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MADS-box is an important transcription factor family that is involved in the regulation
of various stages of plant growth and development, especially flowering regulation and
flower development. Being a holoparasitic plant, the body structure of Balanophoraceae
has changed dramatically over time, and its vegetative and reproductive organs have
been extensively modified, with rudimentary flower organs. Meanwhile, extraordinary
gene losses have been identified in holoparasitic plants compared with autotrophs.
Our study reveals that the MADS-box gene family contracted sharply in Balanophora
subcupularis and Balanophora fungosa var. globosa, and some subfamilies were lost,
exhibiting reduced redundancy in both. The genes that functioned in the transition
from the vegetative to floral production stages suffered a significant loss, but the
ABCE model genes remained intact. We further investigated genes related to flowering
regulation in B. subcupularis and B. fungosa var. globosa, vernalization and autonomous
ways of regulating flowering time remained comparatively integrated, while genes in
photoperiod and circadian clock pathways were almost lost. Convergent gene loss
in flowering regulation occurred in Balanophora and another holoparasitic plant Sapria
himalayana (Rafflesiaceae). The genome-wide analysis of the MADS-box gene family in
Balanophora species provides valuable information for understanding the classification,
gene loss pattern, and flowering regulation mechanism of MADS-box gene family in
parasitic plants.

Keywords: parasitic plants, MADS-box gene family, gene loss, gene redundancy, flowering, holoparasitic plant,
Balanophora, phylogeny

INTRODUCTION

The MADS-box gene family is involved in all stages of plant development and is one of the
most thoroughly investigated gene families in plants (Theiflen et al., 2016; Schilling et al., 2018).
Previous research elucidated that MADS-box family plays a vital role in many developmental
processes, especially in the flower organ identity, control of flowering time, vegetative development,
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seed and fruit development, pollen, and embryo sac formation
(Smaczniak et al., 2012; TheifSen et al., 2016).

MADS-box genes contain a highly conserved MADS (M)
domain at the N-terminus which has a length of 50-60
amino acids, binding to CArG boxes (CC-“Adenine rich’-GG)
(Riechmann et al., 1996; Gramzow et al., 2010). Phylogenetically,
MADS-box gene family is divided into two categories: type I
(SRE-like) and type II (MEF2-like), based on their conserved
domain (Alvarez-Buylla et al., 2000; Parenicova et al., 2003).
In plants, the length of type I genes are generally shorter
and have simple structures, having only the MADS domain,
which can be further classified into three clades, Ma, M,
and My. Compared to type I genes, the type II genes
tend to be more complicated consisting of MADS (M)
domain, Intervening (I) domain, Keratin (K) domain, and
highly variable C-terminal (C) domain, also named as MIKC-
type genes (Theiflen et al, 1996; Parenicova et al., 2003;
Kaufmann et al, 2005; Smaczniak et al, 2012). According
to the different intervening regions, the MIKC-type can be
divided into two subgroups, MIKC® and MIKC* (Henschel
et al., 2002; Liu et al., 2018). Some reports about Arabidopsis
thaliana showed that MIKCC type genes can be further
subclassified into 12 groups based on their phylogenetic
relationships (Parenicova et al, 2003). During the long-term
evolution of this family of genes, varying degrees of duplication
events have occurred followed by subfunctionalization, which
resulted in the functional diversification of MADS-box genes
(Theissen and Saedler, 2001).

Flowering is a critical process that requires the cooperation
and interaction of many genes in order to detect developmental
and environmental cues and make decisions. Numerous studies
have manifested that MADS-box genes play crucial roles in
the flowering process, not only participate in regulating floral
transition, floral meristem specialization, floral organ formation,
and pollen growth, but are also related to root, ovule, and
seed development (Michaels and Amasino, 1999; Liljegren et al.,
2000; Adamczyk and Fernandez, 2009; Moreno-Risueno et al.,
2010; Garay-Arroyo et al., 2013; Xu et al, 2016). Extensive
research on mutants with floral organ identity defects has
led to the birth of the “ABCE model,” which explains how
the class A, B, C, D, and E genes co-determine floral organ
identities (Riechmann and Meyerowitz, 1997; Theissen and
Saedler, 2001). In Arabidopsis, class A [APETALA1 (AP1)] and
class E [SEPALLATA1/2/3/4 (SEP1/2/3/4)] protein complex are
involved in sepal development. Class A, class B, and class
E protein complex participate in petal development. Class B
[APETALA3 (AP3) and PISTILLATA (PI)], class C [AGAMOUS
(AG)] and class E protein complex are involved in stamen
development, while class C and class E protein complex take
part in carpel development. Ovule development is modulated by
class D genes [SEEDSTICK (STK), SHATTERPROOFI (SHPI1),
and SHP2] (Weigel and Meyerowitz, 1994; Ehlers et al., 2016).
Class E proteins are involved in the formation of tetramer
protein complexes and form complexes with type A, B, C
proteins (Melzer and Theissen, 2009; Pan et al, 2014). In
this model, most genes belong to the type-II MADS-box
family in Arabidopsis (Kaufmann et al, 2005). In addition,

there are some other type II genes of MADS-box that are
also involved in the regulation of flowering time and flower
initiation, including FLOWERING LOCUS C (FLC), SHORT
VEGETATIVE PHASE (SVP), SUPPRESSOR OF CONSTANSI
(S0CI), AGAMOUS-LIKE 15 (AGL15), AGL18, AGL24, MADS
AFFECTING FLOWERING (MAFI/FLM), etc. (Michaels and
Amasino, 1999; Hartmann et al., 2000; Samach et al., 2000),
which play key roles in regulating flowering time through
photoperiod, vernalization, or functioning as an integrator of
flowering signals.

