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The accurate identification of weeds is an essential step for a site-specific weed

management system. In recent years, deep learning (DL) has got rapid advancements

to perform complex agricultural tasks. The previous studies emphasized the evaluation

of advanced training techniques or modifying the well-known DL models to improve

the overall accuracy. In contrast, this research attempted to improve the mean

average precision (mAP) for the detection and classification of eight classes

of weeds by proposing a novel DL-based methodology. First, a comprehensive

analysis of single-stage and two-stage neural networks including Single-shot MultiBox

Detector (SSD), You look only Once (YOLO-v4), EfficientDet, CenterNet, RetinaNet,

Faster Region-based Convolutional Neural Network (RCNN), and Region-based Fully

Convolutional Network (RFCN), has been performed. Next, the effects of image resizing

techniques along with four image interpolation methods have been studied. It led to the

final stage of the research through optimization of the weights of the best-acquired model

by initialization techniques, batch normalization, and DL optimization algorithms. The

effectiveness of the proposed work is proven due to a high mAP of 93.44% and validated

by the stratified k-fold cross-validation technique. It was 5.8% improved as compared

to the results obtained by the default settings of the best-suited DL architecture

(Faster RCNN ResNet-101). The presented pipeline would be a baseline study for the

research community to explore several tasks such as real-time detection and reducing

the computation/training time. All the relevant data including the annotated dataset,

configuration files, and inference graph of the final model are provided with this article.

Furthermore, the selection of the DeepWeeds dataset shows the robustness/practicality

of the study because it contains images collected in a real/complex agricultural

environment. Therefore, this research would be a considerable step toward an efficient

and automatic weed control system.
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INTRODUCTION

With the fast-growing global population, food demand is
expected to increase up to 70% by 2050 (Caldera and Breyer,
2019). Therefore, various challenges in the agricultural sector
have been addressed by the research community to get smart
and intelligent solutions. Among various agricultural problems,
weeds are a serious threat to crop yield that causes economic
loss (Ahmad et al., 2021). An effective way to manage the
weed is to use herbicide spray specifically in the field that
contains the weeds. Accurate and precise detection of weeds is
important to successfully deploy the weed management system
(Hasan et al., 2021). This agricultural task is time-consuming
and requires a great amount of human and machine resources.
Furthermore, fast and automatic identification of weeds is
essential to reduce excessive/unrequired application of a chemical
spray that produces adverse effects on human beings and
ecosystems (Lottes et al., 2020).

After the introduction of the AlexNet model in 2012
(Krizhevsky et al., 2012), deep learning (DL) has recognized
its ability to detect, classify, and localize several objects
quickly. The object identification tasks are performed in
controlled/laboratory and uncontrolled/real environments.
Similarly, the agricultural field of research is being accelerated
by leveraging various developments in DL. The research
community is extensively focusing on agricultural tasks
including fruit harvesting/recognition (Fu et al., 2021; Gai
et al., 2021), plant recognition (Quiroz and Alférez, 2020;
Bisen, 2021), identification of crop water stress (Chandel et al.,
2021), land cover classification (Saleem et al., 2021), and plant
disease detection (Priyadharshini et al., 2019; Saleem et al., 2019;
Uguz and Uysal, 2021) by investigating DL-based techniques.
Similarly, recent advances in DL have encouraged researchers to
address the classification and detection of weeds in several plant
species (Hasan et al., 2021).

On the other hand, after rapid developments in DL, still,
the robustness of the DL-based solutions is a critical research
question among the scientific community. There are various
aspects to realize the strength of DL, and the environment
of the collected dataset images is one of the important
factors. It is commonly observed that DL architectures provide
higher accuracy on the images collected in controlled or
with plain/single background compared to those which were
collected in a real environment. This is due to the presence
of various unessential or background elements/objects that
could have characteristics similar to the required objects.
Furthermore, occlusion is another aspect of reducing or
degrading the performance of the DL models. Therefore,
agricultural researchers and data scientists started collecting
images for the datasets in real agricultural environments. To
address the concerns described above, a publicly available dataset
called DeepWeeds (Olsen et al., 2019) has been used throughout
this research, which contains various characteristics of the real
agricultural environment.

A summary of prominent studies regarding the identification
of weeds by various methodologies related to DL is presented
in Table 1. It can be concluded that previous studies focused

on DL-based weed detection in four ways: evaluation of transfer
learning techniques, investigation of the performance of state-
of-the-art DL models, integration of DL models with other
image processing-based/traditional machine learning methods,
and modification of the well-known DL architectures. To the
best of the authors’ knowledge, none of the previous articles
has provided a comprehensive study of weed detection by
performing an in-depth analysis of single- and/or two-stage
DL-based object detectors along with an extensive investigation
of various aspects of DL in terms of image resizers, image
interpolation, weight initialization, batch normalization, and
optimization methods. The major contributions of this study are:
(1) a novel DL-based methodology is presented to identify the
weeds by analyzing and evaluating the performance of various
single-stage and two-stage neural networks; (2) also, the effects
of various image resizing techniques are discussed. Moreover,
weights of the best-obtained neural network are optimized with
initialization method, batch normalization, and optimization
algorithms; their effects on the training and testing datasets
are also thoroughly studied; (3) the optimized/modified DL
approach improved the mean average precision (mAP) with a
significant margin as compared to the default settings; attained
enhanced average precision in individual classes; the presented
approach can be adapted to other agricultural operations due
to a high mAP for weed detection; (4) an in-depth analysis of
the best-obtained DL architecture is performed; it has provided
a strong basis of the future research to propose a modified DL
model for further enhancing the research on weed detection;
(5) the trained weights of various DL models can also be used
as transfer learning for other weed-related datasets. Moreover,
the proposed methodology can be treated as an earlier step
before modifying the hidden layers of neural networks for other
agricultural applications.

