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Seeds of high physiological quality are defined by their superior germination capacity and
uniform seedling establishment. Here, it was investigated whether multispectral images
combined with machine learning models can efficiently categorize the quality of peanut
seedlots. The seed quality from seven lots was assessed traditionally (seed weight,
water content, germination, and vigor) and by multispectral images (area, length, width,
brightness, chlorophyll fluorescence, anthocyanin, and reflectance: 365 to 970 nm).
Seedlings from the seeds of each lot were evaluated for their photosynthetic capacity
(fluorescence and chlorophyll index, F0, Fm, and Fv/Fm) and stress indices (anthocyanin
and NDVI). Artificial intelligence features (QDA method) applied to the data extracted
from the seed images categorized lots with high and low quality. Higher levels of
anthocyanin were found in the leaves of seedlings from low quality seeds. Therefore, this
information is promising since the initial behavior of the seedlings reflected the quality
of the seeds. The existence of new markers that effectively screen peanut seed quality
was confirmed. The combination of physical properties (area, length, width, and coat
brightness), pigments (chlorophyll fluorescence and anthocyanin), and light reflectance
(660, 690, and 780 nm), is highly efficient to identify peanut seedlots with superior quality
(98% accuracy).

Keywords: Arachis hypogaea L., multispectral, images, machine-learning, fluorescence, reflectance, seed quality

INTRODUCTION

Peanut (Arachis hypogaea L.) is an oleaginous crop with considerable relevance in agriculture
(Stalker and Wilson, 2016). Nations such as China, India, Nigeria and the United States produce
most of the peanuts consumed in the world and contribute to global food security (Stalker and
Wilson, 2016; USDA, 2020b). Peanut seeds are rich in oil and proteins (Arya et al., 2016), in
addition to chemical properties that play an essential role in human health and in combating
malnutrition (Temba et al., 2016; Bessada et al., 2019). Considering that the peanut production
chain spans over six continents (USDA, 2020a), exploring factors that favor grain yield is part
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of a comprehensive global food security strategy. Taking this
strategy into account, post-harvest technologies can increase seed
quality which in turn would represent an increased grain yield.

Seeds of high physiological quality are the basic input for
agriculture. They have high vigor which means better ability to
promote rapid crop establishment under wide environmental
conditions with a direct contribution to plant establishment and
yield (Finch-Savage and Bassel, 2016; Ebone et al., 2020). Seeds
with high quality have a prolonged lifespan, which ensures the
retention of their vigor until sowing (Sano et al., 2016; Basso et al.,
2018). Due to factors such as harvest immaturity (Okada et al.,
2021), mechanical damage in processing (Barbosa et al., 2014),
storage fungi (Ding et al., 2015) and inadequate transportation
conditions (Groot et al., 2022), peanut seeds lose their quality
in the production process. Few studies provide solutions to
maximize peanut seed quality at post-harvest. For other species of
agricultural interest, non-destructive technologies that generate
data from multispectral images have been successfully used to
assess seed quality (Elmasry et al., 2019a; Mortensen et al.,
2021). Considering this possibility, the peanut seed may present
unexplored spectral markers that allow the efficient evaluation
of this quality.

The possibility of evaluating seed quality through
multispectral images has been shown for legumes such as
soybean (Baek et al., 2019), cowpea (Elmasry et al., 2019b) and
six other species (Hu et al., 2020). In the case of crops such as
tomatoes and carrots (Galletti et al., 2020), low seed reflectance
at short wavelengths and reduced chlorophyll fluorescence
were identified as markers of their quality. Reflectance makes
it possible to investigate the spectral behavior of plant tissues
through the pattern of reflected light at different wavelengths
(Meireles et al., 2020). The light reflectance properties are also
affected by the physiological state of the plants under unfavorable
conditions, such as water stress (Caturegli et al., 2020). The
application of reflectance in seed studies allows the evaluation
of fungal incidence (França-Silva et al., 2020; Rego et al., 2020),
color (Wang X. et al., 2021) and chemical composition variations
(Barboza da Silva et al., 2021a; Bianchini et al., 2021). Under
another principle, fluorescence is detected by the excitation
of chlorophylls (a/b) in plant tissues in specific bands of the
spectrum (Murchie and Lawson, 2013). The dynamics of
chlorophyll fluorescence in the seed domain may be associated
with its maturity (Galletti et al., 2020) or aging (Barboza da
Silva et al., 2021b). In the seedling domain, on the other hand,
chlorophyll fluorescence behavior has to do with photosynthetic
functioning (Herritt et al., 2020; Oliveira et al., 2021). Thus,
peanut seeds and seedlings may present characteristics that can
be useful to the seed industry.

With the development of data processing capacity, machine-
learning algorithms are promising tools to autonomously
categorize seedlot quality. This approach has been explored to
identify seed patterns associated with physical, physiological,
and health characteristics with high accuracy (Medeiros et al.,
2020b; Barboza da Silva et al., 2021b; Bianchini et al., 2021). This
approach has also been employed for seed variety identification
(Taheri-Garavand et al., 2021b). In different species, the
combination of multispectral images and algorithms has been

highly effective for seed evaluation (Elmasry et al., 2019b; Hu
et al., 2020). The idea of this research is that peanut seeds
have markers of their quality which are detectable by these
technologies. Here, it was investigated whether multispectral
images combined with machine learning models can efficiently
categorize the quality of peanut seedlots.

MATERIALS AND METHODS

Plant Material
Seven lots of peanut (Arachis hypogaea L.; cv. IAC OL3; Virginia
group) seeds produced in 2019/2020 in the western region of the
State of São Paulo, Brazil by COPERCANA1 and COPLANA2

seed companies, were used for the research. The fruits were
harvested and then dried in the shade. After this, the seeds
were manually extracted. The seeds obtained from each lot
were homogenized by manually removing broken or malformed
seeds (sectioned or damaged cotyledons) and seeds without the
tegument. The seedlots were stored in a dry chamber at 12◦C/55%
relative humidity (RH) until the beginning of the experiments,
after approximately 90 days of storage.

Trial Design
Initially, conventional tests were conducted to assess the quality
of seedlots through water content, fresh weight, germination,
and vigor. Then, from a study using multispectral images, it
was found that certain spectral characteristics of the seeds
correlated strongly with their quality. From the characteristics
found through these images, the quality of seedlots was classified
(principal component analysis) into groups of low vigor (lots 1,
2, and 3) and high vigor (lots 4, 5, 6, and 7). With this qualitative
information (two groups), machine learning models (quadratic
discriminant analysis method) were used to autonomously
recognize these behaviors (high and low vigor). Finally, seedlings
from the seeds in each lot were evaluated for their photosynthetic
capacity and stress indicators using multispectral images. In
addition, two other studies were conducted with seeds exposed
to stress conditions (high temperature and high RH). Seedlings
from these seeds were also evaluated for their photosynthetic
capacity and stress indicators. Details regarding the variables
measured, method, and number of seeds used in each research
test are available for consultation in the supplementary files
(Supplementary Tables 1, 2).

Characterization of Physiological Quality
of Seeds
The water content of the seeds was determined by the oven
method at 105 ± 3◦C for 24 h (ISTA, 2020), using four replicates
of 10 seeds. For the determination of seed fresh weight, four
replicates of 100 seeds were weighed on an analytical scale with
a precision of 0.001 g. Subsequently, a part of the seeds of each
lot (about 500 g) was treated with fungicides (Carbendazim
and Thiram; 2 mL kg−1). This procedure aimed to inhibit the

1https://copercana.com.br
2http://www.coplana.com
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occurrence of fungi during the execution of the tests and to
reduce any interference of pathogenic microorganisms in the
seed quality results. The remaining seeds were not submitted to
the treatment with fungicides. It was considered that any product
applied to the surface of the seeds could change their spectral
characteristics and compromise the quality of the data generated.

Germination was evaluated on rolled paper towel and sand
substrates. Four replicates of 25 seeds were placed between
the paper towels and moistened with deionized water at 2.5
times the mass of the dry paper. The rolled paper towels were
kept at a constant 25◦C in the dark. For the sand substrate,
a sterile medium textured sand in plastic boxes was used
(34.0 × 21.7 × 7.0 cm), and the substrate was wet to 60%
of its holding capacity. Then, four replicates of 25 seeds from
each lot were sown at a depth of 5.0 cm. The boxes with the
seeds remained in a growth chamber at 25◦C and 80% RH.
The percentage of normal seedlings (with all their essential
structures, such as aerial part, hypocotyl and well-developed
radicle, complete, proportional and healthy) produced in the
germination test using paper towels and sand was obtained on
the 10th day (final score) after initial sowing (ISTA, 2020).

