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Harvest index (HI), the ratio of harvested seed weight to total aboveground biomass
weight, is an economically critical value reflecting the convergence of complex
agronomic traits. HI values in rapeseed (Brassica napus) remain much lower than in
other major crops, and the underlying regulatory network is largely unknown. In this
study, we performed mRNA and small RNA sequencing to reveal the mechanisms
shaping HI in B. napus during the seed-filling stage. A total of 8,410 differentially
expressed genes (DEGs) between high-HI and low-HI accessions in four tissues
(silique pericarp, seed, leaves, and stem) were identified. Combining with co-expression
network, 72 gene modules were identified, and a key gene BnaSTY46 was found to
participate in retarded establishment of photosynthetic capacity to influence HI. Further
research found that the genes involved in circadian rhythms and response to stimulus
may play important roles in HI and that their transcript levels were modulated by
differentially expressed microRNAs (DEMs), and we identified 903 microRNAs (miRNAs),
including 46 known miRNAs and 857 novel miRNAs. Furthermore, transporter activity-
related genes were critical to enhancing HI in good cultivation environments. Of 903
miRNAs, we found that the bna-miR396–Bna.A06SRp34a/Bna.A01EMB3119 pair may
control the seed development and the accumulation of storage compounds, thus
contributing to higher HI. Our findings uncovered the underlying complex regulatory
network behind HI and offer potential approaches to rapeseed improvement.

Keywords: harvest index, transcriptome, miRNA, regulatory network, Brassica napus

INTRODUCTION

Harvest index (HI), formerly known as coefficient of economics, refers to the ratio of the economic
yield to the biological yield of the crop at harvest (Donald, 1962), which can also be understood
as the ratio of seeds harvested from a plant to all the above-ground biomass produced. HI thus
reflects the distribution of crop assimilates products in economic yield organs and vegetative
organs, and also indicates the patency of crop photosynthate transport from “source” organs
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to “sink” organs (Bennett et al., 2011, 2012), and HI has clear
agronomic implications. Since the first Green Revolution, the
increase in the yield of major crops such as rice (Oryza sativa),
wheat (Triticum aestivum), and barley (Hordeum vulgare) has
been mainly due to the increase in the HI (Austin et al., 1980).
The allotetraploid crop rapeseed (Brassica napus) is cultivated
worldwide for oil, which is extracted from its oil-rich seeds. Luo
et al. (2015) examined the B. napus genetic architecture of HI
using 35,791 high-throughput single nucleotide polymorphisms
(SNPs) genotyped by the Illumina Brassica SNP60 Bead Chip
in an association panel with 155 accessions, and a total of
nine SNPs on the C genome were identified to be significantly
associated with HI; they explained 3.42% of the phenotypic
variance in HI. Based on Brassica SNP60 Bead Chip, a natural
population (NP) containing 520 materials was used to perform
genome-wide association study (GWAS) for traits related to
HI. Combined with transcriptomic sequencing (RNA-seq) of
materials with high and low HI, candidate genes involved in
photosynthesis, inflorescence, and silique development were
identified (Lu et al., 2016). In addition, in B. napus, it
was also found that the BnaA02.TB1 (BnaA02g14010D) that
regulates lateral branch development and the BnaA02.GW2
(BnaA02g18890D) that regulates grain weight may be related
to HI (Chao et al., 2019); BnaDwf.C9 (BnaC09g20450D) and
BnaC04.BIL1 (BnaC04g41660D) can affect HI by regulating plant
height (Wang X. D. et al., 2020; Yang et al., 2021). These previous
studies are of great worth for helping us to elucidate the genetic
mechanism of HI in B. napus. As seed yield is part of the HI
numerator, HI increases with grain yield and has, therefore,
received widespread attention in breeding programs (Hay, 1995;
Sadras and Lawson, 2011; Beche et al., 2014). Unfortunately,
the HI of rapeseed remains much lower than that of other
major crops, such as rice, wheat, maize (Zea mays), and soybean
(Glycine max) (Hay, 1995; Unkovich et al., 2010). The HI for
rapeseed ranges from 0.05 to 0.42 (Lu et al., 2016), which is far
below the theoretical biological limit for HI of ∼0.60 in grain
crops (Foulkes et al., 2009), indicating the potential to further
increase HI. Therefore, improving HI in rapeseed varieties is a
major objective for breeders.

Green plant tissues such as leaves and silique pericarps (SP)
constitute “source” organs that are photosynthetically active and
provide photoassimilates to “sink” organs like grains and seeds
via translocation (designated here as “flow”); HI reflects flow and
the balance between source tissues and sink organs (Unkovich
et al., 2010). In B. napus, flow is thought to be the limiting factor
in the accumulation of assimilates in seeds (Shen et al., 2010;
Fu and Zhou, 2013; Luo et al., 2015). Unlike many other crops
in which leaves provide the main source tissue throughout seed
development, in B. napus, SP take over the role of source tissue
from senescent leaves, providing nutrients to sustain the growth
of the seed after silique formation (Diepenbrock, 2000; Bennett
et al., 2011). Several critical sugar transporter gene families have
been identified in B. napus, such as SUCROSE TRANSPORTER
(BnSUC), SUGARS WILL EVENTUALLY BE EXPORTED
TRANSPORTER (BnSWEET), and MONOSACCHARIDE
TRANSPORTER (BnMST); transporters encoded by these
genes may influence HI positively during the development

of siliques by supplying more sugars to the seeds (Jian et al.,
2016; Zhang et al., 2020). In addition, the Arabidopsis thaliana
AMINO ACID PERMEASE 2 (AAP2) gene encodes an amino
acid co-transporter that transports amino acids to the embryo
via the seed pod vascular system during the seed-filling phase
(Hirner et al., 1998), suggesting that SP may supply not only
sugars but also other compounds. However, the underlying
molecular regulatory mechanism behind the translocation of
photoassimilates and other nutrients during the seed-filling
phase is poorly understood in B. napus.