MATERIALS AND METHODS

This article presents a DL-based approach to detect and classify
eight types of weeds. First, a publicly available dataset called the
DeepWeeds dataset is selected, which covers different aspects of
a real agricultural environment. The proposedmethod comprises
four steps. The first step is the analysis of various single-
stage and two-stage object detectors and the best-suited DL
model which attained the highest mAP. It led to the empirical
evaluation of image resizing techniques like aspect ratio and
fixed shape resizers by using the image interpolation methods
including bilinear, bicubic, area, and nearest neighbor. Then,
an attempt was made to optimize the weights of the DL model
in two stages. First, the parameters of the weight initialization
methods, such as the truncated normal, variance scaling, and
random normal techniques, were studied. Later, the effects
of batch normalization were studied. Finally, adaptive DL
optimization techniques including Adam and RMSProp were
applied to further enhance the performance of the best-obtained
DL architecture as presented for other agricultural applications
(Saleem et al., 2020a,b); their hyperparameters were tuned with
the random search method. The final mAP was compared with
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TABLE 1 | Summary of research articles related to weed detection by deep learning (DL) (divided in terms of novelty and research ideas of the work).

Novelty/research ideas DL models Number

of classes

Dataset conditions Best model

performance

References

Investigation of DL models for

the identification of weeds

AlexNet, GoogLeNet, VGGNet,

DetectNet

Three Various surface condition

regimes.

DetectNet F1-score =

0.9843

Yu et al., 2019a

DL architectures were leveraged

for weed detection and

classification

DetectNet, GoogLeNet, and

VGGNet

Three Different stages and densities of

growth

F1-score by DetectNet >

0.99

Yu et al., 2019b,c

Speed-optimized CNN models

were proposed

CNN model Two Images were taken with a field

robot in a real environment.

A speed-up factor of 31 Knoll et al., 2019

DL model used with color

index-based segmentation

CenterNet One Different illumination conditions,

backgrounds, and growth stages

F1-score by the

CenterNet model = 0.953

Jin et al., 2021

A tiny version of the YOLO model

was proposed to reduce the

computation time

Modified tiny YOLO-v3,

YOLO-v3-tiny

Two Synthetic images were

generated

Mean average precision:

0.829

Gao et al., 2020

Various factors to develop weed

identification system along with

the significance of transfer

learning

AlexNet, VGG-F, VGG-VD-16,

Inception-v1, ResNet-50,

ResNet-101

Two A robotic platform was used to

take images on the field.

Accuracy by ResNet-101:

97.1+/-0.1%

Kounalakis et al., 2019

Two DL detectors were used

through a UAV

Faster RCNN and SSD Six Images were taken by a camera

mounted on a UAV

Mean IoU by Faster

RCNN: 0.85

Veeranampalayam

Sivakumar et al., 2020

An improved DL model was

proposed

Proposed Faster RCNN, KNN,

SVM, and YOLO-v3

Two A camera mounted on a UAV in

two agricultural fields

Overall average

identification accuracy:

94.7%

Khan et al., 2021

A CNN model was optimized for

real-time weed recognition

ResNet-18 Six Dataset images were collected

by a UAV

Overall accuracy: 94% De Camargo et al.,

2021

Three ML and DL-based

methods were used and

compared

SVM, YOLO-v3, and Mask

R-CNN

Two A multispectral camera mounted

on a drone was used

F1-score by YOLO and

RCNN models: 94%

Osorio et al., 2020

DL-based classification and

detection models were used

VGG-16, ResNet-50,

Inception-v3, YOLO-v3

Four Images were collected in a real

field environment

mAP: 54.3% Ahmad et al., 2021

A graph CNN-based model was

proposed to detect weeds

GCN-ResNet-101, AlexNet,

ResNet-101, VGG-16

Four The Weeds were collected in

three crops and a fourth was

obtained by combining the three

datasets.

Average recognition

accuracy: 98.15%

Jiang et al., 2020

A combination of DL and ML

methods was considered

Xception, Inception-ResNet,

VGNets, MobileNet, DenseNet,

SVM, XGBoost, and Logistic

Regression

Two The dataset was collected under

variable soil, color and

illumination conditions.

F1-score: 99.29% Espejo-Garcia et al.,

2020

the one obtained by default settings to show the effectiveness of
this research. The obtained mAP was validated by the stratified
k-fold cross-validation method. An overall methodology is also
presented in Figure 1.

Selection of the Dataset
The main criteria for selecting the dataset were the images should
be collected in a real agricultural environment considering
various features of the actual field. These characteristics include
natural background, occlusion, rotation, geographical/seasonal
changes in plants, and variable lighting conditions. As
the DeepWeeds dataset (Olsen et al., 2019) had all these
characteristics, it was selected for this research. These conditions
were important to consider because a higher accuracy attained
on this kind of dynamic dataset would prove the robustness
of the proposed work. The dataset contains 17,509 images
divided into eight classes of weeds, including one negative class

that has non focused plants, and the images were collected in
Northern Australia.

Dataset Division and Annotation
The DeepWeeds dataset was divided into three sub-datasets:
training (70%), validation (20%), and testing (10%). For models
like Single-shot Multibox Detector (SSD), RetinaNet, Faster
Region-based Convolutional Neural Network (RCNN), Region-
based Fully Convolutional Networks (RFCN), CenterNet,
and EfficientDet in TensorFlow object detection Application
Programming Interface (API), the dataset images were annotated
using an open-source image annotation tool called LabelImg. The
bounding box coordinates were obtained in Xmin, Xmax, Ymin,
and Ymax. The annotations were saved in XML format, which
was converted to CSV format and later to TF records (Saleem
et al., 2020a). Unlike TensorFlow models, images annotated
in XML format were then converted to TXT format to train
the YOLO-v4 model. To visualize the detected results within
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FIGURE 1 | Framework of this research.

a bounding box, a shortened name of each class was set to
label the images before training. For example, chinee apple was
replaced by C_App, lantana was replaced by Lntna, prickly acacia
was replaced by P_acacia, parthenium with P_nium, parkinsonia
with P_sonia, rubber vine with R_vine, siam weed with S_weed,
snakeweed with Snk_wd, and negative with Ngtv. A sample of
annotated images of each class is presented in Figure 2.

