.955 0.909 0.955 0.954
Rice Meta-iBmA 0.880 0.768 0.957 0.802
iBmA-Fuse_FV 0.890 0.781 0.921 0.859
iBmMA-Fuse_RC 0.775 0.571 0.907 0.644
iBmA-stack_FV 0.876 0.756 0.938 0.815
iBmA-stack_RC 0.813 0.640 0.915 0.712
iBmMA-Pred 0.791 0.592 0.878 0.705
iDNAB6MA-Rice 0.755 0.561 0.960 0.547
MM-6mAPred 0.834 0.689 0.958 0.710
BmA-Finder 0.809 0.636 0.928 0.690
iBmMA-vote 0.882 0.774 0.961 0.803
Arabidopsis Meta-iBmA 0.787 0.600 0.636 0.936
iBmMA-Fuse_FV 0.749 0.542 0.545 0.949
iBmMA-Fuse_RC 0.757 0.534 0.615 0.897
iBmA-stack_FV 0.770 0.570 0.604 0.933
iBmA-stack_RC 0.751 0.514 0.634 0.865
iBmMA-Pred 0.730 0.462 0.679 0.780
iDNA6MA-Rice 0.734 0.473 0.655 0.812
MM-6mAPred 0.765 0.531 0.784 0.747
BmA-Finder 0.724 0.448 0.741 0.706
iBmMA-vote 0.798 0.617 0.666 0.929

Bold values indicate the best performance.

irrelevant and redundant features is reduced so that our model
has better predictive performance. Furthermore, for Rosaceae,
SN is approximately equal to SP and greater than 0.9, indicating
that our model has a good discrimination between 6mAs and
non-6mAs in the same plant family. For Rice, the SN is greater
than 0.9, while the SP is less than 0.9, which may be due to a
strong similarity between Rice sequences and Rosaceae positive
sequences, resulting in a high false-positive rate and a low true-
negative rate when the model recognizes Rice. The situation for
Arabidopsis is contrary to that for Rice. It may be because the
similarity between Arabidopsis sequences and Rosaceae positive
sequences is weak, leading to some 6mAs in Arabidopsis being
identified as non-6mAs.

CONCLUSION

In this study, a plant cross-species 6mA site recognition model
was constructed by ensemble learning. It has been applied on
Rosaceae, Rice, and Arabidopsis and achieved good results.
In the construction process, a hypothesis was put forward

by analyzing the sequence logos of these three plants. The
conjecture was that position-based approaches were more
suitable for extracting information from the sequences in our
datasets. Next, the hypothesis was verified by comparing different
models and observing the tSNE visualization. Then, one-hot
encoding for dinucleotide was chosen to represent the datasets
by contrasting two nucleotide position-based feature extraction
methods and their fusion. Finally, several well-performed models
were integrated to form the final classifier by majority voting.
To simulate a realistic prediction task, the model was trained
on Rosaceae and tested on Rosaceae, Rice, and Arabidopsis.
The experimental results showed that our model was adept
at predicting the 6mA sites in homologous and heterologous
species. In addition, it was also found that there might be a
strong similarity between Rice sequences and Rosaceae positive
sequences, and the similarity between Arabidopsis sequences
and Rosaceae positive sequences is weak. The comparison with
other models also showed the superiority of our model. In
summary, i6mA-vote outperformed other concerned methods
in predicting 6mA sites in the plant genomes. Meanwhile, our
research also has the limitation that only three plants were
considered. Therefore, future studies will focus on the 6mA site
formation characteristics of more plants.
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