Vigor was initially determined by the time required for
50% germination (t50). Four replicates of 25 seeds from each
lot were used according to the conditions described for the
germination experiment between rolled paper towels. Twenty-
four hours after the beginning of the experiment germination
was assessed, with radicles with ≥2 mm in length used as the
criteria. The measurements were performed every 4 h. The
calculation of t50 was performed using the Germinator software
(Joosen et al., 2010).

The seeds of each lot were also evaluated for seedling
emergence capacity. Four replicates of 25 seeds each were used,
with sand as substrate for the test. The seeds were sown at
a depth of 5.0 cm in a suspended bed under uncontrolled
environmental conditions. The substrate was wetted after sowing
and throughout the experiment. Emerged seedlings (cotyledons
and epicotyl apparent on the substrate surface) were counted
daily and at the same time until stabilization of the number of
emerged seedlings (Krzyzanowski et al., 2020). Seed vigor was
expressed as percentage of emerged seedlings.

Another vigor test was carried out based on the seedling
performance. For that, four replicates of 10 seeds were used,
sown equidistantly from each other on the upper third of the
surface of paper towels, using the same conditions described
for germination between rolled paper towels. After 5 days,
shoot and radicle length of normal seedlings was measured.
Afterward, the aerial part and the radicles were segmented and
placed in an oven at 60◦C for 72 h to assess the dry weight
(Krzyzanowski et al., 2020).

Multispectral Image Acquisition of Seeds
Multispectral images were acquired from a total of 170 seeds
for each lot. The seeds were placed in 9.0 cm glass Petri dishes.
Multispectral images were captured at 19 wavelengths – 365
(UV), 405 (violet), 430 (indigo), 450 (blue), 470 (blue), 490
(cyan), 515 (green), 540 (green), 570 (yellow), 590 (amber),
630 (red), 645 (red), 660 (red), 690 (dark red), 780 (dark red),

850, 880, 940, and 970 nm (the last four wavelengths in the
near infrared region), using a VideometerLab4TM instrument
(Videometer A/S, Herlev, Denmark; software version 3.14.9) as
described by Galletti et al. (2020). This system can capture
and combine high-resolution multispectral images (2192 × 2192
pixels). Before acquiring the seed images, the light configuration
was adjusted to optimize the intensity at each bandwidth,
resulting in a better signal-to-noise ratio so that the captured
images could be directly comparable. The light configuration was
adjusted using a representative sample, and then the strobe time
of each type of illumination was optimized in relation to this area.
Seeds were segmented based on thresholding and the following
variables were extracted from individual seeds: area, length, width
and brightness measured by CIELab L∗ (Oliveira et al., 2021),
fluorescence of chlorophyll a (630/700 nm excitation/emission)
and chlorophyll b (405/600 nm excitation/emission). In addition,
the reflectance values of the seeds of each lot from 365 to 970 nm
were collected, and the chlorophyll a/b ratio was calculated.
The seed images were transformed by a normalized canonical
discriminant analysis (nCDA) algorithm, in which pixel values
are calculated based on 10% trimmed mean to provide a more
realistic image.

Multispectral images were also captured using a
SeedReporterTM instrument (PhenoVation B.V., Wageningen,
Netherlands) to calculate the anthocyanin index of the seeds.
Prior to image acquisition, light intensity was adjusted to avoid
overload. Reflectance images were acquired in a few seconds,
generating multispectral images with a spatial dimension of
2448 × 2448 pixels (3.69 µm/pixel). A broad-band blank
white light (3000 K) in a range of 450 to 780 nm was used
to illuminate the seeds, and reflectance data was collected
using three optical filters at 540, 710, and 770 nm (Gitelson
et al., 2009). The anthocyanin index was calculated by
SeedReporterTM software version 5.5.1. using the equation
presented by Oliveira et al. (2021).

Machine Learning – Quadratic
Discriminant Analysis
The Quadratic Discriminant Analysis (QDA) method was used
for the classification of high and low vigor seedlots. The choice
of this method was based on the following aspects: (i) QDA
is one of the most widely used methodologies for cases where
the response variable is qualitative (Hastie et al., 2009; James
et al., 2021) and (ii) it allows for effective analyses with data
that do not have a normal distribution and have inhomogeneous
variance and a covariance matrix structure (Clarke et al., 1979).
Classification modeling was used based on the dataset extracted
from the multispectral images of the seeds. Four QDA-based
method machine learning models were generated for different
datasets. In this way, the capacity of these models to infer the
accuracy (sensitivity and specificity) of the spectral variables
regarding the vigor of the seedlots (n = 1190) was tested.
The learning models obtained through the QDA method were
adjusted and tested by cross-validation using data related to
the physical optical descriptors of the seedlots (first model:
area, length, width and CIELab L∗), pigments (second model:
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chlorophyll fluorescence and anthocyanins), reflectance (third
model - bands that best discriminated seedlots: 660, 690, 780,
850, and 970 nm) and the sum of all these variables (fourth
model: physical optical descriptors, pigments and reflectance). In
all, four prediction models were built, and the data were divided
into 70% for training and 30% for testing. The details of the
mathematical procedures used are described in a supplementary
file (Supplementary Methodology 1).

Anthocyanin and Chlorophyll in
Seedlings
Four replicates of 10 seeds per lot were sown in 500 mL
polystyrene pots (8 pots per lot), filled with a mixture of pine
bark, peat moss and vermiculite. Each pot contained 5 seeds.
The seedlings were cultivated under controlled conditions of
temperature (25◦C), RH (50–70%) and white light (900 mm,
LED lamps, 13 W) (Condado de Ilum., São Paulo, Brazil) with
a photoperiod of 16/8 h light/dark. The pots were irrigated
as needed. When the seedlings were well established, 7 days
after sowing, the number of seedlings per pot was reduced to
two, reducing overlap. Measurements were taken considering the
canopy formed by the two seedlings in each pot, which totaled
eight seedlings canopies per lot, taken 14 days after sowing.

The chlorophyll a index (Chl a index), anthocyanin index
and the normalized difference vegetation index (NDVI) were
calculated by a SeedReporterTM instrument (PhenoVation B.V.,
Wageningen, Netherlands). The Chl a index was estimated based
on the reflectance at 710 and 770 nm (Gitelson et al., 2003),
and the anthocyanin index from the reflectance at 540, 710, and
770 nm (Gitelson et al., 2009). The NDVI was calculated based on
reflectance at 640 and 770 nm (Yengoh et al., 2015).

The initial fluorescence (F0), maximum fluorescence (Fm),
average chlorophyll a fluorescence and maximum quantum
efficiency of photosystem II (Fv/Fm) were measured using a
SeedReporterTM instrument, which is also integrated with high
intensity amber LEDs (620 nm peak), with a saturating light
intensity of 6.320 µmol m−2 s−1, while an interference filter
(730 nm) transmitted the fluorescence signals from the leaves to
a CCD chip. All parameters were calculated by SeedReporterTM

software version 5.5.1.

Further Experiments
This additional study was conducted with 300 seeds from
one of the lots characterized as high quality (IAC OL3, lot
7) exposed to an artificial aging procedure (ISTA, 2020). The
seeds were placed on a wire mesh suspended inside a covered
plastic box containing 40 mL of distilled water at the bottom,
providing a RH of 100%. Subsequently, the boxes were added
to a B.O.D chamber set at 42◦C. The seeds remained in these
stress conditions for 24 and 48 h. A control group consisted
of seeds not artificially aged. The objective was to induce seed
deterioration by high temperature and high RH. Subsequently,
the responses of the applied stress on pigment dynamics and
seed brightness were investigated through multispectral images.
To this end, stress-exposed and control seeds were subjected to
evaluation of fluorescence chlorophyll a, fluorescence chlorophyll

b, brightness (CIELAB L∗) and anthocyanin index as described
previously. These variables were also measured in seeds of
another cultivar (IAC 503) exposed to the same stress conditions.
Seeds belonging to the research lot and exposed to stress (IAC
OL3; lot 7) were also used for seedling production following
the same conditions previously described. At 14 days after
sowing, chlorophyll a and anthocyanin indices, NDVI, F0, Fm,
chlorophyll a fluorescence and Fv/Fm were calculated for each
seedling using SeedReporterTM software.