DL-Based Object Detectors
In this article, the performance of various versions of DL
models integrated with different feature extractors or backbone
models were analyzed on the selected dataset. These DL meta-
architectures are divided into two categories: single-stage and
two-stage neural networks. Among single-stage detectors, state-
of-the-art models like SSD (Liu et al., 2015), CenterNet (Duan
et al., 2019), EfficientDet (Tan et al., 2019), RetinaNet (Lin
et al., 2017), and YOLO-v4 (Bochkovskiy et al., 2020) were
included. These models were trained using TensorFlow (1 and
2) object detection API and the YOLO/Darknet neural network
framework. The two-stage DL models were also trained and
tested using TensorFlow Object Detection API 1. These networks
generally contain the first stage of the region proposal by

Region Proposal Network (RPN). While the second stage refines
the classification and localization of the proposals. The most
prominent among them were the Faster RCNN (Ren et al., 2015)
and RFCN (Dai et al., 2016) models.

Image Resizing Techniques
The second step of the proposedmethodwas the evaluation of the
best-obtained DL object detector using image resizing techniques
along with image interpolation methods. In this regard, the
input images were resized to a fixed shape or by using an
aspect ratio having minimum and maximum image dimensions
in pixels. For example, Faster RCNN used a shorter pixel value
of 600 and a longer one equal to 1,000 pixels as default values.
Furthermore, these image resizers were used with interpolation
techniques including bilinear (bilinear interpolation), bicubic
(cubic interpolation), area, and nearest neighbor (multivariate
interpolation for multiple dimensions).

Weight Initializers
The approach proposed in this article extensively considers
weight optimization in three ways. First, the effects of
initialization methods were analyzed depending on the type
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FIGURE 2 | Sample of the annotated dataset for each class.

of neural network layer/activation function. Three initialization
methods include truncated normal, variance scaling, and random
normal initializers. The truncated normal creates a tensor having
a truncated normal distribution, which is useful to avoid dead
neurons due to ReLU activation functions. It discards and
redraws values more than two SD from the mean. It is the
most recommended weight initialization technique for neural
network-based DL models.

When the ReLU activation function came after the Sigmoid
function, it was proven to successfully solve the problem of
vanishing gradients. Then a weight initialization technique was
proposed which balances the variance of the output layer with
the input layer (He et al., 2015) and is known as He initialization.
In the TensorFlow Object Detection API, the He initialization is
named as the variance scaling initializer. The last initializer is a
random normal initializer that is used to generate tensors with a
normal distribution.

Batch Normalization
Batch normalization was introduced to solve the problem of
internal covariate shift due to the change in the distribution of
the input of the neural network layer with the change in the
parameters of the previous layers (Ioffe and Szegedy, 2015). The
use of BN increases the training speed to get the convergence of
the model with a high learning rate.

Deep Learning Optimization Techniques
The next step of the research was weight optimization using
DL optimizers. Their hyperparameters were tuned with the help
of the random search method. Three optimizers were used for
this purpose, namely, Stochastic gradient descent (SGD) with
momentum, Root mean square propagation (RMSProp), and
Adaptive moment estimation (Adam). SGD (with momentum)

is one of the most commonly used DL optimizers to train
DL architectures for various applications (Saleem et al., 2020a)
due to its fast convergence, which is a result of the inclusion
of an exponentially weighted average of weights and bias
gradients (Ruder, 2016). On the other hand, RMSProp limits
the oscillations generated during the training by considering the
square of gradients of weights and biases. Furthermore, it allows
the algorithm to consider a larger learning rate (Hinton et al.,
2012). Adam optimizer is the combination of RMSProp and
momentum optimizers. It includes an exponentially decaying
average of the previous gradient with squared gradients (Kingma
and Ba, 2014).

Stratified k-Fold Cross-Validation
Technique
The DeepWeeds dataset has the class imbalance problem, for
example, the negative/non-weed class has a significantly higher
number of images as compared to all eight classes of weed.
Therefore, a stratified k-fold cross-validation technique was
selected to validate the final results. This method avoids biasness
while creating the folds of training/testing dataset and allows to
maintain the same proportion of each class sample in each fold,
as in the initial distribution (He and Ma, 2013). It was made sure
that the testing images in each fold were not the same.

Software and Training Specifications
The DL meta-architectures were trained and tested using
TensorFlow object detection API 1, 2, and YOLO/Darknet neural
network framework. All experiments were carried out using a
Graphical Processing Unit (NVIDIA GeForce GTX 1080 Ti)
with specifications: 11 GB memory, 1,582 MHz boost clock,
3,584 CUDA cores, and 484 GB/secmemory bandwidth. CuDNN
library was imported to increase the training speed.
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TABLE 2 | Hyperparameters of deep learning optimization algorithms with their respective DL architectures.

DL models DL optimizers Hyperparameters

Yolo-v4 SGD with momentum learning rate = 1 x 10−3, momentum = 0.9

RetinaNet learning rate = 3 x 10−4, momentum = 0.9

EfficientDet learning rate = 2 x 10−4, momentum = 0.9

RFCN ResNet-101 learning rate = 4 x 10−4, momentum = 0.9

Faster RCNN Inception-v2 learning rate = 2 x 10−4, momentum = 0.9

Faster RCNN ResNet-50 learning rate = 3 x 10−4, momentum = 0.9

SSD MobileNet RMSProp learning rate = 2 x 10−3, rho = 0.9, momentum = 0.9, epsilon = 1.0 x 10−2

SSD Inception-v2 learning rate = 2 x 10−4, rho = 0.9, momentum = 0.9, epsilon = 1.0 x 10−4

CenterNet ResNet-50 Adam learning rate = 1 x 10−3, epsilon = 1 x 10−7

Faster RCNN ResNet-101 SGD with momentum learning rate = 3 x 10−4, momentum = 0.9

Adam learning rate = 1 x 10−5, epsilon = 1 x 10−2

RMSProp learning rate = 3 x 10−4, rho = 0.9, momentum = 0.9, epsilon = 1.0

To leverage transfer learning, the pre-trained weights on the
COCO dataset were used. Depending on the DL architecture and
GPU limitations, batch sizes equal to 2, 4, 6, and 8 were the most
reasonable values to minimize the trade-off between mAP and
training time (Masters and Luschi, 2018). The learning rate and
the values of other hyperparameters were selected by the random
search technique (Bergstra and Bengio, 2012) as presented in
Table 2.