Parasitic plants differ from free-living plants, as they have
evolved a heterotrophic lifestyle, relying on haustoria that
connect to the hosts vascular system to get resources for
growth and development. Parasitic plants make up about 1%
of angiosperms in the world, including about 4,500 species,
representing at least 12 independent evolutionary events from
autotrophs into parasitic plants (Westwood et al., 2010). Parasitic
plants could be classified into hemiparasites and holoparasites,
with the distinction being that the former can carry out partial or
complete photosynthesis while the latter lacks the photosynthetic
capacity. Some of these parasitic plants of Orobanchaceae,
such as Phtheirospermum, Striga, are considered as agricultural
weeds, which seriously jeopardize crops (Clarke et al., 2019;
Kountche et al., 2019).

Santalales is one of the largest family of parasitic plants,
comprising autotrophic, hemiparasitic and holoparasitic plants
(Chen et al., 2020), among which the holoparasitic plants of
Balanophoraceae exhibit special morphological structure and
extreme manifestation of parasitism. The aboveground part
of the Balanophoraceae plants resembles the appearance of
basidiomycetes fungi, consisting of a thickened and fleshy
inflorescence, with or without scaly leaves (bracts), monoecious
or dioecious (Shivamurthy et al., 1981a; Eberwein et al., 2009).
Due to the holoparasitic habit, the vegetative and reproductive
systems of Balanophoraceae plants are severely reduced, with
the tuber serving as the only remaining vegetative organ from
which the floral organs eventually emerge (Shivamurthy et al.,
1981b). Unusually, 5-10 hypodermal cell-layers of the tuber
re-differentiated into inflorescence meristem, which lacks a
morphologically distinguishable epidermis and characteristically
aligned hypodermal cell layers, indicating the special origin of
flowers in Balanophora (Shivamurthy et al., 1981b). The female
flowers of Balanophoraceae plants are very simple, filamentous
structures, without tepals, only a style and a brief ovary, and a
spadicale that overlays the surface of inflorescence (Figure 1A).
Male flowers are also simple and consist of perianth and pollen
(Figure 1A; Eberwein et al., 2009). Moreover, the tuber contains
two vascular systems, one derived from the parasitic plant and the
other is a complex tissue containing the parasitic and host plant
tissue (Hsiao et al., 1994, 1995).

Previous studies indicated that there was a different degree
of gene loss in hemiparasitic plant Striga asiatica, hemi-
holoparasitic plant Cuscuta australis and holoparasitic plant
Sapria himalayana according to the degree of host dependence,
among which about 44% genes were lost in the genome of Sapria
(Cai et al, 2021), we also found that gene redundancy was
greatly reduced in two Balanophora species genomes, especially
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FIGURE 1 | Morphological traits of Balanophora plants and MADS-box gene
number. (A) Morphological structure of Balanophora plants (B. fungosa var.
globosa). (a,b) Extremely simplified male plant and the female plant. (c)
Female flower structure was observed under an electron microscope. FF,
female flower; MF, male flower; S, stem; BR, bract; T, tuber; SP, spadicale; P,
pollen. Image courtesy of Runxian Yu (CC BY-SA 2.0). (B) The number of
MADS-box genes in B. subcupularis, B. fungosa var. globosa, and reference
species. Fourteen species were selected according to the degree of
parasitism and genetic relationship. Gray, orange, and blue indicate
autotrophic plants, hemiparasite, and holoparasite, respectively. The bar chart
shows the number of MADS-box genes in each species. The iTAK
(http://itak.feilab.net/cgi-bin/itak/online_itak.cgi) and plantTFdb
(http://planttfdb.gao-lab.org/prediction.php) programs were used to identify
the MADS-box genes of these species.

transcriptional factors, and extremely convergent gene loss was
identified in two lineages of holoparasites, Balanophora and
Sapria himalayana (Rafflesiaceae).

To explore the initiation, development and regulation of
flowering in Balanophora, we identified the MADS-box genes
in B. subcupularis (monoecious) and B. fungosa var. globosa
(diocious). We analyzed the gene structures, conserved motifs,
phylogeny, and tissue-specific expression of those genes. In
addition, we also studied the gene loss pattern and further
discussed the potential loss of the MADS-box genes related to the
flowering regulation pathways in B. subcupularis and B. fungosa
var. globosa and other holoparasitic plants. The results of our
study can improve our understanding of the evolution and
functions of MADS-box genes in B. subcupularis and B. fungosa
var. globosa and would lay a foundation for further studies
of the flowering development and regulation mechanisms in
parasitic plants.

MATERIALS AND METHODS

Identification of MADS-Box Genes in
Balanophora subcupularis, Balanophora
fungosa var. globosa, and Reference
Species

In this study, we selected fourteen species based on the
degree of parasitism, comprising seven orders (Supplementary
Table 1), including holoparasitic B. subcupularis, B. fungosa
var. globosa and B. fungosa (Santalales) (Leebens-Mack et al.,
2019), S. himalayana (Malpighiales) (Cai et al., 2021), C. australis
(Solanales) (Sun et al., 2018), hemiparasitic S. asiatica (Lamiales)
(Yoshida et al., 2019), S. parasitica var. graciliflora (Santalales),
S. album (Santalales) (Dasgupta et al, 2019), M. oleifera
(Santalales) (Xu et al., 2019) and their close relatives. The
genomes of Balanophora plants were obtained from China
National GeneBank DataBase (CNGBdb) (CNP0003054). We
employed iTAK' and TFplantdb® to search the MADS-box genes
from genomes analyzed in this study. Then, all obtained MADS-
box gene sequences of B. subcupularis and B. fungosa var. globosa
were further analyzed in SMART,” Pfam,* CDD’ databases to
verify the existence of MADS domain.