Statistical Design
The data obtained in the conventional tests performed for the
seven seedlots were submitted to analysis of variance – ANOVA
(F test; p ≤ 0.05) with four repetitions (n = 28). Comparison
of means was performed by Tukey test (p ≤ 0.05). The data
obtained from the multispectral images of 170 seeds of each lot
were submitted to ANOVA and the Tukey test (each seed as a
repetition; n = 170). The data obtained from multispectral images
of the seedlings from the seeds of each lot were submitted to
ANOVA and Tukey test with four replications (n = 28). The
same analyses procedures were adopted for the data obtained
in the further experiments. From the reflectance data (from 365
to 970 nm) observed for the seeds of each lot (n = 170), an
interactive process analysis (for loop) was carried out in order
to select the 20 combinations of 5 bands that best discriminated
seedlots (660, 690, 780, 850, and 970 nm). The details of the
computational procedures used are described in a supplementary
file (Supplementary Methodology 2).

Principal component analysis (PCA) and correlation were
performed with the data observed in conventional tests and
multispectral images of the seeds. The Permanova test and
the Bray-Curtis similarity index (Canoco 5 software) were
used to identify the significance of the behavior observed in
PCA between seedlots (F Test; p ≤ 0.05). Correlation analysis
was calculated using the Spearman method, due to the non-
normality of the variables. Additionally, when the variables were
a different number of repetitions, the average was calculated,
so a balanced observation could be made. The “ExpDes.pt”
package of the R software was used to perform the analysis
of variance (completely randomized design) and the Tukey
test (R Core Team, 2021). The QDA analysis was performed
with the MASS library (Venables and Ripley, 2002) with the
MASS:qda() function, and the results of the confusion matrix and
accuracy measurement were collected by the library and caret:
confusionMatrix() (Kuhn, 2017).

RESULTS

Physiological Quality and Physical
Properties of Seeds
The germination test using paper substrate clearly separated the
seedlots into two groups, i.e., lots 1, 2, and 3 (lower quality)
vs. lots 4, 5, 6, and 7 (higher quality) (Figure 1A). In contrast,
the germination test using sand as substrate did not show a
clear quality difference among seedlots (Figure 1B). The average
time for 50% germination (t50) classified lot 2 as lower vigor
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FIGURE 1 | Physiological quality of seven seedlots of peanut (Arachis hypogaea L.; cv. IAC OL3) based on germination on paper (A), germination on sand (B), time
for 50% germination (C), seedling emergence (D), seedling length (E), and seedling dry weight (F). Means (± standard deviation) with different letters indicate a
significant difference (p ≤ 0.05).

(higher values of t50) (Figure 1C). In addition, seeds from lot
2 also presented the worst performance for seedling emergence
and seedling length (Figures 1D,E). Nevertheless, lots 2 and 3
generated seedlings with very similar length as lot 6 (Figure 1E).
The seedling length and dry weight measurements revealed lot 7
as having the best vigor (Figures 1E,F). Except for germination
on paper (Figure 1A), conventional tests detected punctual and
unclear differences in the quality of seedlots. Regarding the
physical properties, seeds from lots 4, 5, 6, and 7 had higher
fresh weight (Figure 2A) and this was associated with lower
water content (∼= 7%) (Figure 2B). These seedlots in addition to
the high quality indicated by the germination test (Figure 1A)
also had superior area, length, width and brightness (CIELab L∗)
(Figures 2C–F).

Seed Pigments
The seedlots that exhibited the best performance in the
germination test, i.e., lots 4, 5, 6, and 7 (Figure 1A) showed
higher chlorophyll a and b fluorescence (Figures 3A,B), but a
lower chlorophyll a/b ratio (Figure 3C) and anthocyanin index
(Figure 3D). Therefore, the results indicated that there is a
stronger difference in chlorophyll b between the two groups
(lots 1, 2, 3 vs. lots 4, 5, 6, and 7), and this was also shown
by comparing the chlorophyll a and b images (Figures 4A,B),

in parallel with lower anthocyanins in the group with greater
germination performance (Figure 4C).

Curiously, when lot 7 was artificially aged, chlorophyll a
and b fluorescence was rapidly reduced (Figures 5A,B, 6A,B).
In addition, there was a reduction in the seed coat brightness
(CIELab L∗) (Figure 5C) and an increase in the anthocyanin
index (Figures 5D, 6C). To verify whether this response can
also occur in seeds of other genotypes, seeds obtained from IAC
503 cultivar were also artificially aged (Supplementary Figure 1).
Likewise, there were lower chlorophyll a and b fluorescence
signals, reduced seed coat brightness and increased anthocyanin
index in aged seeds (Supplementary Figure 1).

Seed Reflectance
The seeds with superior quality (lots 4, 5, 6, and 7) had the highest
spectral signature in the visible region of the spectrum (405 to
540 nm; 630 to 780 nm) (Figure 7A). Seed reflectance was similar
at longer wavelengths (850 and 970 nm), with the exception of
lot 4 (Figure 7A). The combination of 660, 690, 780, 850, and
950 nm wavelengths showed superior accuracy to discriminate
the spectral patterns of the seedlots (Figure 7B). When evaluating
the bands individually, the results showed that the wavelengths of
660, 690, and 780 nm allow better separation of groups with lower
and higher quality (lots 1, 2, and 3 vs. lots 4, 5, 6, and 7) (Figure 8).
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FIGURE 2 | Physical properties of seven seedlots of peanut (Arachis hypogaea L.; cv. IAC OL3) based on fresh weight (A), water content (B), area (C), length (D),
width (E), and CIELab L∗ (F). The CIELabL∗ represents the perceived brightness ranging from 0.0 (black) to 100.0 (white). Means (± standard deviation) with
different letters indicate a significant difference (p ≤ 0.05).

Correlation Between Physical,
Physiological, Pigment and Reflectance
Descriptors
The correlation coefficients showed a relationship between
physical descriptors and germination (paper): 0.78 (seed
weight), –0.77 (water content) 0.75 (area), 0.76 (length), 0.75
(width) and 0.76 (CIELab L∗ – seed brightness). Seed brightness
was the only physical descriptor with a correlation coefficient
greater than 0.7 vs. t50 (vigor test). Between seed pigments
and germination (paper) the correlations were: 0.73 (chlorophyll
b), –0.85 (chlorophyll a/chlorophyll b), and –0.75 (anthocyanin
index). The germination (paper) vs. reflectance bands obtained
the following correlations: 0.77 (660 nm), 0.78 (690 nm), and
0.76 (780 nm). The correlation coefficients obtained for seedling
emergence vs. 690 and 780 nm were 0.71 and 0.72, respectively.
The reflectance bands showed the following correlations with
seed brightness: 0.98 (660 nm), 0.95 (690 nm), and 0.9 (780 nm).
The correlation between seed brightness and the seed pigments
were: 0.81 (Chl a), 0.95 (Cha b), –0.83 (Chl a/Chlb), and –0.78
(anthocyanin index; Figure 9A).

The PCA allowed the correlation of the groups of seeds with
high and low vigor (lots 1, 2, 3 vs. lots 4, 5, 6, and 7), explaining
71.6% of the significant variation (PCA1) found (PERMANOVA;
p < 0.001). Most of the seeds with lower vigor were negatively

FIGURE 3 | Average chlorophyll a fluorescence (Chl a) at 630/700 nm
excitation/emission combination (A), chlorophyll b fluorescence (Chl b) at
405/600 nm excitation/emission combination (B), chlorophyll a/b ratio (Chl
a/Chl b) (C), and anthocyanin index (D) measured in seven seedlots of peanut
(Arachis hypogaea L.; cv. IAC OL3). Means (± standard deviation) with
different letters indicate a significant difference (p ≤ 0.05) (n = 170).

correlated with the anthocyanin index, water content, chlorophyll
a/b ratio, time for 50% germination and reflectance at 970 nm.
Meanwhile, the group of seeds with higher vigor exhibited

Frontiers in Plant Science | www.frontiersin.org 6 April 2022 | Volume 13 | Article 849986

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-849986 April 8, 2022 Time: 14:48 # 7

Fonseca de Oliveira et al. Optical Tools to Evaluate Peanut Seed Quality

FIGURE 4 | Chlorophyll a fluorescence (Chl a) at excitation/emission combination of 630/700 nm (A), chlorophyll b fluorescence (Chl b) at excitation/emission
combination of 405/600 nm (B), and anthocyanin index (Ant Index) (C) of seven seedlots of peanut seeds (Arachis hypogaea L.; cv. IAC OL3). Each pixel in the
images is represented by a unique value that corresponds to chlorophyll a and b fluorescence intensity or anthocyanin level.