RESULTS AND DISCUSSION

This article aims to identify and localize eight classes of weeds
using DL architectures. In this regard, seven DL architectures
were trained with different feature extractors/backbone models.
The performance of these architectures is evaluated in terms
of mAP, which is a commonly used performance metric for
object detection tasks. Equation (1) presents the formula to
evaluate mAP.

mAP =

∑
n

i = 1
APi

n
(1)

where AP is the average precision calculated for each class and
accessed by the 11-point interpolated AP method and n is the
number of classes. The AP is defined as the average precision
across all unique recall levels. Therefore, the precision at various
recall values is first evaluated. Then, interpolated precision is
calculated as the maximum precision for a certain recall level.
Further details of this performance metric can be found in
(Saleem et al., 2020a).

This section is divided into two steps. First, the weed detection
results obtained by the single- and two-stage DL architectures
are provided along with their class-wise performance analysis
and loss plots. Secondly, the effects of various image resizing
techniques on the best-obtained DL model are presented.
Furthermore, the weights were optimized by leveraging
initialization techniques along with batch normalization and
DL optimizers. Finally, a significant improvement in the mAP
of the optimized DL architecture is discussed compared to

its default settings to demonstrate the effectiveness of the
proposed approach.

Step 1: Selection of the Best-Suited DL
Architecture
Performance of Single-Stage Neural Networks

YOLO-v4
This DL architecture has the backbone model CSPDarknet-53
having input image size 608 x 608. The SGD with momentum
optimizer was used to train the model. Various batch sizes
were tested and eight was found to be the most feasible to
reduce the trade-off between accuracy and training time as
minimum as possible. The plot in Figure 3A shows that the
model started to converge after 48K iterations, and the model
training took around 12 h. The final average loss value was
found to be 2.83%. A few classes of weeds were successfully
identified, including parthenium, rubber vine, and siam weed,
with an average precision of more than 90%. Therefore, their
distinct characteristics were successfully extracted. None of the
classes attained <50% AP which shows the significance of
this model to detect several classes of weed. An example of
the three classes which achieved the highest AP is presented
in Figure 3B. Furthermore, some of the images of classes
such as lantana and snakeweed were undetected, as shown
in Figure 3C. The mAP of all classes was calculated to
be 79.68% as shown in Table 3. Each prediction box is
related to the class label with a confidence score of 0 to
100% (0 to 1).

SSD
A Single-shot MultiBox detector was trained with different
backbone models to extract the features of weed classes.
The feature extractors like Inception v2 and MobileNet from
TensorFlow 1 API were considered. The fixed input image resizer
was applied with 300 × 300 dimensions. The model was trained
with an RMSProp optimizer, as the momentum optimizer was
unable to converge the training. It took around 11 h to complete
the training in 70K steps for the Inception model, and the batch
size was equal to 8. However, the MobileNet model took around
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FIGURE 3 | Performance of the You look only Once (YOLO)-v4 model: (A) loss plot; (B) true positives for parthenium, rubber vine and siam weed; (C) examples of

undetected images for lantana and snake weed classes.

FIGURE 4 | Performance of the single-shot multibox detector (SSD) architecture: (A) total loss with the Inception model; (B) total loss with the MobileNet model; (C)

examples of a false-positive result for the negative class with the Inception-v2 model; (D) example of false positives for the eight classes of weeds with the

MobileNet model. TP: true positive, FP: false positive.
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TABLE 3 | Summary of the weed detection results of the DL single-stage and two-stage object detectors in terms of the average precision (in %) of each class.

Annotated weed and

negative classes

DL architectures with backbone models

Single-stage networks Two-stage networks

Yolo-v4

CSPDarknet-53

SSD EfficientDet

EfficientNet

CenterNet

ResNet-50

RFCN

ResNet-101

Faster RCNN

Inception-

v2

MobileNet ResNet-50

(RetinaNet)

Inception-

v2

ResNet-50 ResNet-101

C_App 67.4 26.25 18.83 45.31 43.97 26.34 34.29 100 98.21 99.87

Lntna 66.61 62.22 31.65 9.09 28.79 9.09 100 96.83 99.45 82.46

P_acacia 73.87 34.45 0.75 9.09 9.67 1.82 56.5 28.64 94.08 70.06

P_nium 93.48 54.16 26.36 17.88 33.84 23.85 38.83 99.94 99.94 99.33

P_sonia 79.51 53.93 30.92 17.05 44.23 35.77 99.7 99.24 99.89 88.85

R_vine 96.33 60.44 76.99 27.27 44.18 35.88 92.9 99.77 100 99.84

S_weed 98.6 66.06 26.35 54.55 63.29 53.31 41.61 82.49 100 99.85

Snk_wd 58.19 62.4 21.36 14.91 34.79 33.57 0.55 4.17 15.38 86.17

Ngtv 83.17 13.2 81.72 0.11 26.57 26.61 31.18 51.28 78.13 62.35

mAP (%) 79.68 48.12 34.99 21.69 36.59 27.36 55.06 73.59 87.23 87.64

Bold values shows the highest mAP to select the best DL architecture.

5 h to converge the training in 60K steps, which was the fastest
among all other models due to its fewer parameters (Huang
et al., 2016). The total loss was fluctuated between 4 to 6% in
the case of the Inception-v2 model (Figure 4A) while it was 3
to 6% for the MobileNet model (Figure 4B). From the results,
it can be concluded that none of the weed classes was able to
achieve an AP of more than 90%, with the SSD model trained
with Inception and MobileNet feature extractors. However, the
siam weed class achieved the highest AP of 66.06% with the
Inception model, and the negative class achieved the lowest AP
of 13.2%. The reason for the false detection of the negative
class was confusion with three classes, including snakeweed, siam
weed, and lantana, as presented in Figure 4C. The negative class
worked well with the MobileNet model, while the prickly acacia
was almost undetected, as its AP was only 0.75%. All weed classes
were confused with the negative class when the feature extractor
wasMobileNet as shown in Figure 4D. It resulted in a lowermAP
of approximately 35%, as shown in Table 3.