Phylogenetic Analyses

A total of 829 MADS-box protein sequences from a total of
14 species and one MADS-box gene of Aquilegia coerulea as
an outgroup were aligned using MAFFT software,’ and the
phylogenetic tree was constructed by IQ-TREE’ program based
on the maximum likelihood (ML) method. The parameters were
set to —m GTR + R, —bb 1000, —alrt 1000, and the best
alternative model is determined by model testing software. The
tree was visualized by Evolview® software.

'http://itak.feilab.net/cgi-bin/itak/online_itak.cgi
Zhttp://planttfdb.gao-lab.org/prediction.php
3http://smart.embl.de/

*http://pfam.xfam.org/
Shttps://www.ncbi.nlm.nih.gov/Structure/bwrpsb/bwrpsb.cgi
Chttps://www.ebi.ac.uk/Tools/msa/mafft/
“http://www.igtree.org/
8https://www.evolgenius.info/evolview
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Gene Structure and Conserved Motif

Analyses

According to the annotation information of B. subcupularis and
B. fungosa var. globosa, the intron and exon composition of
MADS-box gene were mapped by GSDS 2.0 (Gene Structure
Display Server).” The software MEME' was used to search for
the conservative motifs in the MADS-box genes of Balanophora.
The parameter was as follows: the maximum number of
motifs was 20, and the motifs width was set to 6-200 amino
acids. The motifs were annotated by the Pfam database (see
text footnote 4). The number of introns of species analyzed
in this study was calculated according to the annotated
information. The box plots of the intron length of B. subcupularis,
B. fungosa var. globosa, and reference species were plotted
using R packages.

Confirmation of Gene Loss

We identified MADS-box gene loss primarily according to
the phylogenetic tree at the ortholog level with Arabidopsis
thaliana and Vitis vinifera. We divided the phylogenetic tree
into ortholog groups and allowed the existence of paralogs
of Arabidopsis in the same group, each ortholog group was
assigned according to Supplementary Figure 2, and the
primary identification of gene loss was identified based on
it. For those absent genes in Balanohpora, orthologs from
Arabidopsis and V. vinifera were used to predict against
the assembly again (e-value threshold of 1le-5, coverage
threshold of 0.25), the new annotations were checked manually
including conserved domains, premature stop codons, and
the transcriptome evidences. Then the manually confirmed
gene models were used to construct a new phylogenetic
tree, and gene loss was identified at the ortholog level
again, and the absent genes in each orthologs group were
considered as gene loss.

Gene Loss Identification in Particular
Pathways

For those important flowering regulation pathways, we further
identified the gene loss through orthologs modified from Sun
et al. (2018). First, BLASTP was used for all-to-all proteins
alignment with e-value of le-5, after that, we employed
OrthoFinder (v.2.3.7) to cluster genes with a Markov inflation
index of 1.5 and a maximum e-value of le-5; next, the
absent genes in parasitic plants will be searched against their
genomes with homologs from Arabidopsis and V. vinifera (e-
value threshold of le-5, coverage threshold of 0.25), and new
annotated gene models will be included for the next step;
then, phylogenetic trees were constructed with IQ-TREE in
each orthogroup generated in the last step; each tree was
divided into subgroups, and each subgroup must be included
at least one Arabidopsis gene; finally, the gene numbers
for every species in each subgroup were counted as the
ortholog gene number.

“http://gsds.cbi.pku.edu.cn
1Ohttp://meme-suite.org

Expression Analysis of Flowering

Related Genes in Balanophora and Host
The expression profiles of flowering regulate genes in
different tissues during the development of Balanophora were
explored using transcriptome data downloaded from CNGBdb
(CNP0003054). The expression data included three stages, stage
1: samples containing different developmental stages, LC21-
YT1-3 (tuber sizes < 8 mm, duplicate: LC21-YT1, LC21-YT2,
and LC21-YT3), LC21-YT4-6 (tuber sizes: 8~15 mm, duplicate:
LC21-YT4, LC21-YTS5, and LC21-YT6), stage 3 samples without
visible inflorescence tissues, tuber and host root were collected
and named as LC24-YT1-3 (duplicate: LC24-YT1, LC24-YT2,
and LC24-YT3), stage 3 samples with grown inflorescence were
separated into different tissues, including tuber LC24-T3-32
(duplicate: LC24-T3 and LC24-T32), male inflorescence LC22-
MF1-3 (duplicate: LC22-MF1, LC22-MF2, LC22-MF3), female
inflorescence LC24-FF1-3 (LC24-FF1, LC24-FF2, LC24-FF3),
inflorescence stem LC24-S1-2 (duplicate: LC24-S1, LC24-S2),
and bracts (LC23-BR1). The heatmap was generated by taking
the average of these duplicates.

Because the tuber of Balanophora also contains tissues from
the host, we carefully classified the reads into two distinct
species to avoid possible contaminations. First, the gene set of
the Balanophora and its host were decontaminated (removal of
genes potentially from fungi, bacteria), and then combined. Next,
bowtie2 was used to map the high-quality reads from each tissue
with the combined gene models of Balanophora and its host.
Those reads which could be mapped into both Balanophora and
its host were removed. Finally, the mapped reads were divided
into two species.