FIGURE 5 | Chlorophyll a fluorescence at excitation/emission combination of
630/700 nm (A), chlorophyll b fluorescence at excitation/emission
combination of 405/600 nm (B), CIELab L∗ representing the perceived
brightness ranging from 0.0 (black) to 100.0 (white) (C), and anthocyanin
index (D) in peanut seeds (Arachis hypogaea L.; cv. IAC OL3) from lot 7
artificially aged for 0, 24, and 48 h. Means (± standard deviation); significant
(∗); not significant (ns); (p > 0.05) (n = 100).

positive correlation with all other variables as seed weight, area,
length, width, brightness (CIELab L∗), chlorophyll a, chlorophyll
b, and seed reflectance (660, 690, and 780 nm). These variables
were expressed to a higher degree (vector modulus) in high vigor
seedlots (lots 4, 5, 6, and 7) jointly with germination in paper,
germination in sand, and seedling emergence (Figure 9B).

Seed Quality Classification Based on
Machine Learning Models Using Physical
Properties, Pigments and Reflectance
Descriptors
From the seed groups (Figure 9B) divided into high vigor (lots 1,
2, and 3) and low vigor (lots 4, 5, 6, and 7) quadratic discriminant
analysis (QDA) models were constructed. Based on the data set
(n = 1190), the first model generated using the physical optical
descriptors (area, length, width, and CIELab L∗) was able to
predict the behavior of the two seed groups (high and low vigor)
with 89% accuracy. For the second model, using seed pigments
(chlorophyll a, chlorophyll b, and the anthocyanin index), the
accuracy was 94%. Using the most significant wavelengths of
reflectance (660, 690, 780, 850, and 970 nm) the accuracy was
97%. From the union of the physical optical descriptors, pigments
and reflectance of the seeds in a single model, the accuracy was
98% (Table 1).

Pigments and Photosynthetic Efficiency
of Seedlings
The low vigor seedlots (i.e., Lot 1) generated seedlings with higher
values for the variables chlorophyll a index, initial fluorescence
and maximum fluorescence, and Fv/Fm ratio (Figures 10A–D).
Seedlings from these seeds also had a high anthocyanin index
(Figure 10E). Chlorophyll a fluorescence was similar among
most of the seedlings from the analyzed seedlots (Figure 10F).
Differences in the anthocyanin index and the chlorophyll a index
of the seedlings were most evident between the high and low
vigor seedlots 1 and 7 (Figures 11A,B). The Fv/Fm ratio was very
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FIGURE 6 | Chlorophyll a fluorescence (Chl a) at 630/700 nm excitation/emission combination (A), chlorophyll b fluorescence (Chl b) at 405/600 nm
excitation/emission combination (B), and anthocyanin index (Ant Index) (C) in peanut seeds (Arachis hypogaea L.; cv. IAC OL3) from lot 7 for classes on non-aged
seeds and seeds aged for 24 h and 48 h. Each pixel in the images is represented by a unique value that corresponds to chlorophyll a and b fluorescence intensity or
anthocyanin level.

FIGURE 7 | Reflectance spectral signature at 19 wavelengths (365 to 970 nm) of seven peanut seedlots (Arachis hypogaea L.; cv. IAC OL3) (A) and 20
combinations of wavelengths with distribution of accuracy determined by interactive process analysis (B). The arrow indicates the combination of bands (660, 690,
780, 850, and 970) that showed the highest accuracy (0.730) for the subsequent analyses. ∗significant at the 0.05 probability levels (n = 170).
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FIGURE 8 | Reflectance mean of seven peanut seedlots (Arachis hypogaea
L.; cv. IAC OL3) at (A) 660, (B) 690, (C) 780, (D) 850, and (E) 970 nm
(previously shown as the best wavelengths to discriminate seeds as high and
low vigor) (n = 170). Means (± standard deviation) with different letters
indicate a significant difference (p ≤ 0.05).

precise to show differences in photosynthetic activity by images
of the evaluated seedlings (Figure 11C).

Seedlings from seedlot 7 that were submitted to artificial aging
showed improvement in the main photosynthetic parameters.
The chlorophyll a index, initial fluorescence and maximum
fluorescence increased by 32, 4.8 and 5.6% after 24 h of stress,
respectively (Figures 12A–C). The time of seed exposure to aging
did not affect the quantum yield of the photosystem II system
(Fv/Fm) of the seedlings (Figure 12D). However, it caused an
increase in the anthocyanin index and the normalized vegetation
index (Figures 12E,F). This behavior was clearly reflected in the
images (Figures 13A–C).

DISCUSSION

This study contains contributions that highlight the accuracy of
technologies based on multispectral images and machine learning
to identify peanut seeds with superior quality. New evidence
reinforces the possibility of autonomous detection of physical
parameters, chlorophyll fluorescence and light reflectance in
peanut seeds to assess their physiological quality. Here, these and
other original data address the use of post-harvest technologies to
advance the peanut seed production sector in the world.

Seed Quality
The seed industry performs the physiological quality control
of lots every cultivation season. Among the conventional tests
capable of assessing seed quality, germination performed within
10 days provides sufficiently satisfactory results (Figure 1A). In
the case of t50 (vigor test), the distinction of seedlots with high
and low vigor is also possible (Figure 1B). However, these are
tests that require a lot of time and effort to be performed on a large
scale. This makes the process of seed quality control inefficient.
Regarding water content, the low moisture observed in certain
lots (Figure 2A) is described as a state that slows the natural
deterioration processes (Buitink and Leprince, 2004) in addition
to prolonging the conservation of seeds in storage (Leprince et al.,
2017). Therefore, evaluation is essential for obtaining seedlots
with high quality. Still, it is a destructive methodology and, as
with the other conventional tests, depends on human analytical
ability. With this in mind, based on studies with seeds of other
species (Mortensen et al., 2021) the potential of multispectral
images technologies was investigated. New markers capable of
efficiently determining peanut seed quality were found.

A first component of this approach comprises physical
properties (shape and brightness). Characteristics such as area,
length and width have been positively associated with seed
vigor and adequate seedling establishment. In fact, peanut seeds
with high quality showed additional dimensions (Figures 2C–
E), and that possibly gave them a higher proportion of reserves
to subsidize germination, such as lipids (Zhou et al., 2019). It
has also been found that lower exposure of soybean seeds to
stress situations, such as radiation (Oliveira et al., 2021), preserves
their brightness characteristics. In alfalfa, it has been shown
that the natural aging of seeds itself interferes with this aspect
(Wang X. et al., 2021). It is worth noting that the reduction in
tegument brightness is a common phenomenon in other species,
such as beans (Piotrowicz-Cieślak et al., 2020), and may indicate
the advancement of oxidative processes associated with seed
deterioration (Erfatpour et al., 2021). In orthodox seeds, such
as peanuts, seed deterioration occurs in progressive stages at the
cellular level and results in loss of vigor (Ebone et al., 2019). Thus,
the physical variables explored in this work through multispectral
images demonstrated potential for quality control during the
processing of peanut seedlots.

Seed Pigments
In addition to the above physical properties, pigments in peanut
seeds have also been found to add useful information for the
seed industry. In an initial explanation, it can be pointed out
that high quality seedlots may contain extra volume of both
reserves and pigments (Figures 3A,B) due to their higher weight
and area (Figures 2B,C). In fact, the low relation between
chlorophyll a/b (Figure 3C) indicated a higher proportion of
chlorophyll b in high quality lots (Figure 4B). In senescent
plant tissues, the reduction in chlorophyll fluorescence is
described as a deteriorating process (Donaldson and Williams,
2018; Donaldson, 2020). From this perspective, peanut seed
quality may be directly associated with chlorophyll fluorescence
dynamics. It may also be associated to the accumulation of
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FIGURE 9 | Correlation matrix (A) and biplots of principal component analysis (PCA) (B) for physical optical descriptors, physiological, pigment, and reflectance of
peanut seeds (Arachis hypogaea L.; cv. IAC OL3) with lower (lots 1, 2, and 3; red circles) and higher vigor (lots 4, 5, 6, and 7; blue circles). The PCA vectors indicate
the correlation between the classes (lower and higher vigor) and the dimensions PC1 and PC2. We used the PERMANOVA test and the Bray-Curtis similarity index in
the PCA to identify the difference between seed classes at a 1% significance.
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TABLE 1 | Quadratic discriminant analysis (QDA) based on physical optical descriptors, pigments and reflectance of peanut seedlots (Arachis hypogaea L.; cv. IAC OL3)
for groups of lower and higher vigor.