RetinaNet
In this research, three DL object detectors from TensorFlow
object detection API 2 were also tested. The first model was
the RetinaNet, which had an SSD model as a base architecture,
and ResNet-50 was used as a feature extractor. Although other
versions of ResNet (with 101 and 152 layers) were also available
in the API, due to GPU memory limitations, only ResNet-50 was
feasible to train and test on the DeepWeeds dataset. An input
image fixed shape resizer of 640 × 640 dimensions was used
with the SGD optimizer. The batch size equal to 4 was found
to be a reasonable value. With all the described settings, the
model took around 14 h. The loss plot to understand the training
performance of the model is presented in Figure 5A. In almost
60K iterations, the model settled to its final loss value with a small
fluctuation between 0.55 and 0.75%. None of the classes achieved
a satisfactory AP, and the siam weed class achieved the highest
AP of 54.55% among all other classes. Three classes including

lantana, prickly acacia, and negative achieved the lowest AP of
9.09, 9.09, and 0.11% respectively. Most of the testing images
belonging to the negative class did not detect and the remaining
images resulted in parthenium and siam weed as shown in
Figure 5B.

EfficientDet
Another single-stage DL object detector was utilized for this
study named EfficientDet. This model used the aspect ratio
resizer technique with dimension 512 × 512. The other versions
of the model couldn’t be trained due to GPU limitations. The
optimum batch size was 4 with a momentum optimizer, and this
setting required 11.5 h to get convergence in the training to 70K
iterations. According to the loss plot presented in Figure 6A, the
model received a final loss ranging between 0.25 and 0.45%. The
model also detected the siamweed with the highest AP of 63.29%.
However, the prickly acacia got the lowest average precision
among all seven other classes of weeds. Just like the other single-
stage detectors, this DL model also gave false positives for the
seven classes in terms of negative class as shown in Figure 6B.
This model could also not detect any class of weeds with a
higher AP.

CenterNet
The last model among single-stage DL object detectors was
CenterNet which had various versions in TensorFlow API
including Hourglass, ResNet-101, and MobileNet-v2. Among
them, only 50 layered ResNet feature extractor was able to detect
some of the weed images with 512 x 512. However, most of
the images of the eight classes of weeds could not be detected
well. Moreover, the SGD with momentum optimizer failed to
detect the testing images with the CenterNetmodel. Therefore, an
Adam optimizer was used to train the model, and the batch size
was set to 6. The model got converged after 60k iterations and it
took around 12.5 h to train the model. The final loss ranged from
approximately 1.5 to 2.5%, as shown in Figure 7A. This model
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FIGURE 5 | Performance of RetinaNet: (A) total loss plot; (B) examples of false-positive results for the negative class.

also achieved more than 50% average precision for the siam weed
class and almost failed to detect the prickly acacia class having
only 1.82% AP. However, the chinee apple and the lantana were
confused with snakeweed as presented in Figure 7B.

Performance of Two-Stage Networks

RFCN
This article also considers two-stage DL object detectors like
RFCN and Faster RCNN. Both the RFCN and Faster RCNN
models were trained to 60k iteration steps with input aspect
ratio, minimum pixel size 600, and maximum 1,000. ResNet-
101 was used as the backbone model and SGD with momentum
optimizer was used to train the RFCN model with batch size 2.
It took 10 h to get the convergence in 60K iterations. The total
loss was reduced to almost 1.5% as shown in Figure 8A. The
model was successful to detect three classes of weeds (lantana,
parkinsonia, and rubber vine). However, classes such as negative
and snakeweed were confused with the other classes, as shown in
Figures 8B,C. Overall, five classes of weeds achieved an average
precision of <50%.

Faster RCNN
At last, the Faster RCNN model was trained with several
feature extractors. The backbone models that included Inception

ResNet, ResNet, and Inception were available along with
their trained weights on the COCO dataset in TensorFlow
object detection API 1. Three models, including Inception-
v2, ResNet-50, and ResNet-101, were able to train with the
available graphics memory. The total training loss with the
Inception-v2 model was settled at almost 1.5% (as shown in
Figure 9A). However, models like ResNet-50 and ResNet-101
got their convergence having fluctuation between 0 and 1%, as
shown in Figures 9B,C, respectively. Furthermore, it can also
be observed that the Faster RCNN model with the ResNet-
101 model converged earlier than the ResNet-50 model. All
versions of the Faster RCNN model had an input with the
aspect ratio image resizing technique having 600 minimum and
1,000 maximum pixel dimensions, and the batch size was set
to 2. Furthermore, the momentum was used to optimize the
weights in this step of the proposed study; the models were
trained up to 60K iteration steps. Among these three backbone
models, the Inception model trained in the shortest time of
around 8.5 h. However, ResNet-50 and ResNet-101 required 9
and 10 h, respectively.

For concluding the detection results, the Inception model was
successful to detect five classes of weed. However, the prickly
acacia and snakeweed obtained a low average precision. A few
examples of both classes with their false-negative results are
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FIGURE 6 | Performance of the EfficientDet model; (A) total loss plots; (B) false positives of different classes with negative class.

shown in Figures 9D,E. The ResNet-50 model detected seven
classes of weeds with high AP (more than 90%) as shown
in Figure 9F. The negative classes also achieved an acceptable
percentage of AP as shown in Table 3. However, the snakeweed
class suffered from lower precision, as it was confused with the
chinee apple, lantana, and siam weed classes.

Faster RCNN ResNet-101 was found to be the most suitable
DL architecture for this study due to its highest mAP compared
to all other DL architectures. This model succeeded to detect
four classes of weed with more than 90% average precision;
three classes achieved more than 80% AP. This model achieved
more than 50% AP for negative; the prickly acacia achieved the
lowest AP of almost 70% among all the other classes of weeds.
Few samples of images detected by the Faster RCNN ResNet-
101 model are presented in Figure 9G. From the results, it can
be understood that the model was successful in extracting the
unique features of several classes of weeds, but could not correctly
extract the features of classes such as negative and prickly acacia.

Therefore, the overall performance of this model was optimized
in the second step of the proposed research. It further improved
the mAP along with an enhancement in the average precision of
individual classes.

Step-2: Optimization of the Faster RCNN
ResNet-101 Model
The Faster RCNN model trained with the ResNet-101 feature
extractor achieved the highest mAP. Therefore, the rest of
the steps of the proposed work were applied to this DL
architecture and the effects of image resizing techniques, weight
initializers, batch normalization, andDL optimization algorithms
were studied.

Effects of Image Resizing Techniques
This research evaluated the effects of two image resizing
techniques, including fixed shape and aspect ratio, along with
four image interpolation methods such as bilinear, bicubic, area,
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FIGURE 7 | Performance of the CenterNet model: (A) total loss; (B) false-positive results for the chinee apple, and lantana classes.