Using the Cufflinks pipeline'" the FPKM (Fragments Per
Kilobase of transcript per Million mapped reads) value of genes
in each tissue was calculated, and low-expressed and non-
expressed genes were filtered out (FPKM < 10). There were three
replicates for each tissue, and we took the average FPKM of
the three replicates for the expression analysis. The expression
levels were visualized using heatmap tools with FPKM data in
each tissue in Hiplot."” DESeq2 was used to calculate modest
estimates of folding changes and dispersion of RNA-seq data,
and log2 (fold change) >1, FDR < 0.05 was considered to be a
differentially expressed gene.

RESULTS

Dramatic Loss of MADS-Box Genes in

Holoparasitic Plants

To study the evolution of MADS-box gene family in parasitic
plants, we identified the MADS-box genes from parasitic
plants and their autotrophic relatives (Figure 1B). Totally, 25
and 23 candidate genes were identified as MADS-box genes
of B. subcupularis and B. fungosa var. globosa, respectively
(Figure 1B). Then we named them BsubMADSI-25 and

http://cufflinks.cbcb.umd.edu/
Phttps://hiplot.com.cn/basic/heatmap
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BgloMADS1-23 (Supplementary Table 2). Compared with
Arabidopsis (108) and Vitis (81), we found that the gene
number of this family in free-living plants was about twice
that in hemiparasitic plants and three-five times that in
holoparasitic plants, indicating that the number of MADS-box
genes showed a stepwise loss trend with the increasing levels of
parasitism. We found that the MADS-box gene family contracted
sharply in holoparasitic B. subcupularis, B. fungosa var. globosa,
S. himalayana, and their number of MADS-box genes is even
fewer than Amborella trichopoda (36) (Albert et al., 2013). So,
we inferred that the MADS-box genes of holoparasitic plants are
drastically lost during the evolutionary process.

Phylogenetic Analysis of MADS-Box
Genes in Balanophora subcupularis and

Balanophora fungosa var. globosa
To investigate the evolutionary relationship of MADS-box genes
between parasitic plants, we constructed a phylogenetic tree that
included autotrophic and parasitic plants (Figure 2). They were
categorized into two types: type I (Mo, MB, and My) and type
II (MIKC® and MIKC*) (Supplementary Table 3), which were
further subdivided into sixteen subgroups following the previous
classification (Smaczniak et al., 2012; Fatima et al., 2020). Based
on the phylogenetic trees, ten and eight genes were classified as
type L in B. subcupularis and B. fungosa var. globosa, respectively,
and 15 genes were classified as type II in B. subcupularis and
B. fungosa var. globosa, respectively. There are at least 21 MADS-
box clades in the Most Recent Common Ancestor (MRCA) of
extant angiosperms (Albert et al., 2013). While in our study we
found that six clades were totally absent in Balanophora and
seven clades were absent in Sapria, during which four clades were
convergently lost (Supplementary Table 4).

We noticed several losses of whole subfamilies in
B. subcupularis and B. fungosa var. globosa, such as the AGL17,
AGLI15, AGLI12, AGL6, and GNETUM GNEMON MADSI3
(GGM13) clades, among which AGL6/12/15/17 function in the
flowering transition, and TRANSPARENT TESTA16 (TT16) gene
of GGM13 subfamily involved in seed pigmentation and embryo
development (Erdmann et al., 2010). Most genes of AGL12 and
AGL17 subfamilies are mainly involved in root development
in addition to flowering (Tapia-Lopez et al., 2008; Puig et al.,
2013), which may be consistent with the lack of typical roots
in Balanophora. It is worth noting that several genes classified
in type II only contained the MADS domain confirmed by
domain identification against Pfam database (Supplementary
Figures 1, 2). Phylogenetic analysis showed that these non-K
domain genes were more closely related to type II, suggesting
that they may have lost their K domain during evolution. Further
evidence in the following part such as intron number also
supported the classification of these genes in type II.

Modified Gene Structure and Conserved
Motif in MADS-Box Genes of

Balanophora

To understand the structural diversity of MADS-box genes, we
analyzed the intron and exon structure of these genes. We found
that both Balanophora showed bimodal distribution between type

I and II genes like other species (Wang et al., 2017, 2019; Fatima
etal., 2020), significant differences in the number of introns were
observed in the MADS-box genes of type I and type II in both
Balanophora species (Figure 3). The number of the type II gene
varied greatly, containing introns ranging from 0 to 8, among
which 67% of the type II genes had at least five introns in both
Balanophora. In addition, we also analyzed the number of introns
of MADS-box genes of autotrophic plants and found that the
intron number of type I genes was generally less than that of type
I genes (Supplementary Table 5), suggesting that intron number
in two types of the MADS-box gene family are conserved during
evolution in flowering plants.

Intriguingly, there were very long introns inserted into the
MADS-box genes of Balanophora, for example, the first intron
of FLC homologue genes BsubMADS15 and BgloMADS12 are
64 kb and 56 kb, respectively, which are longer than other species
(Supplementary Figure 3A). Moreover, the maximum intron
length of MADS-box gene in B. subcupularis, B. fungosa var.
globosa, and S. himalayana were longer than in other species
(Supplementary Figure 3B). Furthermore, we analyzed the eight
non-K domain genes of B. subcupularis and B. fungosa var.
globosa, which were classified into type II on the phylogenetic
tree. Previous studies showed that the length of the 1-6 exons of
type II genes are conserved (Johansen et al., 2002). The average
length of the first intron of the eight non-K domain genes in two
Balanophora (197bp) was highly similar to that of type II (188bp),
which was markedly smaller than that of type I genes (647bp)
(Supplementary Table 6). Therefore, the results further proved
the reliability of the classification of MADS-box non-K domain
genes in the phylogenetic tree.