Harvest index reflects the relative allocation of resources to
vegetative and reproductive organs and can be influenced by
various environmental factors, including water supply (Gajića
et al., 2018), temperature stress (Prasad et al., 2006), and
nitrogen (N) fertilization (Amanullah and Shah, 2010). For
crop species such as maize, shortening the vegetative growth
period reduces the accumulation of photosynthetic products in
vegetative organs and raises HI (Hütsch and Schubert, 2017). One
method employed to modulate the length of the vegetative period
relies on the genetic manipulation of photoperiod sensitivity (Li
et al., 2020). In addition, enhancing crop adaptability to external
stimuli can also result in significant increases in harvestable
products and thus contribute to a higher HI. For example, the
rice basic leucine zipper transcription factor bZIP58 induces the
expression of seed storage protein genes and starch biosynthetic
genes, but its transcripts also undergo alternative splicing in
response to heat stress. However, more heat-tolerant rice varieties
showed limited alternative splicing and higher expression of seed
storage protein genes under heat stress, thus contributing to heat
tolerance during grain filling (Xu et al., 2020). In rice, a dominant
mutation in the DENSE AND ERECT PANICLE 1 (DEP1) gene
displayed insensitivity to N during vegetative growth, which
increased N uptake and assimilation and thus improved HI and
grain yield at moderate levels of N fertilization (Sun et al., 2014).
However, which genes regulate HI by promoting reproductive
growth and mediating responses to external stimuli remain
largely unknown in B. napus.

MicroRNAs (miRNAs) are 20–24-nt single-stranded non-
coding RNA molecules that act as key post-transcriptional
regulators of gene expression (Voinnet, 2009; Budak and
Akpinar, 2015). Extensive studies have revealed that miRNAs
play diverse roles during plant development and adjust complex
traits in crops (D’Ario et al., 2017; Tang and Chu, 2017). For
example, Arabidopsis miR159 lowers the transcript levels of the
MYB DOMAIN PROTEIN 33 (MYB33) gene, whose encoded
transcription factor normally negatively regulates miR156,
thereby modulating vegetative phase change (Guo et al., 2017).
Similarly, miR164 induces cleavage of NAM, ATAF1/2, and CUC2
(NAC2) gene transcripts, which act as negative regulators of
drought tolerance in rice (Fang et al., 2014). In Arabidopsis,
miR397b regulates LACCASE 4 (LAC4) and influences silique
numbers and silique length (Wang et al., 2014). Moreover, rice
miR396d forms a molecular bridge between BRASSINAZOLE-
RESISTANT 1 (BZR1) and GROWTH REGULATING FACTORs
(GRFs); OsBZR1 induces the expression of miR396d, which, in
turn, represses OsGRF transcript accumulation to modulate plant
architecture and grain yield (Tang et al., 2018).
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The advent of next-generation sequencing technologies has
paved the way to cost-effective and highly efficient methods
to identify miRNA–mRNA regulatory networks related to
complex traits in crops. For instance, embryo development
in peanut (Arachis hypogaea) is highly sensitive to calcium
deficiency in the soil, but the cause for the resulting embryo
abortion was unknown. However, an integrated miRNA and
mRNA profiling (RNA-seq) analysis revealed that a number
of miRNA-mediated regulatory networks affecting seed/embryo
development, cell division, cell proliferation, and plant hormone
signaling all participated in peanut embryo abortion under
calcium deficiency (Chen Z. Y. et al., 2019). Joint RNA-Seq
and miRNA profiling analyses further established that miRNAs
involved in nitrogen-related pathways regulated the thickness of
a pod canopy in B. napus (Chen Z. Y. et al., 2019). To date,
limited information is available pertaining to miRNA-mediated
regulatory networks related to HI.

To better understand the regulatory networks underlying the
establishment of HI in B. napus during the seed-filling phase,
we determined the mRNA and miRNA transcriptome landscape
in SP and seeds during the seed-filling stage in plants grown at
two locations, Chongqing and Yunnan. We identified potential
gene clusters involved in the regulation of HI, with predicted
roles in transporter activity and responses to environmental
signals. Furthermore, we discovered several miRNA-mediated
regulatory networks in SP and seeds. These results contribute
to uncovering the complex regulatory networks behind HI and
offering potential solutions for its improvement via genetic
engineering or crop breeding.

MATERIALS AND METHODS

Plant Materials and Field Trials
The B. napus accessions YC24 (SWU47), YC52
(Zhongshuang11), and YC46 (Ningyou12) with stability HI
for two consecutive years (2012–13 and 2013–14) were selected
from 520 accessions in previous study (Lu et al., 2016) and
grown in a randomized block design with three replications at
Chongqing Beibei (CQ, 29◦45′ N, 106◦22′ E, 238.6-m altitude)
and Yunnan Lincang (YN, 23◦43′ N, 100◦02′ E, 1819.5-m
altitude) during the 2015–2016 growing season. For simplicity,
we denoted the planting location first (CQ or YN), followed by
the accession number (24, 52, or 46) to distinguish experimental
groups. Planting conditions were as previously described (Lu
et al., 2016). Plant materials used for RNA-seq and small RNA-
seq of growing status are shown in Supplementary Figure 1.
We collected HI-related phenotypic traits, such as HI, biomass
yield per plant (BY), seed yield per plant (SY), stem dry weight
(ST), canopy biomass yield (CBY), according to the calculation
method used previously (Lu et al., 2017), and the HI, BY, and
SY of CQ24 and CQ46 at 2016 had been shown in our previous
study (Zhang et al., 2020).

RNA Isolation and Library Preparation
For each accession grown at CQ and YN, we harvested seeds (ZS)
and SP from the main inflorescence at 30 days after flowering

(denoted as 30ZS and 30SP, respectively); there are also leaves (Le,
main leaves at 30 days after flowering) and stems (St, main steam
at 30 days after flowering) of the same period. For each sample,
we collected two biological replicates, each harvested from five
independent plants.

Total RNA of each sample was extracted using a CTAB method
(Lu et al., 2008). RNA degradation and DNA contamination
were monitored by gel electrophoresis on 1% agarose gels. RNA
purity was confirmed on a NanoPhotometer spectrophotometer
(IMPLEN, CA, United States), and RNA concentration was
measured using the Qubit RNA Assay Kit with a Qubit
2.0 Fluorometer (Life Technologies, CA, United States). RNA
integrity was assessed using the RNA 6000 Nano Assay Kit
on an Agilent Bioanalyzer 2100 system (Technologies, CA,
United States). After quality-control, we sent 48 RNA samples
for mRNA sequencing and selected 12 samples (including 30SP,
30ZS) for small RNA sequencing to Novogene Corporation
(Beijing, China) for library construction and sequencing, as
previously described (Chen H. et al., 2019).

Identification of Differentially Expressed
Genes
We evaluated the quality of RNA-Seq data with the Trimmomatic
software (v.0.36) (Bolger et al., 2014). We removed adapter
sequences and low-quality reads from the raw data. All clean
reads were then mapped to the B. napus reference genomev.4.11

using the STAR program (v.2.5.3) (Dobin et al., 2013) with default
parameters. We then mapped the aligned reads to RNA features
using the feature Counts function of Subread (v.1.6.0) (Liao
et al., 2014). We identified [differentially expressed gene (DEGs)]
with the gene counts generated above with the edgeR package
(Robinson et al., 2010) to import, organize, filter, and normalize
the data with a false discovery rate (FDR) of 1%. We quantified
relative gene expression as fragments per kilobase of exon model
per million mapped reads (FPKM) by Cuffdiff within Cufflinks
(Trapnell et al., 2012). After calculating their expression fold-
change, we identified genes with FDR-adjusted q-value ≤ 0.05
and absolute log2 (fold-change) ≥ 1 as DEGs.