FIGURE 8 | Performance of the Region-based fully convolutional network (RFCN) model: (A) total loss plot; (B) false-positive results for the negative class; (C)

false-positive results for the snakeweed class.

and nearest neighbor. First, the default settings of the Faster
RCNN model were considered and tested using the model
with the hyperparameters described in an earlier section. Later,

the best image resizing method was found considering bilinear
interpolation as the default method. It led to the application
of three other interpolation methods. An overall mAP along
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FIGURE 9 | Faster Region-base fully convolutional neural network (RCNN) performance with various versions of DL models: (A) total loss plot for Inception-v2: (B)

total loss plot for ResNet-50; (C) total loss plot for ResNet-101; (D) false positives of prickly acacia with Inception-v2; (E) false positives of snake weed classes with

Inception-v2; (F) true positives with ResNet-50; (G) true positives with ResNet-101.

with class-wise precision of each weed class was evaluated.
Furthermore, various types of training losses are also presented
to show the dependence of image resizers/interpolators on the
performance of the DL model. The most suitable technique
was selected for the next phase of the research. In this regard,
the following observations are taken from this stage of the
proposed methodology.

• In the Faster RCNN paper (Ren et al., 2015), the aspect
ratio image resizer was selected as the default technique with
minimum and maximum pixel dimensions equal to 600 and
1,000, respectively, and considered bilinear interpolation as
the default method.

• The mAP of the default resizer was found to be 87.64%, as
shown in Table 3.

• Although, the Faster RCNN model achieved good detection
results. However, there was room to further enhance
the performance of the neural network with other
resizing methods.

• Later, the fixed-shape resizer method was applied. This
method was first tested with bilinear interpolation, which
provided a comparatively lower mAP. Furthermore, three
interpolation methods like bicubic, area, and nearest neighbor
with fixed image resizer attained lower mean average precision
compared to the default technique, which was the aspect ratio
with bilinear interpolation.

• Therefore, the aspect ratio resizer was selected as the best
image resizing method for training the Faster RCNN ResNet-
101 model. Here, the effectiveness of the aspect ratio resizing
technique has also been validated through the experiments
presented in this article, as it was also applied in the original
Faster RCNN paper (Ren et al., 2015).

• The bilinear interpolation takes the closest 2 x 2 neighborhood
of known pixel values and calculates the weighted average of
4 pixels to get the resultant interpolated value (Malik et al.,
2017). Therefore, the pixels of weed images were interpolated
to get sharper images to be provided as an input to the Faster
RCNNmodel.
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TABLE 4 | Summary of results and conclusions from each step of the proposed methodology.

Experiment/step

of the analysis

DL models Training details Model assessment on training and

testing datasets

Model performance analysis Link to

training

code
(Image

resizers/interpolators/

initializers/optimizers)

Total loss

(%)

Training

time (h)

mAP (%)

Training with

default settings

Yolo-v4 FS (608 x 608) 2.83 12 79.68 Few of the weed classes were successfully

identified

GitHub

SSD Inception-v2 FS (300 x 300) 4–6 11 48.12 None of the weed classes was succeeded in

achieving an AP of more than 90%

SSD MobileNet-v2 FS (300 x 300) 3–6 5 34.99 Fastest model convergence, but

unsatisfactory testing outcomes

SSD ResNet-50

(RetinaNet)

FS (640 x 640) 0.55–0.75 14 21.69 Achieved the lowest mAP among all the DL

models

EfficientDet EfficientNet AR (min: 512, max: 512) 0.25–0.45 11.5 36.59 Eight classes attained AP of <50%

CenterNet ResNet-50 AR (min: 512, max: 512) 1.5–2.5 12.5 27.36 None of the classes achieved a satisfactory

AP

RFCN ResNet-101 AR (min: 600, max: 1,000) 1.50 10 55.06 The model was successful to detect three

classes of weeds

Faster RCNN

Inception-v2

AR (min: 600, max: 1,000) 1.50 8.5 73.59 The model was successful to detect five

classes of weed

Faster RCNN

ResNet-50

AR (min: 600, max: 1,000) 0–1 9 87.23 Seven classes of weeds with high AP (more

than 90%)

Faster RCNN

ResNet-101

AR (min: 600, max: 1,000) 0–1 10 87.64 The most suitable DL architecture for this

study due to its highest mean average

precision compared to all other DL

architectures.

Effects of image

resizers/

interpolators

Faster RCNN

ResNet-101

AR with bicubic 0–1.4 10 81.33 Could not contribute to provide better

detection results

GitHub

AR with area 0–0.87 10 91.55 Found as the best interpolator

AR with NN 0–0.98 10 86.93 Almost similar performance to the bilinear

method

FS with bilinear 0–0.92 9.5 85.09 Provided a comparatively lower mAP

FS with bicubic 0–1.2 9.5 82.38 Attained a low mAP just like with AR

FS with area 0–1.5 9.5 85.68 Area interpolator did not work with fixed

shape resizer

FS with NN 0–1.4 9.5 82.64 Attained low AP of the weed classes

Effects of

initializers and

batch

normalization

Tr (std: 0.01); SV (sf: 1.0,

nd: true, mode: Fan_avg);

RN (std: 0.01)

0–0.87 10 91.55 Very small values of std should not be taken

close to zero; the normal distribution with an

average of input and output units in the

weight tensor should be considered

GitHub

BN (decay: 0.99, eps: 0.01) 0–0.82 8.5 93.37 An improvement of 1.82% was obtained with

BN with a fast training convergence

Effects of

optimizers

SGD with momentum 0–0.87 8.5 93.37 The default optimizer attained a high AP

except for the negative clas

GitHub

Adam 0–0.94 7.75 91.56 Faster convergence with adaptive algorithm

RMSProp 0–0.86 7.75 93.44 The best-obtained DL optimizer, slightly

improved the mAP without BN

FS, Fixed-shape resizer; AR, Aspect ratio resizer; NN, Nearest neighbor; Tr, Truncated normal initializer; std, standard deviation; SV, Scaling variance initializer; sf, scaling factor; nd,

normal distribution; RN, random normal initializer; BN, Batch normalization; eps, epsilon.