Next, we verified the conserved motifs of MADS-box genes
in B. subcupularis and B. fungosa var. globosa using MEME
program, then annotated the obtained motifs employing Pfam
database. As a result, a total of 15 conserved motifs were identified
and named motifs 1-15 (Supplementary Table 7). As shown in
Figure 3, genes in the same family tend to have common patterns
of conserved motifs, especially the type II gene whose domains
are more conserved than type I, such as subgroups SOC1, SEP,
API1/FUL, AP3/PI. The MADS-box genes of B. subcupularis and
B. fungosa var. globosa both contained motifs 1, 2, and 3, which
were the most typical MADS domain according to Pfam database
search. Motif 4, 6, and 10 were verified to be K-box domain,
which was another conserved domain, and all MIKC® type genes
contained the K domain except BsubMADS14, BsubMADS16.
We also observed that motif 7 represented the I domain that
existed in all subgroups except for the subgroups AP3/PI, My,
MB of B. subcupularis and B. fungosa var. globosa. Besides,
motif 8, 9, and 14 could be found in Arabidopsis, but absent in
two Balanophora. Though the number and lengths of introns
are variable in Balanophora, the motifs are conserved between
Balanophora and Arabidopsis.

Loss of Flowering Regulation Genes in
Parasitic Plants

The MADS-box gene family showed stepwise contraction from
hemiparasitic to holoparasitic plants (Figure 1B). We analyzed
the gene loss of nine parasitic plants, most MADS-box genes
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FIGURE 2 | Phylogenetic tree of MADS-box genes in B. subcupularis, B. fungosa var. globosa, and reference species. The phylogenetic tree was constructed using
the maximum likelihood (ML) method of IQ-TREE program (see text footnote 7). And visualized and decorated the tree by Evolview (see text footnote 8). Taking
Arabidopsis as a reference, the tree was divided into 16 subfamilies (Smaczniak et al., 2012; Fatima et al., 2020). Different species are represented in different colors.
Orange, green, blue, and red dotted lines represent Arabidopsis, B. subcupularis, S. himalayana, B. fungosa var. globosa, respectively. The numbers show the
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The alignment information of these genes are available in Supplementary Table 9.
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FIGURE 3 | Gene structure and conserved motifs analysis of MADS-box genes in B. subcupularis and B. fungosa var. globosa. (A) The exon-intron structure of
BsubMADS genes and BgloMADS genes were predicted by Gene Structure Display Server (GSDS) (see text footnote 9). The lines represent introns, and the red
boxes indicate exons. The size of the introns and exons can be calculated using the bottom scale. (B) The motifs were identified by the Multiple EM for Motif
Elicitation (MEME) program (http://meme-suite.org/tools/meme). Motifs 1-15 were represented by different colors, and the gene names and different groups are
shown on the left side of the figure. The ruler at the bottom indicates the amino acid length of the sequences. The details of motifs are described in Supplementary
Table 7.

of parasitic plants showed a decreasing trend in each subfamily
compared with autotrophic plants (Figure 4A). In addition,
there was convergent genes loss among different lineages of
parasitic plants, during which the most remarkable is the loss of
subfamilies AGL6, AGL12, AGL15, AGL17 in Balanophora and
S. himalayana, AGL12 and AGL17 were also lost in C. australis.
There was some species-specific gene loss, such as the loss of SVP
in C. australis, and the loss of SOCI in S. himalayana (Figure 4A).

Hemiparasitic plants showed mild gene loss and most of them
were also lost in holoparasites.

Based on the gene function of their homologies in Arabidopsis,
we speculated that AGL12 and AGL17 genes may be related to
the degradation of root and photoperiod regulation of flower
transition in Balanophora and S. himalayana (Han et al., 2008;
Tapia-Lépez et al., 2008; Puig et al., 2013; Shu et al.,, 2020),
they also convergently lost AGLI15 and AGL6 genes, among
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FIGURE 4 | Gene loss of MADS-box genes in parasitic plants. (A) The gene loss and retention of 16 subgroups of MADS-box gene family in nine parasitic plants.
The tree topology is modified from Nickrent (2020) with Aquilegia coerulea as outgroup, 14 species comprising seven orders (see Supplementary Table 1). The
gray circle and square indicate WGD (whole genome duplication) and WGT (whole genome triplication) events, respectively, which were identified by 1KP
(Leebens-Mack et al., 2019). The pink and white blocks indicate retain and loss of MADS-box genes in 16 subgroups, respectively. The green, blue, red branches
represent autotrophic plants, hemiparasites, and holoparasites, respectively. (B) Gene loss of MADS-box genes in flowering transition. Genes marked in red
represent loss and black represent retained genes in B. subcupularis and B. fungosa var. globosa. (C) A conventional flower structure of ABCE model genes. The
numbers represent retained ABCE model genes in B. subcupularis, B. fungosa var. globosa, and reference species, while the numbers are obtained based on the

phylogenetic tree.

which AGLI5 genes play roles in regulating flowering through  development of floral organs, and ovule and seed, and AGL6

photoperiod and somatic embryo development (Perry et al.,
1999) and AGL6 genes are involved in floral meristem regulation,

genes also have possible roles in the development of male and
female germline and gametophyte (Dreni and Zhang, 2016).
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Two Balanophora also lost AGL63 and TRANSPARENT TESTA16
(TT16) genes in GGM13 subfamily, which are involved in
fruit development, seed formation, and embryo development
(Erdmann et al., 2010). In conclusion, parasitic plants showed
convergent and functional-biased gene loss in MADS-box gene
families, which may be related to the parasitic lifestyle.