Identification of Differentially Expressed
Conserved and Novel MicroRNAs
Clean data were obtained from small RNA sequencing libraries
by removing adapter sequences from all reads, as well as reads
containing over 10% Ns and low-quality (Q20 < 85%) reads from
the raw data. We extracted potential small RNAs 18–30 nt in
length and mapped them to the B. napus reference genome using
Bowtie2 (v.2.2.9) (Langmead et al., 2009). Mapped reads were
further mapped to the released B. napus miRNAs in miRBase22
(v.22.1)2 using basic local alignment sequence tool for nucleotides
(BLASTN) with an E-value cutoff of ≤ 1e-5, which identified
known miRNAs. We used the Rfam database (v.14.4)3 to remove
ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear

1http://www.genoscope.cns.fr/brassicanapus/data/
2http://www.mirbase.org/
3http://rfam.xfam.org/
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RNAs (snRNAs), and small nucleolar RNAs (snoRNAs). In
order to improve the accuracy and efficiency of comparison, we
retained only the longest sequence from the remaining reads
and merged them with the sequences in miRBase22 to become
the final B. napus miRNA dataset. After removing the reads
already classified as known miRNAs, we employed miRDeep-P
(v.1.1.4) (Yang and Li, 2011) to predict potential novel miRNAs,
allowing for 2 bp 3′ overhangs. We named these potential novel
miRNAs based on the chromosome they map to and their starting
nucleotide position on that chromosome.

To identify differentially expressed miRNAs (DEMs), we
normalized miRNA expression across all samples using Salmon
(v.0.11.3) (Patro et al., 2017) to obtain the expression of
transcript per million (TPM) based on the normalization
formula: normalized expression = (actual miRNA counts/total
number of mapped reads) × 1,000,000. We calculated the
associated fold-change, p-values, and q-values with in-house Perl
scripts. miRNAs with FDR-adjusted q-value ≤ 0.05 and absolute
log2 (fold-change) ≥ 1 were determined to be DEMs.

MicroRNA Target Prediction
We employed the psRNATarget server (v. 2017)4 to predict
the target genes for all known and novel miRNAs that
were differentially expressed between comparable groups, with
default parameters.

Gene Function Clustering Analysis
Functional annotation was performed by using BLASTX to
compare B. napus and Arabidopsis proteins. We used the
online tool agriGO (gene ontology analysis toolkit and database
for agricultural community, v.2.0)5 (Tian et al., 2017) for
GO enrichment analysis. We determined GO classifications by
submitting the gene sequences to the BLAST4ID tool of agriGO
to obtain the corresponding B. napus locus ID, and then running
GO term enrichment analysis.

Weighted Gene Co-expression Network
Analysis
Weighted gene co-expression network analysis (WGCNA)
package in R was designed in 2008 for helping users create
weighted correlation network modules and identify key genes
associated with traits in interesting modules (Langfelder and
Horvath, 2008). FPKM values of genes were log2 (FPKM + 1)
transformed for further calculation of correlation coefficient,
determination of gene modules, construction of co-expression
network, and correlation analysis of modules and phenotypic
traits. In the process of analysis, the soft thresholding
power was determined using the pickSoftTreshold function
based on the scale-free topology model fit (R2) > 0.9; the
automatic blockwiseModules network construction approach
was applied to obtain the highly correlated modules, with the
following parameters: power = 7; maxBlockSize = 30,000; TOM-
type = unsigned; miniModuleSize = 30; reassignThreshold = 0,

4http://plantgrn.noble.org/psRNATarget/
5http://systemsbiology.cau.edu.cn/agriGOv2/

mergeCutHeight = 0.25. The co-expression networks were
displayed using Cytoscape (v.3.5.1) (Maere et al., 2005).

Validation of Transcript Levels by
Quantitative Reverse Transcription-PCR
The same RNA samples prepared for mRNA and miRNA
sequencing libraries were used for cDNA synthesis and
quantitative reverse transcription-PCR (qRT-PCR) detection.
qRT-PCR was performed as described previously (Qu et al.,
2015). We used gene-specific primers obtained from qPrimerDB6

(Lu et al., 2018). Relative transcript levels were normalized to
the B. napus housekeeping genes UBIQUITIN-CONJUGATING
ENZYME 21 (Bna.UBC21) and Bna.ACTIN7 (Qu et al., 2016).

For the validation of miRNAs, we added a poly (A) tail
and performed reverse transcription from 2-µg RNA in 20-
µl reaction volume using the miRcute miRNA First-Strand
cDNA Synthesis Kit (Tiangen, Beijing, China). We then diluted
the cDNAs 10-fold for RT-qPCR analysis, using the miRcute
miRNA qPCR Detection Kit (SYBR) (Tiangen, Beijing, China).
We carried out PCR reaction solutions containing 1-µl (∼10 ng)
diluted cDNA, 10-µl 2- × -miRcute miRNA premix, a 0.4-
µl forward primer (10 µM), a 0.4-µl reverse primer (10 µM),
and 8.2-µl ddH2O on a BIO-RAD CFX96 Real-Time System
(BIORAD, United States). Cycle conditions were: 95◦C for
15 min, followed by five cycles of 94◦C for 20 s, 65◦C for
30 s, and 72◦C for 34 s, and then 40 cycles of 94◦C for 20 s
and 60◦C for 30 s. All reactions were performed in triplicate,
with the B. napus U6 snRNA as internal control. Relative gene
expression was calculated using the 2−11Ct method (Livak and
Schmittgen, 2001). All above-mentioned qRT-PCR assays were
performed according to MIQE guidelines (Bustin et al., 2010).
Three independent biological replicates, each with three technical
replicates, were implemented for each sample.