• Subsequently, three interpolation methods were also
applied to the aspect ratio resizer. The bicubic method
could not contribute to the improvement of mAP or
detection results.

• The nearest neighbor’s performance was almost
similar to the bilinear method. However, the ’area’

interpolation method provided significantly better
training performance than the Faster RCNN model.
It resulted in a higher mAP of 91.55% as presented
in Table 4.

• Moreover, the average precision of the individual five
classes was improved by a significant margin; these classes
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include lantana, prickly acacia, parkinsonia, snakeweed,
and negative.

• The area interpolation method reduces noise from the images.
The final images fed into the network contributed to better
feature extraction of the weed classes.

• It was also noticed that the input provided to the Faster
RCNN ResNet-101 model with aspect ratio resizer with
area interpolation method achieved an improvement in both
training and testing performance. This has been shown
graphically by various losses that constitute the total training
loss. The losses like RPN (Region Proposal Network) and
final classifier losses are presented by RPN objectness loss
(R_obj_loss), RPN localization loss (R_loc_loss), classification
loss (Class_loss), and localization loss (Loc_loss) as shown
in Figure 10. It is important to consider these losses in the
analysis because this research is dedicated to performing the
weed detection task, which contains both classification and
localization operations.

• From Figure 10, it can be concluded that the losses related
to the localization and classification tasks were reduced when
the area interpolation method was applied. For example,
the localization loss (Loc_loss) was settled with a small
fluctuation between 0 and 0.52% for the bilinear interpolation
method, which got reduced to 0–0.45%. Similarly, the
classification loss (Class_loss) was 0–0.35% and reduced to 0–
0.3%. Furthermore, RPN losses were improved with the area
interpolation method.

• Since both the localization and classification losses were
reduced in the region proposal and classifier stages of the
network, therefore, total losses were also reduced from 0–1%
to 0–0.87%. Hence, a small reduction in the model’s losses
produced a considerable effect on weed detection results.

In summary, an improvement in various losses along with
AP (of individual classes) and mAP indicates that the area
interpolation method with the aspect ratio resizer can also
be applied to the Faster RCNN model for other relevant
datasets. An improvement in detection output proves that the
scientific community should focus on further advances in image
resizing/interpolation techniques using CNN (Islam et al., 2018).

Weights Optimization

Initialization Techniques
The previous studies have been performed several agricultural
tasks by using various advancements in DL including training
techniques, augmentation methods, and modifying particular
types of hidden convolutional layers of neural networks. In
contrast, this research studied the effects of weight optimization
methods on the performance of DL models.

An optimized version of the Faster RCNN model is presented
by analyzing the effects of weight initializers, batch normalization
(BN), and DL optimizers. Firstly, the initialization techniques
were studied since they are important for a neural network to
prevent vanishing gradients, which is essential to get convergence
of the models (Narkhede et al., 2021). It is vital to initialize the
weights with neither too large nor too small standard deviation,
as both conditions fail the network to learn the features properly.

Three weight initializers were studied, including truncated
normal, scaling variance, and random normal initializers,
according to the names presented in the TensorFlow object
detection API. The optimum selection of the weight initializer
parameters for the Faster RCNN model and its effects are
discussed as follows.

• The truncated normal initializer is the most recommended
weight initializing technique for a convolutional neural
network due to the use of the ReLU activation function in
almost all the networks. The reason is its vanishing gradient
solving capability. This initializer is very useful for eliminating
dead neurons.

• The truncated normal initializer was used to avoid any value
beyond twice the standard deviation. Different values of the
standard deviation of the truncated initializer affected the
overall model’s performance. Initially, the Faster RCNNmodel
was trained with unit standard deviation, but it was an
unsuitable value to converge the training. It can be concluded
that the higher the value of standard deviation and the closer
to 1, the more the training time and the lower mAP would
be obtained.

• Therefore, this initializer was used with a standard deviation
equal to 0.01 and a zero mean value (Ren et al., 2015). When
selecting a lower standard deviation value, it should not be
taken very close to zero because the mAP obtained with a
standard deviation equal to 0.001 was almost 8% less than the
mAP with the selected SD (0.01).

• Then, the random normal initializer was also tested that
attained a mAP of 89.07%.

• Later, a scaling variance initializer with a fully convolutional
layer (FC) was used. It also contains a few tunable parameters
including scaling factor, normal distribution, and three modes
of operation depending on input and output units in the
weight tensor.

• With the combination of scaling factor 2 without normal
distribution and considering only input units in the weight
tensor (Fan_In), a considerably good performance in terms of
losses and a mAP of 85.47% was observed.

• Furthermore, the scaling factor 1.0 considering the normal
distribution of the Fan_Avg mode (which contains an average
of the number of input and output units in the weight tensor)
was found to be the most appropriate setting to get the best
detection results in terms of mAP. Table 4 presents the mAP
(91.55%) having parameter values of the weight initializer
described in this section with the aspect ratio resizer by the
area interpolation method.

Batch Normalization
The next step was to study the effects of batch normalization
(BN) on the performance of the Faster RCNN ResNet-101
model. Training/testing profiles were evaluated in the absence
and presence of BN. The following observations were made:

• First, the model was trained with default values of decay
and epsilon of 0.99 and 0.001, respectively. The training
performance of the Faster RCNN model was improved in
terms of a total loss of 0.85%. The iterations were reduced
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FIGURE 10 | Training plots for bilinear and area interpolation methods with aspect ratio image resizer (iteration steps from 50K and onwards are shown, when the

model got training convergence).
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to only 47K steps from 50K iterations. It shows the fast
convergence of the DL architecture with the application of BN
(Santurkar et al., 2018).

• However, the mAP was almost equal as obtained in the
previous step of weight initialization with 91.34%.

• Next, the decay and epsilon were tuned, and it was found that
a higher value of epsilon improved the overall training/testing
performance of the model. For instance, at an epsilon value
of 0.01 and default decay value, the mAP was improved with
a margin of 1.82% as compared to the former stage of the
weight initialization. The total training loss was also reduced
to almost 0.82%.

• AP of individual classes was also improved including chinee
apple, prickly acacia, parkinsonia, and siam weed with a
difference of 22.85, 13.13, 8.99, and 9.39%, respectively. On
the other hand, two classes such as lantana and negative
(non-weed) attained a lower AP with BN.