Different Floral Meristem Gene Loss

Patterns in Holoparasitic Plants

There are several genes related to floral meristem identity,
including AP1, FUL (AGL 8), CAL (CAULIFLOWER), AGL24,
SVP, SOC1, and LEAFY (LFY) (Gregis et al,, 2009; Grandi
et al,, 2012). We observed that two Balanophora species only
lost FUL gene, however, API/CAL, and SOCI genes were lost
in S. himalayana (Supplementary Table 8). FUL gene promotes
the identity of early flower meristem in coordination with API
and appears to be partially redundant to the function of API
(Ferrdndiz et al,, 2000). AP1, AGL24, and SVP control floral
meristem identity redundantly by inhibiting the expression of
class B, C, and E genes (Gregis et al., 2009). SOCI regulates
the expression of LFY, and LFY is a non-MADS-box gene
that links floral induction and floral development (Lee et al.,
2008). These results showed that Balanophora and S. himalayana
showed different levels of gene loss related to floral meristem,
and they may lose those functional redundant genes which were
unnecessary for them.

Maintenance of ABCE Model Genes in
Parasitic Plants

ABCE model genes coordinate together to determine floral organ
identity (Soltis et al., 2007; Murai, 2013). Two Balanophora
species retained all ABCE model genes (Figure 4C). While no
AP] and no SEP3 homologs were found in S. himalayana,
suggesting that the A function does not rely on the function
of AP1 homologs or that the perianth has an entirely different
contribution. Another holoparasite C. australis also lost API in
class A, and PI in class B. The result suggested that holoparasites
retained different levels of the ABCE genes, these may be a
consequence of the highly modified floral structure or employing
different flower identity genes in them.

Dramatic Loss of Flowering Regulation

Genes in Holoparasitic Plants

Flowering is essential to plant reproduction and can be regulated
by a variety of pathways, such as photoperiod, circadian clock,
vernalization, temperature, and autonomous, etc. (Liu et al,
2015). Previous studies have illustrated that there were at least
16 MADS-box genes involved in the regulation of flowering
transition in Arabidopsis, but in our study, only three flowering
signal integrators SOCI, SVP, FLC were found to be retained
in Balanophora, and most genes were lost, for example, AGLI5,
AGL17, AGL18, MAF1, MAF3/4/5 genes involved in photoperiod
pathway (Adamczyk et al., 2007; Han et al., 2008; Kim and Sung,
2010), AGLI9 and MAF2 genes associated with the vernalization
pathway (Ratcliffe et al., 2003; Schonrock et al., 2006), AGL28
gene involved in autonomic pathway (Yoo etal, 2006), the

SOCI-like genes AGL42, AGL71, AGL72 appeared to act through
gibberellin-dependent pathway in Arabidopsis (Dorca-Fornell
et al, 2011; Figure 4B and Supplementary Figure 4). We
observed that the subfamilies AGL12, AGL15, AGL17, and
AGL6 were convergently lost in B. subcupularis, B. fungosa
var. globosa, and S. himalayana, while the subfamilies of
SOC1 and FLC were specifically lost in S. himalayana, and
GGM13 was specifically lost in Balanophora (Figure 4A). Among
them, SOCI gene is an integrator of flowering signals involved
in photoperiod, temperature, age, and gibberellin regulatory
pathways in Arabidopsis to promote flowering transition, while
FLC gene is a repressor of flowering, in part, it retards flowering
by inhibiting the expression of SOCI. Another integrator FLC are
involved in the vernalization and autonomic pathways (Michaels
and Amasino, 1999, 2001; Michaels et al., 2005).

Cuscuta australis is another holoparasitic plant without roots
and leaves that also lost many MADS-box genes. We observed
that the subfamily SVP was specifically absent in C. australis
(Figure 4A), which are involved in flowering time regulation in
response to temperature changes by controlling the expression of
the FT gene (Lee et al., 2007). Previous research has manifested
that C. australis eavesdrops FT signals of the host to control
flowering (Shen et al., 2020), taken together, we predicted that
Cuscuta may have totally lost this SVP-FT signal pathway. In
addition, it also lost subfamilies such as AGL17, AGL12, FLC,
and GGM13 (Figure 4A), which showed convergent gene loss
with holoparasitic plants. These indicated that holoparasites
dramatically lost the flowering transition genes in MADS-box,
Balanophora and S. himalayana showed a more severe loss.

Furthermore, we found that the gene loss in semi-parasitic
plants with relatively intact body structures was not as
pronounced as in holoparasitic plants. For example, S. album only
lost subfamilies AGL12 and GGM13, S. parasiticalost AGL17 and
GGM13 (Figure 4A). Loss of function in these subfamilies may
be compensated by other genes, such as AGL17, a gene associated
with root development, was functionally redundant with AGL12
(Tapia-Lopez et al., 2008; Puig et al., 2013).

We further explored the conserved subfamilies in
B. subcupularis and B. fungosa var. globosa and discovered
that the number of retained genes was decreased and only one
gene was kept in some subgroups. For example, the subgroups
SVP, SOC1, AP1/FUL, and FLC all retained only one gene in
each Balanophora species, while there were more than two copies
in Arabidopsis in each subgroup (Figure 4A). We concluded that
the redundancy of MADS-box genes in holoparasitic plants was
greatly reduced, and they would abandon sequence similar genes
and retain the diversity of protein families.