Predictor variable: area, length, width and CIELab L* (physical optical descriptors)

Seedlot groups* Training set (n = 833)1 Validation set (n = 357)1

Lower Vigor Higher Vigor Accuracy Lower Vigor Higher Vigor Accuracy

Lower Vigor 0.94 0.14 0.91 0.93 0.15 0.89

Higher Vigor 0.06 0.86 0.07 0.85

Predictor variable: Chlorophyll a, Chlorophyll b and anthocyanins (pigments)

Seedlot groups* Training set (n = 833)1 Validation set (n = 357)1

Lower Vigor Higher Vigor Accuracy Lower Vigor Higher Vigor Accuracy

Lower Vigor 0.91 0.06 0.93 0.96 0.07 0.94

Higher Vigor 0.09 0.94 0.04 0.93

Predictor variable: 660, 690, 780, 850, and 970 nm (reflectance)

Seedlot groups* Training set (n = 833) 1 Validation set (n = 357)1

Lower Vigor Higher Vigor Accuracy Lower Vigor Higher Vigor Accuracy

Lower Vigor 0.98 0.04 0.97 0.99 0.05 0.97

Higher Vigor 0.02 0.96 0.01 0.95

Predictor variable: physical optical descriptors, pigments and reflectance

Seedlot groups Training set (n = 833) 1 Validation set (n = 357) 1

Lower Vigor Higher Vigor Accuracy Lower Vigor Higher Vigor Accuracy

Lower Vigor 0.99 0 0.99 0.98 0.02 0.98

Higher Vigor 0.01 1 0.02 0.98

*Lower Vigor: lots 1, 2, and 3; Higher Vigor: lots 4, 5, 6, and 7.
1From the dataset observed in all seedlots (n = 1190), 70% (n = 833) were randomly sampled for training assessment and 30% for validation (n = 357).

anthocyanins (Figures 3D, 4B,C) since the biosynthesis of this
flavonoid is part of the secondary metabolism of plants against
stress (Liu et al., 2018). Further studies were conducted in
order to understand whether pigment dynamics in peanut seeds
interfere with their quality. For this purpose, seeds from one of
the lots identified as high quality (high germination and vigor)
were exposed to controlled stress (artificial aging).

Stress applied to peanut seeds (aged seeds) caused changes in
pigment dynamics (chlorophylls fluorescence and anthocyanin
index) and brightness (CIELab L∗). Considering mature,
non-greenish soybean seeds, the fluorescence of chlorophylls
(residual in the embryo) decreases as the artificial aging
process under high temperature and high RH progresses
(Barboza da Silva et al., 2021b). Furthermore, the increased
exposure of seeds to this stress (high temperature and high
RH) reduces their ability to form vigorous seedlings. It has
been demonstrated that mature soybean seeds with reduced
germination have lower chlorophyll fluorescence characteristics
than seeds with higher viability (Li et al., 2019). Thus, the
possibility exists that the loss of fluorescence occurs as seeds age.
In plants, this has been documented for leaf tissues in advanced
senescence (Donaldson, 2020). In this work, the reduction
in chlorophyll fluorescence and brightness of seeds exposed

to stress (IAC OL3 and IAC 503) reinforces the idea that the
degree of deterioration or aging of peanut seeds alters their
spectral properties. Taking these observations into consideration,
pigment dynamics and seed brightness can be indicators of
seed quality. Also, both reveal the degree of stress accumulated
in seed tissues. In the peanut seed industry, technologies that
detect these characteristics through multispectral images have a
promising potential to improve lot quality control and making
it more accurate.

Seed Reflectance
Another promising possibility for assessing seed quality was
found in this work through reflectance. Higher quality lots were
formed by seeds with high reflectance at wavelengths between
660 and 780 nm (Figures 8A,B). The peculiarities of seeds,
such as chemical composition, color and other attributes, are
known to interfere in the absorbance and reflectance dynamics
of incident light (Elmasry et al., 2019a). It is worth noting
that high quality peanut seeds contained a naturally enhanced
chlorophyll fluorescence, especially Chl b, and higher tegument
brightness (Figure 2F). In this context, these characteristics
can have contributed to the increased light reflected by the
better-quality seeds, thus defining their high reflectance pattern
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FIGURE 10 | Photosynthetic activity measured by chlorophyll a index (A), initial fluorescence (F0) (B), maximum fluorescence (Fm) (C), quantum yield of photosystem
II measured by Fv/Fm (D), anthocyanin index (E), and chlorophyll a fluorescence (F) in peanut seedlings (Arachis hypogaea L.; cv. IAC OL3) at 14 days after sowing:
excitation of chlorophyll molecules were induced at 620 nm and emission at 700 nm. Means (± standard deviation) with different letters indicate a significant
difference (p ≤ 0.05). Peanut seedlings were obtained from seeds of lower (Lots 1, 2, and 3) and higher vigor (Lots 4, 5, 6, and 7).

in specific bands (Figures 8A–C). Apparently, this behavior
is not a common and interspecific rule in nature. As an
example, Jatropha curcas seeds have superior quality associated
with enhancement in their lipid content, which results in low
reflectance in the near infrared range (940 nm) (Bianchini
et al., 2021). In tomato seeds, on the other hand, this high
performance and low reflectance are linked to embryo maturity
and protective pigments that absorb more light in the UV
spectrum (365 nm) (Galletti et al., 2020). Here, the physiological
quality attributes (germination and vigor) were associated with
high reflectance at specific wavelengths (660 to 780 nm), so
far not considered for peanut seeds. It is worth noting that
in the plant domain (bermudagrass), higher reflectance values
(900/970 nm) can be strongly associated with leaf water content
under water stress conditions (Caturegli et al., 2020). Therefore,
the reflectance patterns obtained in this work show a singular
behavior with a unique competence to define the physiological
quality of peanut seeds.

Data Correlation and Seed Quality
Classification Using Machine Learning
Summarizing our findings, it is worth highlighting the significant
correlations between physical optical parameters (area, length,

width and brightness – CIELab L∗), pigments (chlorophyll
fluorescence and anthocyanin) and reflectances (660, 690, and
780 nm) with germination and seed vigor (Figure 10A). These
results establish an unprecedented connection between tests
performed to assess seed quality with multispectral images
parameters, with the goal of categorizing seedlots with high
quality. Furthermore, they demonstrated the robustness of
potential markers of peanut seed physiological quality found
through non-invasive technologies. The principal component
analysis method proved to be an efficient technique for
interpreting the behavior of seedlots (high and low vigor).
The gain in the ability to manage datasets using PCA has
been highlighted (Taheri-Garavand et al., 2021c). However, it
should be considered that the manual management of the
volume of data generated through multispectral seed images
can hinder decision making in routine analyses in the seed
industry. Separating the behavior of the seedlots into groups
of low and high vigor (Figure 10B) brought up the following
question: in practice, how can these differences in seed
quality be quickly diagnosed using only the generated database
containing all multispectral image parameters found? With this
in mind, ways to automatically recognize seeds of high and
low quality were tested using computational resources of high
predictive accuracy.
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FIGURE 11 | Anthocyanin index (A), chlorophyll a index (B), and maximum quantum efficiency of photosystem II based on Fv/Fm (C) in peanut seedlings (Arachis
hypogaea L.; cv. IAC OL3) from seedlot 7. The pigments and photosynthetic efficiency of peanut seedlings were evaluated at 14 days after sowing of the seeds from
the seven lots studied. Each pixel in the image is represented by a unique value that corresponds to fluorescence intensity; higher pixel values indicate higher
anthocyanin, fluorescence and Fv/Fm intensity.

From the multispectral seed dataset, the surprising sensitivity
of machine learning algorithms based on the QDA method
(Table 1) was verified for autonomous recognition of patterns
identified in conventional seed quality analysis (Figure 10B). It
is worth noting that the QDA method is quite robust to data non-
normality (lower error probability), except when distributions
are highly asymmetric (Clarke et al., 1979), different from what
was observed here (Supplementary Methodology 1). Also, it
is an efficient parametric method because it takes into account
the low variability when different data sets are used to build
prediction models (James et al., 2021). The QDA method
has been used successfully in the field of Plant Science, with
examples ranging from protein structure classification (Yuan
et al., 2017) to phytosanitary diagnosis from plant oil dielectric
properties (Khaled et al., 2018). The use of the QDA method as
part of an artificial intelligence strategy applied to post-harvest
proved to be a powerful tool for categorizing the quality of
peanut seedlots.