• Otherwise, a smaller epsilon (0.0001) degraded the
performance of the Faster RCNN model with only 76.83%
of mAP. Similarly, the smaller decay could not contribute to
improving the mAP and attained 88.46% with 0.5 decay value.

Deep Learning Optimizers
The final step of the study presented in this article is
comprised of the optimization of weights by three DL optimizers.
Hyperparameters were selected using the random search method
(Bergstra and Bengio, 2012) as presented in Table 2. The SGD
with momentum was the default optimizer for training the Faster
RCNN ResNet-101 model. Subsequently, Adam and RMSProp
were used to optimize the weights of the model. A class-wise
performance of the DL optimizers is presented in Figure 11. The
effects of all three optimizers are discussed below.

• First, the DL optimizers were analyzed with and without BN.
In the presence of BN, the SGD with momentum and Adam
optimizers improved the performance with 1.82 and 1.05% in
mAP, respectively, compared to the results obtained without
BN. However, RMSProp got a reduction of 0.5% in mAP
with BN.

• The RMSProp attained the highest mAP of 93.44% in the
absence of BN. However, the SGD optimizer attained a
comparable mAP of 93.37%with BN. Due to a slight difference
of mAP by RMSProp (without BN), it was selected as the best
DL optimizer. Moreover, RMSProp attained a much higher
AP of classes including lantana and negative (non-weed), as
shown in Figure 11.

• In terms of the number of training steps, the Faster RCNN
model required a lesser number of steps with BN. For example,
the SGD optimizer required around 47K steps to obtain the
model convergence. However, adaptive optimizers including
Adam and RMSProp required around 44K steps and showed a
faster training convergence (Zhou et al., 2020).

• Few classes attained the same/high average precision with the
three DL optimizers, such as parthenium and rubber vine. It
suggests that these classes of weeds should not be addressed in
future studies.

• It is also noticed that all classes achieved an AP of more
than 90% except for chinee apple, when the model was
trained with RMSProp. Therefore, it can be concluded that
the features of this particular class of weed were not extracted
through RMSProp.

• The effectiveness of the fine-tuned adaptive method
like RMSProp has been shown from these experiments.
Furthermore, the significance of the random search method
(Bergstra and Bengio, 2012) has also been evidenced for not
only the learning rate but also for the other hyperparameters,
including decay factor, momentum, and epsilon (presented in
Table 2).

• The stratified k-fold cross-validation technique was used to
further confirm the final mAP of 93.44%. In this regard, the
dataset images were redistributed in five folds (fold1-fold5).
The initial distribution of the dataset was considered the
first fold (fold1). The optimized Faster RCNN ResNet-101
model was retrained with the rest of the four-folds. A small
difference in mAP was observed from 0.14 to 0.46%, and
attained 93.30, 93.84, 93.71, and 92.98% using fold2, fold3,
fold4, and fold5, respectively.

To conclude, an overall summary of all the experiments
performed for this research is presented in Table 4, including
the model assessment on training/testing datasets and relevant
comments indicating the significance of each step taken.

CONCLUSIONS AND FUTURE
RECOMMENDATIONS

This article presents a deep learning-based approach consisting
of five steps for the detection of weeds. First, an open-source
dataset called DeepWeeds was selected due to its dynamic nature,
which considered various practical aspects of an agricultural
field. Next, the performance of various single-stage and two-
stage neural networks was evaluated. After an in-depth analysis
of the DL architectures, Faster RCNN trained with the ResNet-
101 feature extractor model achieved the highest mAP of 87.64%.
Later, several attempts were made to improve the class-wise
average precision of the best-obtained DL model. Formerly, the
effects of image resizing techniques and image interpolation
methods were studied. The aspect ratio resizer with the area
interpolation method attained the highest mAP of 91.55% which
was 3.91% better than the default settings. Furthermore, the
training performance of the Faster RCNN model was also
enhanced in terms of various classification and localization
losses. Next, weight-optimization techniques were thoroughly
studied. In this regard, the effects of weight initializers, including
truncated normal, scaling variance, and random normal, were
evaluated. The performance of the model was also analyzed with
batch normalization and an enhancement of 1.82% in mAP was
observed. Finally, the adaptive DL optimizers including Adam
and RMSProp were used to retrain the Faster RCNN model. The
optimal selection of hyperparameters of the RMSProp optimizer
slightly improved the mAP by 93.44%. Hence, an improvement
of 5.8% mAP in the best-obtained DL architecture was achieved
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FIGURE 11 | Average precision of each class by the Faster RCNN ResNet-101 model trained with three DL optimizers in the absence and presence of

batch normalization.

as compared to the default settings and it proved the effectiveness
of the weed detection pipeline presented in this article.

The methodology presented in this research would be a
considerable step toward precision agriculture due to a significant
improvement in a complex agricultural task such as weed
identification. Furthermore, this research also provides various
future directions to further enhance the agricultural field of
research by DL:

• The chinee apple class attained the lowest average precision
with the optimized settings of the Faster RCNN model.
Therefore, future research could include the modification
of the Faster RCNN model to extract the unique feature
of the chinee apple and maintain the average precision of
other weed classes. For example, the Faster RCNN ResNet-
101 contains a region proposal network and a classification
model (ResNet-101). The ResNet-101 has several hidden layers
to extract the distinct features of the objects. Therefore, an
in-depth analysis of various hyperparameters of ResNet-101
could be performed including the number of hidden layers,
filter size, number of strides, and using the latest advancement
in activation functions.

• This research could be useful for other agricultural
applications, including detection of plant diseases,
classification of agricultural land cover, recognition of
fruits, etc. After analyzing the performance of the single-stage
and two-stage DL object detectors, the proposed DL-based
study can be treated as an intermediate step before proposing
any modification in the DL architecture.

• The weights obtained by the final optimized Faster RCNN
model can be reused as transfer learning to other weed-
related datasets.

• This research was dedicated to improving the final mAP of the
Faster RCNN ResNet-101 model. Future research could also
attempt to analyze/reduce the computation/training time and
real-time detection of weeds.

• Other advanced DL optimizers can be used for upcoming
studies such as Ranger optimizer.
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