We further investigated genes involved in flower regulation
pathways, and found that two Balanophora plants and
S. himalayana lost the circadian clock and photoperiod pathways
(Figure 5A), comprising the important genes CONSTANS
(CO), TOCI1, LHY, CCAl, EARLY FLOWERING 4 (ELF4),
Two-component response regulator-like APRR9 (PRRY) which are
not MADS-box genes (Matsushika et al., 2000; Mizoguchi et al.,
2002; McWatters et al., 2007; Nakamichi et al., 2010). However,
S. himalayana also some species-specific loss, including FT/FD,
SOCI, and FLC functioned as the floral integrator, the FRIGIDA

Frontiers in Plant Science | www.frontiersin.org

May 2022 | Volume 13 | Article 846697


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Duan et al. MADS-Box Evolution in Holoparasitic Plants

A Holoparasitic plants B Hemiparasitic plants

Circadian clock Circadian clock

Photoperiod Photoperiod

Flowering Flowering

BgloMADS11_AGL33 Iz
BgloMADS14_AP3 1
BgloMADS15_P 0
BgloMADS17_SVP »

BgloMADS18_STK 2

BgloMADS19_AG

BgloMADS21_SEP1

BgloMADS23_AP1
_ | BgloMADS20_SOC1

I BgloMADS12_FLC
N
f;,z‘?
&
~

FIGURE 5 | Four simplified pathways controlling flowering in parasitic plants and expression profiles of MADS-box genes for Balanophora (Photoperiod, Circadian
clock, Autonomous, Vernalization Pathways). Panels (A,B) represent holoparasitic plants B. subcupularis, B. fungosa var. globosa, Sapria and hemiparasitic plants
S. parasitica, S. album, M. oleifera, respectively. Red circles represent all lost in holoparasities. Green circles represent all retained in hemiparasites. Yellow represents
only lost in Balanophora. Blue represents the loss in Sapria. Purple represents the loss in S. parasitica. The arrow indicates promoting gene activation, the blunt line
indicates gene inhibition, and the two endpoints indicate no interaction in known directions. Genes FT, LFY, and SOC1 integrate signals from multiple pathways. And
in the pathways, SVP, FLC, SOC1, AGL24, AGL17, and AP1 belong to MADS-box gene family, while the rest genes correspond to non-MADS-box genes. (C) The
red and blue colors indicate the expression levels of BgloMADS genes from high to low, and white indicates the median expression level in the heatmap. The tissues
cover three stages, stage 1: samples containing different tuber sizes, LC21-YT1-3 (<8 mm, duplicate: LC21-YT1, LC21-YT2, and LC21-YT3), LC21-YT4-6

(8~15 mm, duplicate: LC21-YT4, LC21-YT5, and LC21-YT6), stage 2 samples without visible inflorescence tissues, tuber and host root were collected and named
as LC24-YT1-3 (duplicate: LC24-YT1, LC24-YT2, and LC24-YT3), stage 3 samples with inflorescence were separated into different tissues, including tuber
LC24-T3-32 (duplicate: LC24-T3 and LC24-T32), male inflorescence LC22-MF1-3 (duplicate: LC22-MF1, LC22-MF2, LC22-MF3), female inflorescence LC24-FF1-3
(LC24-FF1, LC24-FF2, LC24-FF3), inflorescence stem LC24-S1-2 (duplicate: LC24-S1, LC24-S2), and bracts (LC23-BR1).
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(FRI) complex functioned in vernalization pathways (Choi
et al., 2011; Figure 5A). Compared with holoparasitic plants,
hemiparasitic plants kept all crucial flowering regulatory genes
(Figure 5B). Based on these results, we inferred that Balanophora
and Sapria may have lost the photoperiod and circadian clock
pathways to control flowering.

Conserved MADS-Box Genes Expression

in Balanophora

To further confirm the functions of MADS-box genes in
Balanophora, the transcriptome data from eight different tissues
at different developmental stages were analyzed. In the MADS-
box genes of B. fungosa var. globosa, the expression of eleven
genes could be detected. The other genes cannot be identified
because their expression levels were too low, or they have
specific expression patterns, which were not collected in this
study, it is also possible that they have lost their functions
as they adapt to parasitic life. Several genes showed specific
expression patterns (Figure 5C), in B. fungosa var. globosa, genes
API (BgloMADS23), SEPI (BgloMADS21), AG (BgloMADS19),
STK (BgloMADS18) were highly expressed in the female
inflorescence, and AG (BgloMADS19) may be involved in the
development of carpel, and STK (BgloMADS18) in controlling
the development of ovules of the female flower. Furthermore,
PI (BgloMADS15), AP3 (BgloMADS14), AGL33 (BgloMADS11),
and SVP (BgloMADS17) were highly expressed in the male
inflorescence, and AG (BgloMADS19) was also expressed in male
flower, suggesting that PI (BgloMADS15), AP3 (BgloMADS14),
and AG (BgloMADS19) may be involved in the development of
stamen. The expression pattern of these genes was consistent with
the expression pattern of the ABCE model gene. In addition,
we noticed that gene FLC (BgloMADS12) with extremely long
introns showed high expression levels in the tuber and low
expression levels in inflorescence (Figure 5C), which was similar
to the expression pattern of FLC in Arabidopsis (highly expressed
in the vegetative apex and root tissue). These findings revealed
that the expression patterns of MADS-box genes in B. fungosa
var. globosa were similar to other species, indicating that the
function of these genes may be still conserved.