RESULTS

Physiological Characteristics of
Accessions With Different Harvest Index
In the context of this study, we planted the B. napus accessions
YC24, YC52, and YC46 at the Beibei, Chongqing (CQ), and
Lincang, Yunnan (YN) locations during the 2015–2016 growing
season. All phenotypic values are provided in Table 1; in order
to distinguish experimental groups, they were named as planting
location first (CQ or YN) plus the accession number (24, 52,
or 46). We collected HI-related phenotypic traits, such as HI,
biomass yield per plant (BY), seed yield per plant (SY), stem dry
weight (ST), canopy biomass yield (CBY). We noticed that the HI
for all accessions significantly increased at the YN location when
compared to that measured at CQ, especially accessions YC24
and YC52. In addition, YC24 displayed a significantly higher HI
than the YC52 and YC46 accessions at both locations (Table 1);
therefore, YC24 was regarded as a high HI accession, and YC52
and YC46 as low HI accessions. We used these three accessions to
elucidate the molecular mechanism of HI.
6https://biodb.swu.edu.cn/qprimerdb/
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TABLE 1 | Phenotypic values of the three varieties measured in Chongqing and Yunnan.

CBY (g) SY (g) ST (g) BY (g) HI (%)

CQ24 68.8 ± 4.0cd 29.6 ± 3.8cd 50.8 ± 6.1bc 119.6 ± 9.5bc 24.8 ± 2.7c

CQ52 75.9 ± 3.4c 25.5 ± 0.3d 54.2 ± 6.6bc 130.1 ± 4.0b 19.6 ± 0.5d

CQ46 56.0 ± 5.4d 15.0 ± 1.6e 42.6 ± 3.0c 98.6 ± 8.4c 15.2 ± 0.9e

YN24 132.2 ± 12.7a 62.8 ± 6.2a 61.1 ± 14.8b 193.3 ± 27.5a 32.6 ± 1.4a

YN52 120.6 ± 3.5a 52.8 ± 2.4b 66.2 ± 6.4b 186.8 ± 5.5a 28.2 ± 0.8b

YN46 102.8 ± 17.1b 35.3 ± 7.3c 86.8 ± 10.1a 189.7 ± 26.4a 18.5 ± 1.7d

The data are means ± SD; columns with different letters indicate significant differences based on Duncan’s multiple range tests at p < 0.05.

mRNA Sequencing Data Analysis
Uncovers Harvest Index-Related
Differentially Expressed Genes
We collected 48 samples for RNA extraction and subsequent deep
sequencing of the transcriptome (RNA-Seq) analysis: ZS, SP, Le,
and St in biological duplicates from all three accessions at the two
geographic locations. After removal of low-quality reads from the
raw data, we retained 40.29∼52.68 million clean reads; 83.97 to
95.23% of which were mapped to the B. napus reference genome
(except SP in CQ24 Sample 1, which shows just 61.67%). Sample
correlation analysis used FPKM to emphasize the high degree
of correlation between biological replicates (Supplementary
Table 1). The raw sequencing data were deposited in the BIG
Data Center under BioProject accession No. PRJNA602979.

We identified DEGs across SP samples; we detected
2,303 DEGs (1,212 upregulated and 1,091 downregulated)
in CQ24 vs. CQ52; 4,680 DEGs (2,472 upregulated and
2,208 downregulated) in CQ24 vs. CQ46; 1,103 DEGs (641
upregulated, 462 downregulated) in YN24 vs. YN52; 1,904
DEGs (1,092 upregulated, 812 downregulated) in YN24 vs.
YN46 (Supplementary Table 2). To distinguish HI-related
DEGs between high- and low-HI lines, we generated a four-way
Venn diagram showing the extent of overlap between the four
comparisons listed above. This analysis highlighted 756 DEGs
(393 upregulated and 363 downregulated) in SP between high-
and low-HI accessions grown at the CQ location, and 343 DEGs
(203 upregulated and 140 downregulated) between high- and
low-HI accessions grown at the YN location. A subset of 146
DEGs (83 upregulated and 63 downregulated) was identified in
SP samples collected at both locations and across all accessions
(Figures 1A,B).

We repeated the same analysis with the RNA-Seq data
obtained from the ZS samples; we identified 2,192 DEGs (1,481
upregulated, 711 downregulated) in CQ24 vs. CQ52; 2,776 DEGs
(1,430 upregulated and 1,346 downregulated) in CQ24 vs. CQ46;
850 DEGs (562 upregulated, 288 downregulated) in YN24 vs.
YN52; 1,963 DEGs (1,281 upregulated, 682 downregulated) in
YN24 vs. YN46 (Supplementary Table 2). The corresponding
four-way Venn diagram showed that 438 DEGs (236 upregulated
and 202 downregulated) were shared by high- and low-HI
accessions grown at the CQ location, while 205 DEGs (149
upregulated and 56 downregulated) were common to high- and
low-HI accessions grown at the YN location. Furthermore, 118
genes (83 upregulated and 35 downregulated) were differentially

expressed in seed samples collected at both locations and across
all accessions (Figures 1C,D).

Leaves are the same “source” organs as the SP; through
RNA-seq data, we identified 2,500 DEGs (1,227 upregulated,
1,273 downregulated) in CQ24 vs. CQ52; 6,047 DEGs (3,019
upregulated and 3,026 downregulated) in CQ24 vs. CQ46; 4,660
DEGs (2,185 upregulated, 2,475 downregulated) in YN24 vs.
YN52; 6,250 DEGs (2,833 upregulated, 3,417 downregulated)
in YN24 vs. YN46 (Supplementary Table 2). Our 4-way Venn
diagram showed that 783 DEGs (371 upregulated and 412
downregulated) were shared by high- and low-HI accessions
grown at the CQ location, while 1,369 DEGs (588 upregulated
and 781 downregulated) were common to high- and low-HI
accessions grown at the YN location. And 552 (242 upregulated
and 310 downregulated) genes were differentially expressed in
Le samples collected at both locations and across all accessions
(Figures 1E,F).

Stem as the “flow” organ, which is the limitation for the
accumulation of assimilates in B. napus seeds (Shen et al.,
2010; Fu and Zhou, 2013; Luo et al., 2015), we also analysis
stem RNA-seq data; there are 1,415 DEGs (722 upregulated,
693 downregulated) in CQ24 vs. CQ52; 5,313 DEGs (2,652
upregulated and 2,761 downregulated) in CQ24 vs. CQ46;
1,143 DEGs (623 upregulated, 520 downregulated) in YN24 vs.
YN52; 4,866 DEGs (2,559 upregulated, 2,307 downregulated) in
YN24 vs. YN46 (Supplementary Table 2). And 418 DEGs (214
upregulated, 204 downregulated) in St between high- and low-HI
accessions grown at the CQ location; 311 DEGs (199 upregulated,
112 downregulated) in St between high- and low-HI accessions
grown at the YN location. About 227 (132 upregulated, 95
downregulated) genes were differentially expressed in St samples
collected from the two locations (Figures 1G,H).