This possibility of automation was successfully explored
in previous studies for the analysis of image parameters of
seeds from other crops (Elmasry et al., 2019a; Mortensen
et al., 2021). In species such as soybean (Baek et al., 2019;
Medeiros et al., 2020a), cowpea (Rego et al., 2020), oat (França-
Silva et al., 2020), U. brizantha (Medeiros et al., 2020b) and
corn (Wang Z. et al., 2021), the ability of algorithms to
detect spectral features of seeds with high accuracy (above
90%) through images was proven. Taking this knowledge
into consideration in addition to the findings of this work
(Table 1), it is clear that part of the modernization process
of the seed production sector in the world can be based on

the use of multispectral image technologies. In the peanut
production chain, these devices capable of capturing images
in the UV, visible and near-infrared range have the potential
to promote strategies to mitigate the incidence of seeds with
low vigor in commercial lots. This problem, in addition to
hampering the proper formation of a crop (Carter et al.,
2019), can lead to a higher number of seeds needed to meet
the intended plant stand. At this point, artificial intelligence
resources have shown to be highly capable of improving seed
quality management programs based on detailed and real-time
diagnosis of the seedlots.

Pigments and Photosynthetic Efficiency
of Seedlings
In face of the primary technological aim of the seeds, which
is the establishment of a seedling, its association with seed
quality was investigated. Interestingly, seeds of low physiological
quality gave rise to seedlings with superior photosynthesis
parameters (Figures 11A–D). Even with the enhancement
of the photosynthetic potential, there was an increase in the
anthocyanin index in the leaves (Figure 11E), which indicates
some degree of stress (Liu et al., 2018). The outcome of
these results motivated us to think about whether there is an
intrinsic protection mechanism in peanut seeds that helps
the establishment of the seedling with low vigor. This can be
a natural survival strategy in unfavorable situations (stress),
which optimizes the chances of perpetuating the species in
the cultivation environment, as discussed for other species
(Marcos et al., 2018a,b). A similar proposal was explored in
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FIGURE 12 | Photosynthetic activity measured by chlorophyll a index (A), initial fluorescence (F0) (B), maximum fluorescence (Fm) (C), photosystem II quantum yield
measured by Fv/Fm (D) as well as stress indicators such as anthocyanin index (E), and normalized vegetation index (NDVI) (F) in peanut seedlings (Arachis hypogaea
L.; cv. IAC OL3) at 14 days after sowing: excitation of chlorophyll molecules were induced at 620 nm and emission at 700 nm. Means (± standard deviation).
Asterisks (∗) indicate significant differences (p ≤ 0.05). Peanut seedlings were obtained from lot 7 seeds after aging times (0 h, 24 h, and 48 h at 42◦C).

tomato (Nogueira et al., 2021), and it was found that seeds
produced in a stressful environment gave rise to seedlings
with adaptive enhancement in chlorophyll fluorescence.
Thus, considering the notable connection of chlorophyll
fluorescence found (Figure 11A) with photosynthesis in plant
organisms (Valcke, 2021), the idea that peanut seedlings
signaled compensatory adjustments in photosynthetic capacity
in response to seed deterioration induced by artificial aging
(high temperature and high RH) was proposed. In order
to better understand these concepts, seedlings from seeds
exposed to stress (24 and 48 h at 42◦C/100% RH) were
produced and assessed for their photosynthetic capacity
as well as stress indicators (anthocyanin and normalized
vegetation indices).

Surprisingly, after 24 h of artificial aging of high-quality
seeds (lot 7), there was a proportional enhancement in the
photosynthetic parameters of the seedlings (Figures 12A–C),
besides an evident increase in leaf stress indices (Figures 12D,E).
It is interesting to think that if the deteriorated seeds were
really conditioned to access stress repair mechanisms, in practice

the low quality of seedlots would naturally be compensated
without harming the establishment of seedlings. On the other
hand, seeds in this condition can lead to failures in the stand
due to a higher incidence of abnormal seedlings and/or non-
viable seeds (Supplementary Figure 2). Thus, seeds of low
vigor should not be used for the installation of tillage, since
the negative reflexes of the failures they cause in the plant
stand extend to the harvest and reduce grain yield (Bagateli
et al., 2019; Ebone et al., 2020). In this way, multispectral
images of seedlings can provide information associated with their
photosynthetic apparatus with the reverse logic of what happens
in seeds (Figure 13B). For this reason, they need prior knowledge
of the level of seed deterioration to effectively contribute as
a marker of the physiological quality of seedlots. Still, stress
indicators such as the levels of anthocyanins found (Figures 12D,
13A) connected more directly with what occurs in seeds
(Figure 5D). Such results have the potential to anticipate the
behavior of post-germination events and integrate robust quality
control programs associated with seedling establishment. Also,
allows the prediction of physiological dysfunctions associated
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FIGURE 13 | Anthocyanin index (A), chlorophyll α index (B), and maximum quantum efficiency of photosystem II based on Fv/Fm (C) in peanut seedlings (Arachis
hypogaea L.; cv. IAC OL3) from seeds of lot 7 after artificial aging (24 h and 48 h at 42◦C). Each pixel in the image is represented by a unique value that corresponds
to fluorescence intensity; higher pixel values indicate higher anthocyanin, fluorescence and Fv/Fm intensity.

with seed deterioration and the initial photosynthetic behavior
of a crop in the field, which deserves to be explored in
future investigations.

Perspectives
These are innovative techniques to assess the quality of
peanut seedlots in a non-destructive and accurate way. The
possibility of providing farmers with seeds that are highly capable
of generating productive plants makes the search for these
innovations one of the technological priorities in agriculture.
Multispectral images represent a sensory bridge that extends
human vision to access information hitherto unexplored in
peanut seeds. A practical example is that through images, seedlots
of lower quality can be identified. They generate seedlings
with higher levels of stress (anthocyanins). Therefore, these
lots can be allocated to less stressful cultivation environments
in order to take advantage of the seed stock, within a
certain quality level, and mitigate possible losses in the future
crop. From the quality markers found, improvement solutions
can be thought along the peanut production chain, from
classification in processing to seed quality control. There is
also, the opportunity to carry out these steps autonomously
through machine learning models (QDA method). On a
commercial scale, a capital investment is initially required to
adopt the approach employed (Taheri-Garavand et al., 2021a).
However, the wide applications of these technologies in the seed
industry can bring significant returns through two aspects: (i)

increased efficiency of post-harvest processes and, consequently,
(ii) cost reduction.

CONCLUSION

New markers that effectively track peanut seed quality were
found. The combination of physical properties (area, length,
width, and coat brightness), pigments (chlorophyll fluorescence
and anthocyanin), and light reflectance (660, 690, and 780 nm),
is highly efficient to identify peanut seedlots with superior
quality (98% accuracy). Regarding seedlings, stress indicators
such as anthocyanins directly reflect the quality of the
seedlots. The association of these markers with artificial
intelligence highlights the potential for automation of post-
harvest processes integrated with quality analysis logistics
in the peanut seed industry. Overall, our findings provide
valuable insights for managing the quality attributes of one of
the most essential inputs to the world’s agricultural activity:
the seed.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included
in the article/Supplementary Material, further inquiries can be
directed to the corresponding author.

Frontiers in Plant Science | www.frontiersin.org 15 April 2022 | Volume 13 | Article 849986

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-849986 April 8, 2022 Time: 14:48 # 16

Fonseca de Oliveira et al. Optical Tools to Evaluate Peanut Seed Quality

AUTHOR CONTRIBUTIONS

GF, CM, and EA generated the research ideas. GF collected
seed physiological quality data and wrote and formatted
the manuscript. CM and JS collected multispectral image
analysis data. WH and GF analyzed the data. CM, TB, AP,
CC, and EA reviewed the manuscript, rewriting, discussing,
and commenting. All authors read and approved the
final manuscript.

FUNDING

This work was supported by: National Council for Scientific
and Technological Development (CNPq; Grant numbers
142236/2020-9, 309718/2018-0, and 303119/2016-0) and
São Paulo Research Foundation (FAPESP; Grant numbers
#2014/16712-2, #2017/50211-9, #2017/15220-7, #2018/01774-3,

#2018/03802-4, #2018/03793-5, #2018/01774-3, #2020/12686-8,
and #2020/14050-3).