Flower Regulatory Genes in the Host Are
Upregulated in the Tuber

Because the vascular systems in the tuber of Balanophora
contained both host and Balanophora tissues, the intimate
connection may facilitate the usage of host signals, especially
the long-distance mRNA movement between host and parasites
(Kim et al., 2014). We investigated the expression levels of host
genes related to regulating flowering in the tuber of Balanophora,
and the results showed that several flowering regulation genes
from the host were upregulated in the tuber compared to its
own root, including (i) genes that can regulate FT or FLC
levels transcriptionally or epigenetically, for example, AHL22,
EBS, and bHLH63 function in the regulation of FT expression
(Pifieiro et al., 2003; Yun et al., 2012; Liu et al., 2013); (ii) CO
depression genes including MIP1A and CDF3 (Fornara et al,
2009; Graeff et al., 2016); (iii) Serine/threonine-protein kinase

WNKI regulates flowering time by modulating the photoperiod
pathway (Wang et al., 2008; Supplementary Figure 5). Based
on these lines of evidence, we speculated one possibility that
Balanophora may take advantage of transcripts or proteins from
the host plant to retain functionality in pathways of photoperiod
regulation of flowering and has not lost associated regulatory
pathways completely.

DISCUSSION

MADS-box transcription factors are important regulators, widely
present in eukaryotes and highly conserved, and have been
proven to play a crucial role in plant growth and development
(Becker et al., 2000; Ng and Yanofsky, 2001; Parenicova et al.,
2003). To the best of our knowledge, this is the first attempt
to compare MADS-box genes among different parasitic plants.
The number of MADS-box genes in holoparasitic plants was
significantly reduced compared with that in autotrophic plants.
Many MADS-box genes of parasitic plants have been lost during
the process of adaption to parasitism.

The Ongoing Loss of the K Domain in
MIKC Subgroup Genes

A phylogenetic tree of the fourteen species was built and divided
into sixteen subgroups based on the taxonomy of Arabidopsis
(Smaczniak et al., 2012). Phylogenetic analysis revealed that there
were eight non-K domain genes clustered into type II. This
phenomenon was also found in MADS-box genes of rice, apple,
and pear (Arora et al,, 2007; Tian et al., 2015; Wang et al., 2017),
indicating that it might be common in angiosperms. Studies have
shown that MIKC genes are conserved in the length of the 1-6
exons (Johansen et al., 2002), so we analyzed the length of the first
exon of these eight genes and found that the length was closer to
that of type II genes but different from type I genes, among them,
BgloMADS11 was highly expressed in inflorescence, indicated
that this gene might be functional. This result illustrated that
some MADS-box genes are probably experiencing K domain loss,
and at least several genes without K domain are still functional.

Severe Loss of Flowering-Related Genes
and Peculiar Flowering Regulation

Pattern in Holoparasitic Plants

Reports on the evolutionary mechanism of phenotypic
adaptation indicated gene loss can be beneficial by providing an
evolutionary mechanism for phenotypic adaptation (Albalat and
Caiiestro, 2016; Sahu et al., 2019; Wang et al., 2021; Li et al., 2022).
Studies on the flowering mechanism of C. australis show that in
order to ensure flowering, dodder eavesdropped on the flowering
signal of the host and kept the synchronization of flowering (Sun
et al., 2018; Shen et al.,, 2020). In this study, severe gene loss of
flowering regulation genes was also found in B. subcupularis,
B. fungosa var. globosa, and S. himalayana, especially the
circadian clock and photoperiodic flowering pathways, but
there were several photoperiodic flowering response genes
from the host plant are upregulated in the chimeric tuber,
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speculating that Balanophora may take advantage of transcripts
or proteins from the host to retain functionality in pathways
of photoperiod regulation of flowering, instead of losing the
regulatory pathway completely. It is probably a convergent
strategy for parasitic plants to steal flowering signals from the
host (Shen et al., 2020). However, in hemiparasitic plants, almost
all the flowering regulation pathways were retained. Dramatic
loss of flower regulation genes in holoparasites analyzed in this
study indicated reduced robustness in parasites with extremely
degraded structure and high levels of dependence on the host.

Reduction of the MADS-Box Genes
Redundancy in the Holoparasitic Plants

Redundant genes generally have a genetic compensation function
(i.e., the loss of one gene can be compensated by another with
overlapping functions and expression patterns), and probably
establish a genetically robust system for adaption (Wagner,
2000; Dean et al., 2008; Rutter et al.,, 2017; Yang et al., 2022).
Studies have indicated that the reduction of gene expression after
replication promotes the long-term maintenance of duplicate
genes and functional redundancy (Qian et al, 2010). Several
subgroups showed genetic redundancy in MADS-box, for
example, the API/FUL subgroup, including AP1/CAL, FUL, and
AGL79, among which AP1/CAL and FUL played important roles
in the transition to floral meristem, floral meristem development,
perianth, or fruit development (Gu et al., 1998; Ferrandiz et al.,
2000; Acri-Nunes-Miranda and Mondragén Palomino, 2014),
only one member could be identified in Balanophora (retained
AP1/CAL) and Sapria (retained AGL79), respectively (Figure 2).
In FLC and SOCI subgroups, six members were confined to
Arabidopsis, respectively, and only one member in each subgroup
was identified in Balanophora, with a complete absence in Sapria.
The reduction of redundancy in holoparasites, together with
the loss of other regulatory genes, indicated that holoparasites
may employ a relatively simpler flowering regulation system
compared to autotrophs. The simplicity may be due to the
utilization of signals directly from the host, or the highly modified
structure, or the reduced demand for additional robustness when
hosts offer stable environments.

CONCLUSION

Identification of MADS-box gene family in parasitic plants
showed that the MADS-box genes family was contracted step by
step from hemiparasites to holoparasites compared to autotrophs.
Plenty of MADS-box genes may have been lost in Balanophora
and Sapria genomes, and, they seem to have reduced redundancy
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