Overall, the transcriptome of the accessions YC24 and YC46
differed by more DEGs than when YC24 was compared to the
YC52 accession, both in SP, Le, ZS, and St. In addition, SP and
Le samples as “source” organs were characterized by more DEGs
than St and ZS samples between high- and low-HI accessions at
both locations, indicating that the regulation of HI in “source”
organs might be more complicated. Finally, samples harvested at
the CQ location exhibited more DEGs than at the YN location in
SP, ZS, and St, except Le, suggesting that the seed-filling process
might be more complex at the CQ location.

In addition, in order to compare the gene expression
differences of the same material in different regions, we compared
the DEGs of the same material grown in YN and CQ. The
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FIGURE 1 | Venn diagrams and the number of DEGs of the DEGs from high- and low-HI accessions. (A) A Venn diagram of DEGs between high- and low-HI
accessions in ZP at CQ and YN. (B) The number of DEGs between high- and low-HI accessions in ZP. (C) A Venn diagram of DEGs between high- and low-HI
accessions in Le at CQ and YN. (D) The number of DEGs between high- and low- HI accessions in Le. (E) A Venn diagram of DEGs between high- and low-HI
accessions in ZS at CQ and YN. (F) The number of DEGs between high- and low-HI accessions in ZS. (G) A Venn diagram of DEGs between high- and low-HI
accessions in ST at CQ and YN. (H) The number of DEGs between high- and low-HI accessions in ZP in ST.
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FIGURE 2 | GO functional classification of the ZS DEGs from high- and low-HI accessions at CQ and YN. (A) ZS_CQ_High vs. Low. (B) ZS_YN_High vs. Low.
(C) Common GO terms shared by CQ and YN varieties. The color bars under the figures represent -log10 (p.adjust values).

results indicate that these DEGs among the three materials
in four different plant tissues are quite different in different
environments and the expression levels also varied greatly
(Supplementary Table 2), especially in the Le of material YC24;
there were 4,599 upregulated DEGs and 4,659 downregulated
DEGs (Supplementary Figure 2). At the same time, the DEGs in
the same tissue of the three materials also have differences; only
16, 36, and 34 same DEGs were found in the St, Le, and SP, and the
absence of the same DEGs was found in the ZS (Supplementary
Figure 2). Moreover, combining with Table 1, we found that HI
in YN was significantly higher than that in CQ, indicating that
HI was easily affected by environmental conditions; this is worthy
of further study.

Functional Annotation and Classification
of Differentially Expressed Genes
To understand the functions encoded by the DEGs identified
between high- and low-HI accessions, we performed a GO
enrichment. Studies showed long ago that the photosynthates of
the SP are the main sources of seed yield, contributing about 2/3
of the total dry matter of the seed yield, whereas the beak of the

seeds is about 8% (Leng et al., 1992), which can seriously affect
HI, so we focused on SP and ZS first.

Differentially expressed genes in SP, harvested at the CQ
location between high- and low-HI accessions (SP_CQ_High
vs. Low), were associated with 93 significantly enriched GO
terms (q-value ≤ 0.05), while DEGs for the equivalent
samples collected at the YN location (SP_YN_High vs. Low)
showed a significant enrichment for 341 GO terms; in
addition, we identified 54 significantly enriched GO terms
(q-value ≤ 0.05) for SP among DEGs shared by both CQ
and YN locations (Supplementary Figures 3A,B). We observed
a significant enrichment in several cellular component GO
terms related to “chloroplasts” (GO: 0005737, GO: 0009507,
GO: 0009536, GO: 0044434, GO: 0044435), and we noticed
that GO terms of SP in addition to response to biological
stress and a large number of abiotic stresses (GO:0009628,
response to abiotic stimulus; GO:0009408, response to heat;
GO:0009607, response to biotic stimulus; etc.); there are
some interesting pathways enriched in “circadian rhythm”
(GO:0007623), “histone H3-K36 demethylation” (GO:0070544),
and “response to Karrikin” (GO:0080167), which suggest that
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circadian rhythm, histone modification affected the plant HI;
also, as Karrikin, a new signaling molecule participates in
regulating HI (Supplementary Figure 3C).

In ZS samples, a similar analysis revealed 107 significantly
enriched GO terms among DEGs between high- and low-
HI accessions harvested at the CQ location (ZS_CQ_High vs.
Low), and 59 significantly enriched GO terms among DEGs
between high- and low-HI accessions harvested at the YN
location (ZS_YN_High vs. Low) (Figures 2A,B). We identified
18 common enriched GO terms among DEGs for ZS. Biological
processes-related GO terms, such as the “negative regulation of
RNA metabolic process” (GO: 1902679), “negative regulation of
nucleic acid-templated transcription” (GO: 1903507), “negative
regulation of the RNA metabolic process” (GO: 0051253), and the
“organonitrogen compound metabolic process” (GO: 1901564),
were predominantly enriched in ZS samples harvested at both
CQ and YN locations (Figure 2C). In the YN location, we
noticed “circadian rhythm” (GO: 0007623) and “alternative
mRNA splicing via spliceosome” (GO: 0000380) were identified
but not identified in the CQ location. We suspected that, in
ZS samples, circadian rhythm and alternative mRNA splicing
may participate in the HI regulation but were also influenced by
geographical differences and environmental factors.

GO enrichment analysis of St and Le DEGs in the CQ
location obviously enriched in “circadian rhythm” (GO: 0007623)
as the results in SP and ZS; we speculated that circadian
rhythm plays an important role in regulating HI. We also
found St and Le DEGs are mainly enriched in hormone-related
terms, such as the “ethylene-mediated signaling pathway” (GO:
0009873), “jasmonic acid-mediated signaling pathway” (GO:
0009867) in St at the CQ location, “response to gibberellin
stimulus” (GO: 0009739) in St at the YN location. In Le
samples, “response to gibberellin stimulus” (GO: 0009739) and
the auxin metabolic/biosynthetic process (GO: 0009850 and GO:
0009851) also enriched, suggesting that, although the leaf no
longer provides most of the photosynthetic energy during silique
ripening (SP provides more), it works with the St to regulate plant
growth hormonally (Supplementary Figure 4).

Construction of Co-expression Networks
Through WGCNA, we constructed co-expression networks with
all DEGs and 13 phenotypic data (Supplementary Table 3). This
analysis yielded 72 gene modules, each represented by different
colors in the output (Figure 3). The smallest module is the ME
light coral, which included only 55 genes, and the largest module
is turquoise, which included 10,008 genes. We focused on the
ME light green module that is highly correlated with the HI
(r2 = 0.61).