ACKNOWLEDGMENTS

We are thankful to Roger Hutchings for the English review of
the manuscript. We also thank COPERCANA and COPLANA
(peanut seed companies, São Paulo, Brazil) for their support
throughout the experiments.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2022.
849986/full#supplementary-material

REFERENCES
Arya, S. S., Salve, A. R., and Chauhan, S. (2016). Peanuts as functional food: a

review. J. Food Sci. Technol. 53, 31–41. doi: 10.1007/s13197-015-2007-9
Baek, I., Kusumaningrum, D., Kandpal, L. M., Lohumi, S., Mo, C., Kim,

M. S., et al. (2019). Rapid measurement of soybean seed viability using
Kernel-based multispectral image analysis. Sensors 19:271. doi: 10.3390/s190
20271

Bagateli, J. R., Dörr, C. S., Schuch, L. O. B., and Meneghello, G. E.
(2019). Productive performance of soybean plants originated from seed lots
with increasing vigor levels. J. Seed Sci. 41, 151–159. doi: 10.1590/2317-
1545v41n2199320

Barbosa, R. M., Vieira, B. G. T. L., Martins, C. C., and Vieira, R. D. (2014).
Qualidade fisiológica e sanitária de sementes de amendoim durante o processo
de produção. Pesqui. Agropecu. Bras. 49, 977–985. doi: 10.1590/S0100-
204X2014001200008

Barboza da Silva, C., Bianchini, V. D. J. M., de Medeiros, A. D., de Moraes, M. H. D.,
Marassi, A. G., and Tannús, A. (2021a). A novel approach for Jatropha curcas
seed health analysis based on multispectral and resonance imaging techniques.
Ind. Crops Prod. 161:113186. doi: 10.1016/j.indcrop.2020.113186

Barboza da Silva, C., Oliveira, N. M., de Carvalho, M. E. A., de Medeiros,
A. D., de Lima Nogueira, M., and dos Reis, A. R. (2021b). Autofluorescence-
spectral imaging as an innovative method for rapid, non-destructive and reliable
assessing of soybean seed quality. Sci. Rep. 11:17834. doi: 10.1038/s41598-021-
97223-5

Basso, D. P., Hoshino-Bezerra, A. A., Sartori, M. M. P., Buitink, J., Leprince, O.,
and da Silva, E. A. A. (2018). Late seed maturation improves the preservation
of seedling emergence during storage in soybean. J. Seed Sci. 40, 185–192.
doi: 10.1590/2317-1545v40n2191893

Bessada, S. M. F., Barreira, J. C. M., and Oliveira, M. B. P. P. (2019). Pulses
and food security: dietary protein, digestibility, bioactive and functional
properties. Trends Food Sci. Technol. 93, 53–68. doi: 10.1016/j.tifs.2019.
08.022

Bianchini, V. D. J. M., Mascarin, G. M., Silva, L. C. A. S., Arthur, V., Carstensen,
J. M., Boelt, B., et al. (2021). Multispectral and X-ray images for characterization
of Jatropha curcas L. seed quality. Plant Methods 17:9. doi: 10.1186/s13007-021-
00709-6

Buitink, J., and Leprince, O. (2004). Glass formation in plant anhydrobiotes:
survival in the dry state. Cryobiology 48, 215–228. doi: 10.1016/j.cryobiol.2004.
02.011

Carter, E. T., Rowland, D. L., Tillman, B. L., Erickson, J. E., Grey, T. L., Gillett-
Kaufman, J. L., et al. (2019). An analysis of the physiological impacts on life
history traits of peanut (Arachis hypogaea L.) related to seed maturity. Peanut
Sci. 46, 148–161. doi: 10.3146/ps18-20.1

Caturegli, L., Matteoli, S., Gaetani, M., Grossi, N., Magni, S., Minelli, A., et al.
(2020). Effects of water stress on spectral reflectance of bermudagrass. Sci. Rep.
10:15055. doi: 10.1038/s41598-020-72006-6

Clarke, W. R., Lachenbruch, P. A., and Broffitt, B. (1979). How non-normality
affects the quadratic discriminant function. Commun. Stat. Theory Methods 8,
1285–1301. doi: 10.1080/03610927908827830

Ding, N., Xing, F., Liu, X., Selvaraj, J. N., Wang, L., Zhao, Y., et al. (2015). Variation
in fungal microbiome (mycobiome) and aflatoxin in stored in-shell peanuts at
four different areas of China. Front. Microbiol. 6:1055. doi: 10.3389/fmicb.2015.
01055

Donaldson, L. (2020). Autofluorescence in plants. Molecules 25:2393. doi: 10.3390/
molecules25102393

Donaldson, L., and Williams, N. (2018). Imaging and spectroscopy of natural
fluorophores in pine needles. Plants 7:10. doi: 10.3390/plants7010010

Ebone, L. A., Caverzan, A., and Chavarria, G. (2019). Physiologic alterations in
orthodox seeds due to deterioration processes. Plant Physiol. Biochem. 145,
34–42. doi: 10.1016/j.plaphy.2019.10.028

Ebone, L. A., Caverzan, A., Tagliari, A., Chiomento, J. L. T., Silveira, D. C., and
Chavarria, G. (2020). Soybean seed vigor: uniformity and growth as key factors
to improve yield. Agronomy 10:545. doi: 10.3390/agronomy10040545

Elmasry, G., Mandour, N., Al-Rejaie, S., Belin, E., and Rousseau, D. (2019a).
Recent applications of multispectral imaging in seed phenotyping and quality
monitoring - an overview. Sensors 19:1090. doi: 10.3390/s19051090

Elmasry, G., Mandour, N., Wagner, M. H., Demilly, D., Verdier, J., Belin, E., et al.
(2019b). Utilization of computer vision and multispectral imaging techniques
for classification of cowpea (Vigna unguiculata) seeds. Plant Methods 15:24.
doi: 10.1186/s13007-019-0411-2

Erfatpour, M., Duizer, L., and Pauls, K. P. (2021). Investigations of the effects of
the non-darkening seed coat trait coded by the recessive jj alleles on agronomic,
sensory, and cooking characteristics in pinto beans. Crop Sci. 61, 1843–1863.
doi: 10.1002/csc2.20477

Finch-Savage, W. E., and Bassel, G. W. (2016). Seed vigour and crop establishment:
extending performance beyond adaptation. J. Exp. Bot. 67, 567–591. doi: 10.
1093/jxb/erv490

França-Silva, F., Rego, C. H. Q., Gomes-Junior, F. G., de Moraes, M. H. D., de
Medeiros, A. D., and da Silva, C. B. (2020). Detection of drechslera avenae
(Eidam) sharif [Helminthosporium avenae (eidam)] in black oat seeds (Avena
strigosa schreb) using multispectral imaging. Sensors 20:3343. doi: 10.3390/
s20123343

Galletti, P. A., Carvalho, M. E. A., Hirai, W. Y., Brancaglioni, V. A., Arthur, V.,
and Barboza da Silva, C. (2020). Integrating optical imaging tools for rapid and
non-invasive characterization of seed quality: tomato (Solanum lycopersicum
L.) and Carrot (Daucus carota L.) as study cases. Front. Plant Sci. 11:577851.
doi: 10.3389/fpls.2020.577851

Frontiers in Plant Science | www.frontiersin.org 16 April 2022 | Volume 13 | Article 849986

https://www.frontiersin.org/articles/10.3389/fpls.2022.849986/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fpls.2022.849986/full#supplementary-material
https://doi.org/10.1007/s13197-015-2007-9
https://doi.org/10.3390/s19020271
https://doi.org/10.3390/s19020271
https://doi.org/10.1590/2317-1545v41n2199320
https://doi.org/10.1590/2317-1545v41n2199320
https://doi.org/10.1590/S0100-204X2014001200008
https://doi.org/10.1590/S0100-204X2014001200008
https://doi.org/10.1016/j.indcrop.2020.113186
https://doi.org/10.1038/s41598-021-97223-5
https://doi.org/10.1038/s41598-021-97223-5
https://doi.org/10.1590/2317-1545v40n2191893
https://doi.org/10.1016/j.tifs.2019.08.022
https://doi.org/10.1016/j.tifs.2019.08.022
https://doi.org/10.1186/s13007-021-00709-6
https://doi.org/10.1186/s13007-021-00709-6
https://doi.org/10.1016/j.cryobiol.2004.02.011
https://doi.org/10.1016/j.cryobiol.2004.02.011
https://doi.org/10.3146/ps18-20.1
https://doi.org/10.1038/s41598-020-72006-6
https://doi.org/10.1080/03610927908827830
https://doi.org/10.3389/fmicb.2015.01055
https://doi.org/10.3389/fmicb.2015.01055
https://doi.org/10.3390/molecules25102393
https://doi.org/10.3390/molecules25102393
https://doi.org/10.3390/plants7010010
https://doi.org/10.1016/j.plaphy.2019.10.028
https://doi.org/10.3390/agronomy10040545
https://doi.org/10.3390/s19051090
https://doi.org/10.1186/s13007-019-0411-2
https://doi.org/10.1002/csc2.20477
https://doi.org/10.1093/jxb/erv490
https://doi.org/10.1093/jxb/erv490
https://doi.org/10.3390/s20123343
https://doi.org/10.3390/s20123343
https://doi.org/10.3389/fpls.2020.577851
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-13-849986 April 8, 2022 Time: 14:48 # 17