GO enrichment analysis showed the ME light green module
was mainly enriched in the “ubiquitin-dependent protein
catabolic process” (GO: 0006511), “entrainment of the circadian
clock” (GO: 0009649), “positive regulation of meiosis” (GO:
0045836), and “production of miRNAs involved in gene silencing
by miRNA” (GO: 0035196). This indicated that ubiquitin
modification, circadian rhythm, and gene silencing are all
strong connection with HI; the results are the same with
our previous DEGs analyzed. We used the maximal clique
centrality method in the cytoHubba plugin of Cytoscape (v.

3.5.1) to identify hub genes in the ME light green module of
interest, and we identified BnaA07g02330D (Bna.A07STY46),
which is serine/threonine kinase that phosphorylates transit
peptides of chloroplast and mitochondria-targeted pre-proteins
and is involved in chloroplast differentiation in Arabidopsis
(Giorgia et al., 2011). We speculated that Bna.A07STY46 may
participate in retarded establishment of a photosynthetic capacity
to influence HI.

Identification of Differentially Expressed
MicroRNAs Based on MicroRNA
Sequencing
In addition to 48 mRNA libraries, we also sequenced 12 miRNA
libraries of samples SP and ZS. We obtained 163,448,662 reads
and retained 159,966,665 clean reads after removing low-quality
reads and adapters (Supplementary Table 4). We then selected
clean reads with a length of 18–30 nt for further analysis.
As expected, reads with a length of 21, 22, and 24 nt were
more abundant out of all reads. In addition, we observed a
higher fraction of 21-nt reads in silique pericarp samples when
compared to that in seed samples, while 24-nt reads showed
the opposite pattern (Supplementary Figure 5). We identified
903 miRNAs from the 12 miRNA libraries, including 46 known
miRNAs and 857 novel miRNAs (Supplementary Table 5).

Based on the selection criteria of an absolute log2 FC > 1
and a q-value < 0.05, we detected DEMs between the same
comparison groups as for RNA-Seq analysis. When we compared
SP_CQ_High and Low, we identified 11 known DEMs (1
upregulated and 10 downregulated) and 86 novel DEMs (60
upregulated and 26 downregulated), while the comparison of
SP_YN_High with Low revealed 15 known DEMs (0 upregulated
and 15 downregulated) and 80 novel DEMs (38 upregulated
and 42 downregulated). A comparison between ZS_CQ_High
and Low yielded 10 known DEMs (8 upregulated and 2
downregulated) and 70 novel DEMs (38 upregulated and 32
downregulated), while we identified 11 known DEMs (11
upregulated and 0 downregulated) and 65 novel DEMs (30
upregulated and 35 downregulated) from a comparison between
ZS_YN_High and Low. In addition, SP samples harvested at
the CQ and YN locations shared 8 known DEMs and 21 novel
DEMs, and ZS samples collected at the two locations saw an
overlap consisting of 8 known DEMs and 16 novel DEMs
(Supplementary Figure 6).

Integration of Differentially Expressed
Genes and Differentially Expressed
MicroRNAs
To elucidate the regulatory role of DEMs between high- and
low-HI accessions, we first identified the potential target genes
of each DEM before combining the expression profiles of
DEMs and their target genes for further analysis. We thus
obtained miRNA–mRNA interaction pairs (pairs with either
negatively or positively correlated expression patterns) through
a comparison of high- and low-HI accessions; 130 pairs in SP
were harvested at CQ, 68 pairs in SP were collected at YN,
69 pairs in ZS from the CQ location, and 23 pairs in ZS from
the YN location. Overall, almost half of the miRNA–mRNA
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FIGURE 3 | An overview of module and traits corresponding through WGCNA.

interactions pairs showed a negative correlation, as might be
expected from a true mRNA–miRNA pair involving transcript
cleavage. We also noticed that several miRNAs had multiple
potential target mRNAs, and multiple miRNAs that targeted a
single mRNA (Supplementary Figure 7 and Supplementary
Table 6). For instance, the upregulated miRNA bna-miRC03_52
controlled the downregulated genes BnaC07g39100D,
BnaC08g32460D, and BnaA06g21420D, while the upregulated
miRNA bna-miRA02_2282 controlled the downregulated genes
BnaA06g21420D and BnaA06g39650D in comparisons between
SP_CQ_High and Low (Supplementary Figure 7). These

observations indicate that the regulation of miRNA–mRNA
pairs is complex.

We performed a GO functional annotation analysis to
characterize these differentially expressed target genes.
Our results showed enrichment in GO terms related
to circadian rhythms, transporter activity response to
stress, response to abiotic stimulus, and response to
stimulus across all comparisons, with the exception of
ZS_CQ_High vs. Low (Supplementary Figure 8 and
Supplementary Table 7). We hand-selected miRNA–mRNA
pairs associated with the GO terms mentioned above, such as
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the bna-miRC08_5718–BnaA03g03740D/BnaC03g05240D pair
and the bna-miRC01_19092–BnaC09g43920D pair (Figure 4A
and Supplementary Figure 8). We did not discover significantly
enriched GO terms among miRNA–mRNA pairs from seed
samples collected at the CQ and YN locations between high- and
low-HI accessions. However, the bna-miR396–BnaA06g21030D
and bna-miR396–BnaA01g33410D pairs were shared between
the two locations (Figure 4B and Supplementary Figure 8).

Validation of mRNA and MicroRNA
Expression by Quantitative Reverse
Transcription-PCR
To validate the quantification of the mRNA and miRNA
sequencing data presented here, we analyzed the relative
transcript levels of nine randomly selected DEGs
(BnaA01g26430D, BnaA08g25340D, BnaA08g26300D,
BnaC02g04730D, BnaC02g12960D, BnaC04g50590D,
BnaC06g05910D, BnaC09g48250D, and BnaCnng27780D)
and 7 DEMs (bna-miR156a, bna-miR164a, bna-miR167a,
bna-miR396, bna-miRA01_10807, bna-miRC03_27293, and
bna-miRC04_29081) by qRT-PCR on the same RNA used for
library construction (Supplementary Table 8 and Figure 5).
We observed a high degree of positive correlation between the
relative transcript levels of DEGs and DEMs determined by
qRT-PCR and their relative expression measured from high-
throughput sequencing data. The high-throughput sequencing
data used in this study were, therefore, accurate and reliable.

DISCUSSION

Harvest index is a complex agronomic trait of great economic
value that depends on interactions between a plant genotype and
the environment (Amanullah and Shah, 2010; Unkovich et al.,
2010; Gajića et al., 2018; Chao et al., 2019). We determined that
the YC24 accession showed a significantly higher HI than the
YC52 accession, while the YC52 accession had a significantly
higher HI than the YC46 accession at both the CQ and YN
locations. These results indicated that HI differences between the
YC24, YC52, and YC46 accessions were robust, validating the
use of these three accessions to dissect the regulatory mechanism
behind HI. YN is a high-yield crop production environment;
not surprisingly, HI for the YC24, YC52, and YC46 accessions
grown at this location was higher than that from the CQ location,
indicating that environmental conditions can have a strong
influence on HI. Thus, we carried out transcriptome sequencing
to compare the gene expression profile in accessions grown in
a standard HI (CQ) and high-HI (YN) environment during the
seed-filling stage.

RNA-Seq and Expression Profiles of
High- and Low-Harvest Index Materials
Based on gene functional annotation data, we identified
significantly enriched GO terms associated with DEGs
between high- and low-HI accessions. In B. napus, SP are
photosynthetically active, and, as source tissues, they thus

provide nutrients to seeds, a sink organ (Diepenbrock, 2000;
Bennett et al., 2011). Furthermore, SP mediate maternal control
during seed filling (Li et al., 2019). We also noticed that a large
fraction of enriched GO terms were specific to the CQ location,
as we did not detect them in our analysis of silique pericarp
or seed samples collected at the YN location, underscoring the
marked environmental sensitivity of HI regulation.

As HI represents the ratio between reproductive organs
and vegetative biomass produced, regulating the timing of the
phase transition from vegetative to reproductive growth will
be beneficial to increasing HI (Hütsch and Schubert, 2017).
Based on GO enrichment analysis, we noticed that the circadian
rhythm may be associated with HI. In Arabidopsis, the core
circadian rhythm comprises the proteins CIRCADIAN CLOCK
ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL
(LHY), TIMING OF CAB EXPRESSION 1 (TOC1), and
PSEUDO RESPONSE REGULATORS (PRRs) (Mcclung and
Gutiérrez, 2010). In addition, the CONSTANS gene family
(CO) controls photoperiodic flowering time together with PRRs
(Nakamichi et al., 2007). Transcriptome analysis revealed that
genes associated with circadian rhythm were potentially involved
in potato (Solanum tuberosum) tuber formation, suggesting
that the circadian rhythm may participate in photoassimilate
distribution (Shan et al., 2013). In rice, CONSTANS-like
(OsCOL9) not only modulated photoperiodic flowering but
influenced grain number of the main panicle (Liu et al.,
2016). Similarly, TOC1 modulated chickpea (Cicer arietinum)
seed yield per plant (Basu et al., 2019), while overexpression
of Arabidopsis PRR5 in rice delayed flowering but also
significantly increased biomass (Nakamichi et al., 2020), likely
due to higher expression of OsPRR37; the overexpression line
GCA1OX-5 showed better general combining ability of rice
(Liu et al., 2015). In wheat, the Photoperiod-1 (Ppd-1) mutant
inactivates a PRR and affects paired spikelet formation (Boden
et al., 2015). Moreover, our analysis highlighted additional
circadian rhythm-related genes [GLYCINE RICH PROTEIN7
(GRP7), EARLY FLOWERING4 (ELF4), REVEILLE 1 (RVE1)] as
being differentially expressed between high- and low-HI lines,
strongly suggesting that the circadian rhythm and rhythm-
controlled gene regulation might be harnessed to modulate HI
in B. napus in the future.

Under the high-HI environment of the YN location, we
detected a number of DEGs expressed in SP that were related to
transporter activity, such as PLASMA MEMBRANE INTRINSIC
PROTEIN (PIP), BILE ACID TRANSPORTER 5 (BAT5), ABC2
HOMOLOG 13 (ATH13), CHLORIDE CHANNEL A (CLC-A),
MAJOR FACILITATOR SUPERFAMILY PROTEIN, NITRATE
TRANSPORTER 1.7 (NRT1.7), POLYOL/MONOSACCHARIDE
TRANSPORTER 5 (PMT5), and VACUOLAR GLUCOSE
TRANSPORTER 1 (VGT1). PIP are aquaporins that localize to
the plasma membrane and facilitate the flux of water and solutes
across the plasma membrane (Kourghi et al., 2017; Wang H.
et al., 2020). Multiple studies have shown that PIP genes can
affect water balance and solute transport in plant cells (Sommer
et al., 2008; Byrt et al., 2017; Macho-Rivero et al., 2018). The
BAT5 transporter translocates glucosinolates, which are derived
from methionine and sugars, across the chloroplast membranes
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FIGURE 4 | Heatmap representation of interesting miRNA-mRNA pairs identified in silique pericarps and seeds. (A) Heatmap representation of miRNA-mRNA
pairs-related circadian rhythm, response to stress, response to abiotic stimulus, and response to stimulus in silique pericarps. (B) Heatmap representation of
bna-miR396-modulated miRNA-mRNA pairs in seeds. The color bars under the figures represent log2 (FPKM/TPM).

(Sawada et al., 2009). ATH13 affects the lipid composition of
chloroplast membranes and regulates iron distribution within
chloroplasts (Manara et al., 2014, 2015). CLC-A regulates the
accumulation of nitrate within vacuoles and plays an important
role in modifying cytosolic conditions (De Angeli et al., 2006;
Manara et al., 2015; Demes et al., 2020). Additional regulators of
nitrate balance and transport include members of the NITRATE
TRANSPORTER1/PEPTIDE TRANSPORTER (NPF) family,
such as AtNPF3.1 (At1g68570) (Yang et al., 2017) and AtNPF6.2
(At2g26690) (Tong et al., 2016); AtNRT1.7/NPF2.13 (At1g69870)
also plays important roles in source-to-sink remobilization of
nitrate in Arabidopsis (Fan et al., 2009; Liu et al., 2017). PMT5
can transport a wide range of linear polyols (three to six carbon
backbones), cyclic polyols (myo-inositol), pyranose, furanose,
hexoses, and pentoses across the plasma membrane (Klepek et al.,
2005, 2010). Collectively, the upregulation of genes-encoding
proteins with transporter activity in SP of high-HI accessions

points to their possible involvement in facilitating water and
solute fluxes (e.g., sugar, nitrate nutrients, and cations) from
the mother plant to the developing seed, and thus in increasing
HI. The only downregulated transporter identified in this study
was VGT1. However, VGT1 localizes to the vacuolar membrane
and mediates the transport of glucose from the cytoplasm to the
vacuole (Aluri and Büttner, 2007; Büttner, 2007); a reduction in
VGT1 expression may, therefore, promote sugar translocation to
sink tissues by a modulating glucose flux to the vacuole.