Fonseca de Oliveira et al. Optical Tools to Evaluate Peanut Seed Quality

Gitelson, A. A., Chivkunova, O. B., and Merzlyak, M. N. (2009). Nondestructive
estimation of anthocyanins and chlorophylls in anthocyanic leaves. Am. J. Bot.
96, 1861–1868. doi: 10.3732/ajb.0800395

Gitelson, A. A., Gritz, Y., and Merzlyak, M. N. (2003). Relationships between leaf
chlorophyll content and spectral reflectance and algorithms for non-destructive
chlorophyll assessment in higher plant leaves. J. Plant Physiol. 160, 271–282.
doi: 10.1078/0176-1617-00887

Groot, S. P. C., van Litsenburg, M. J., Kodde, J., Hall, R. D., de Vos, R. C. H., and
Mumm, R. (2022). Analyses of metabolic activity in peanuts under hermetic
storage at different relative humidity levels. Food Chem. 373:131020. doi: 10.
1016/j.foodchem.2021.131020

Hastie, T., Tibshirani, R., and Friedman, J. H. (2009). The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, 2 Edn. Germany: Springer.

Herritt, M. T., Pauli, D., Mockler, T. C., and Thompson, A. L. (2020). Chlorophyll
fluorescence imaging captures photochemical efficiency of grain sorghum
(Sorghum bicolor) in a field setting. Plant Methods 16:109. doi: 10.1186/s13007-
020-00650-0

Hu, X., Yang, L., and Zhang, Z. (2020). Non-destructive identification of single hard
seed via multispectral imaging analysis in six legume species. Plant Methods
16:116. doi: 10.1186/s13007-020-00659-5

ISTA (2020). International Rules for Seed Analysis. International Rules for Seed
Testing. Bassersdorf: Zürischstr.

James, G., Witten, D., Hastie, T., and Tibshirani, R. (2021). An Introduction to
Statistical Learning with Applications in R. Berlin: Springer.

Joosen, R. V. L., Kodde, J., Willems, L. A. J., Ligterink, W., Van Der Plas, L. H. W.,
and Hilhorst, H. W. M. (2010). Germinator: a software package for high-
throughput scoring and curve fitting of Arabidopsis seed germination. Plant
J. 62, 148–159. doi: 10.1111/j.1365-313X.2009.04116.x

Khaled, A. Y., Abd Aziz, S., Khairunniza Bejo, S., Mat Nawi, N., Abu Seman, I., and
Izzuddin, M. A. (2018). Development of classification models for basal stem rot
(BSR) disease in oil palm using dielectric spectroscopy. Ind. Crops Prod. 124,
99–107. doi: 10.1016/j.indcrop.2018.07.050

Krzyzanowski, F. C., França-Neto, J. B., Gomes-Junior, F. G., and Nakagawa, J.
(2020). “Testes de vigor baseado em desempenho de plântulas,” in Vigor de
Sementes: Conceitos e Testes, 2 Edn, eds F. C. Krzyzanowski, R. D. Vieira, J. B.
França-Neto, and J. Marcos-Filho (Londrina: ABRATES).

Kuhn, M. (2017). Caret Package: Classification and Regression Training.
Available Online at: https://cran.r552project.org/web/packages/caret/index.
html [accessed August 16, 2021].

Leprince, O., Pellizzaro, A., Berriri, S., and Buitink, J. (2017). Late seed maturation:
drying without dying. J. Exp. Bot. 68, 827–841. doi: 10.1093/jxb/erw363

Li, Y., Sun, J., Wu, X., Chen, Q., Lu, B., and Dai, C. (2019). Detection of viability
of soybean seed based on fluorescence hyperspectra and CARS-SVM-AdaBoost
model. J. Food Process. Preserv. 43, 1–9. doi: 10.1111/jfpp.14238

Liu, Y., Tikunov, Y., Schouten, R. E., Marcelis, L. F. M., Visser, R. G. F., and Bovy, A.
(2018). Anthocyanin biosynthesis and degradation mechanisms in Solanaceous
vegetables: a review. Front. Chem. 6:52. doi: 10.3389/fchem.2018.00052

Marcos, F. C. C., Silveira, N. M., Marchiori, P. E. R., Machado, E. C., Souza, G. M.,
Landell, M. G. A., et al. (2018a). Drought tolerance of sugarcane propagules
is improved when origin material faces water deficit. PLoS One 13:e0206716.
doi: 10.1371/journal.pone.0206716

Marcos, F. C. C., Silveira, N. M., Mokochinski, J. B., Sawaya, A. C. H. F., Marchiori,
P. E. R., Machado, E. C., et al. (2018b). Drought tolerance of sugarcane is
improved by previous exposure to water deficit. J. Plant Physiol. 223, 9–18.
doi: 10.1016/j.jplph.2018.02.001

Medeiros, A. D., da Silva, L. J., Ribeiro, J. P. O., Ferreira, K. C., Rosas, J. T. F.,
Santos, A. A., et al. (2020b). Machine learning for seed quality classification:
an advanced approach using merger data from FT-NIR spectroscopy and x-ray
imaging. Sensors 20:4319. doi: 10.3390/s20154319

Medeiros, A. D., Capobiango, N. P., da Silva, J. M., da Silva, L. J., da Silva, C. B.,
and dos Santos Dias, D. C. F. (2020a). Interactive machine learning for soybean
seed and seedling quality classification. Sci. Rep. 10:11267. doi: 10.1038/s41598-
020-68273-y

Meireles, J. E., Cavender-Bares, J., Townsend, P. A., Ustin, S., Gamon, J. A.,
Schweiger, A. K., et al. (2020). Leaf reflectance spectra capture the evolutionary
history of seed plants. New Phytol. 228, 485–493. doi: 10.1111/nph.16771

Mortensen, A. K., Gislum, R., Jørgensen, J. R., and Boelt, B. (2021). The use of
multispectral imaging and single seed and bulk near-infrared spectroscopy to

characterize seed covering structures: methods and applications in seed testing
and research. Agriculture 11:301. doi: 10.3390/agriculture11040301

Murchie, E. H., and Lawson, T. (2013). Chlorophyll fluorescence analysis: a guide
to good practice and understanding some new applications. J. Exp. Bot. 64,
3983–3998. doi: 10.1093/jxb/ert208

Nogueira, M. L., Carvalho, M. E. A., Ferreira, J. M. M., Bressanin, L. A., Piotto,
K. D. B., Piotto, F. A., et al. (2021). Cadmium-induced transgenerational
effects on tomato plants: a gift from parents to progenies. Sci. Total Environ.
789:147885. doi: 10.1016/j.scitotenv.2021.147885

Okada, M. H., Fosenca de Oliveira, G. R., Sartori, M. M. P., Nakagawa, J., Crusciol,
C. A. C., and Amaral da Silva, E. A. (2021). Acquisition of the physiological
quality of peanut (Arachis hypogaea L.) seeds during maturation under the
influence of the maternal environment. PLoS One 16:e0250293. doi: 10.1371/
journal.pone.0250293

Oliveira, N. M., de Medeiros, A. D., Nogueira, M. D. L., Arthur, V., Mastrangelo,
T. D. A., and Barboza da Silva, C. (2021). Hormetic effects of low-dose
gamma rays in soybean seeds and seedlings: a detection technique using optical
sensors. Comput. Electron. Agric. 187:106251. doi: 10.1016/j.compag.2021.
106251
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