In seeds, GO terms, such as GO: 0045892, GO: 1902679,
GO: 1903507, GO: 0051253, GO: 0045934, GO: 0010629, GO:
0010605, and GO: 1901564, were significantly enriched in
samples harvested at both the CQ and YN locations. For
the latter GO term (the organonitrogen compound metabolic
process, GO: 1901564), the B. napus gene BnaC08g45660D
homologous to At1g01090 (PYRUVATE DEHYDROGENASE
E1 ALPHA, PDH-E1 ALPHA) was upregulated in high-HI
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FIGURE 5 | RT-qPCR validation of DEGs and DEMs. Blue bars represent the relative expression level of RT-qPCR, and red points represent FPKM/TPM of
sequencing; r represents Pearson correlation coefficient, *: correlation is significant at the 0.05 level, **: correlation is significant at the 0.01 level.

accessions. As PDH-E1 ALPHA has been shown to regulate
acyl lipid metabolism (LeClere et al., 2004; Mentzen et al.,
2008), we speculated that the upregulation of BnaC08g45660D
contributes to the accumulation of storage lipids in seeds.
Gene functional annotation of the GO terms GO: 0045892,
GO: 1902679, GO: 1903507, GO: 0051253, GO: 0045934, GO:
0010629, and GO: 0010605 determined that the expression
pattern of BnaA05g01050D (homologous to At2g46830, CCA1)
showed the same trend at both the CQ and YN locations. Studies
have shown that CCA1 affects not only the circadian rhythm
but also the accumulation of storage lipids (Kim et al., 2019).
Thus, we concluded that genes that promote the accumulation of
storage materials such as lipids during the seed-filling stage likely
contribute to the improvement of HI.

MicroRNA-Mediated Regulatory
Networks Related to Harvest Index
MicroRNAs play versatile roles in plant growth and development
via miRNA–mRNA interaction networks. In our study, we

identified abundant miRNA–mRNA interaction pairs from the
comparison of silique pericarp and seed samples from high-
and low-HI accessions at CQ and YN locations. Based on the
functional analysis of target DEGs, we noticed enrichments for
genes in silique pericarp samples harvested at both CQ and YN
locations related to responses to stimulus. Thus, we selected genes
related to circadian rhythm, response to stress, response to abiotic
stimulus, and response to stimulus that also exhibited anti-
correlations with their miRNAs for further analysis. MiR164 has
been shown to control axillary meristem and floral organogenesis
formation in Arabidopsis (Raman et al., 2008; Huang et al.,
2012); in our study, we observed a negative correlation
between bna-miR164a and BnaA08g26300D. BnaA08g26300D
shows homology to the Arabidopsis gene At1g09560 (GERMIN-
LIKE PROTEIN 5, GLP5). GLP may control resource allocation
between primary and lateral roots by phloem-mediated transport
in Arabidopsis (Ham et al., 2012), suggesting that the regulation
of GLP5 transcript levels by bna-miR164a may adjust the balance
of resources between SP and seeds though the phloem. At5g06530
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(ABC TRANSPORTER GENE 22, AtABCG22) also contributes
to water transpiration and drought tolerance in Arabidopsis
(Kuromori et al., 2011). Hence, we propose that its B. napus
homolog BnaC02g01960D, whose transcript levels are regulated
by bna-miRA03_11110, might be important for the proper water
balance of SP during the seed-filling phase.

The circadian rhythm gene TOC1 contributes to energy
metabolism by influencing the phase of the circadian rhythm
under environmental fluctuations (Legnaioli et al., 2009;
Fung-Uceda et al., 2018) and Arabidopsis; toc1 mutants
showed a modified pattern of starch mobilization under
light–dark cycles (Flis et al., 2019). We hypothesized that
the bna-miRA07_12065–BnaC09g05250D (TOC1) pair might
similarly affect the phase of the circadian rhythm to modulate
resources allocation in SP. BnaC09g43920D is homologous to
At5g13170 (SENESCENCE-ASSOCIATED GENE 29, SAG29,
also named SWEET15). In this study, this gene is upregulated
in high-HI SP at the YN location via the downregulation of
bna-miRC01_19092. SWEET15, together with the transporters
SWEET11 and SWEET12, mediates sucrose efflux both
intracellularly and intercellularly during seed filling in
Arabidopsis (Chen et al., 2015; Eom et al., 2015) and may
also regulate senescence under environmental stress (Seo et al.,
2011). Moreover, we noted the upregulation of several heat
stress-related genes, such as HEAT SHOCK PROTEIN (HSP)
Hsp17.6CII (BnaA03g03740D/BnaC03g05240D), HSP26.5
(BnaC06g05390D), CPHSC70-1 (BnaC01g16200D), and
HEAT SHOCK FACTOR 4 (HSF4) (BnaCnng56320D), this
upregulation being mediated by the downregulated miRNAs

bna-miRC08_5718, bna-miRC06_3193, bna-miRC02_6475,
and bna-miRC01_11705 in high-HI lines, respectively.
Overall, we identified many miRNA–mRNA pairs related to
environmental stress in the current study, indicating that
increasing plant adaptability to the environment may adjust
resources distribution and improve HI.

Similar to our observation with DEGs, numerous miRNA–
mRNA pairs identified here differed between seeds and SP,
indicating distinct regulatory mechanisms during the seed-filling
stage. Among miRNA–mRNA pairs, bna-miR396 and its putative
targets BnaA06g21030D and BnaA01g33410D were shared by
seed samples harvested from both the CQ and YN locations.
MiR396 exerts a strong influence in plant development by
regulating complex traits; for example, miR396 regulates the
transcript levels of the GRF group to modulate cell proliferation
and elongation (Ercoli et al., 2016), grain size and yield (Che
et al., 2015; Li et al., 2016; Chen X. L. et al., 2019), and somatic
embryogenesis (Szczygieł-Sommer and Gaj, 2019). Moreover, a
loss of function in miR396ef resulted in higher grain size and
altered plant architecture in rice (Miao et al., 2020), while over-
expression of oa-miR396c in rice reduced salt and alkali stress
tolerance (Gao et al., 2010). In tomato (Solanum lycopersicum),
over-expressing a short tandem repeat mimic for miR396a
(STTM396a/396a-88) resulted in earlier flowering and bigger
fruits (Cao et al., 2016). In Arabidopsis, the peanut witches’
broom effector PHYLLODY SYMPTOMS 1 (PHYL1) interferes
with miR396-mediated regulation of SHORT VEGETATIVE
PHASE (SVP) transcript levels to control flower formation
(Yang et al., 2015).

FIGURE 6 | A proposed model for HI determination during the seed-filling stage.
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In this study, we also identified the bna-miR396–
BnaA06g21030D/BnaA01g33410D pair. BnaA06g21030D
(SER/ARG-rich protein 34A, SRp34a) encodes a member of
the Ser-Arg-rich (SR) protein family, which plays multiple
roles in post-transcriptional regulation of gene expression by
alternative splicing (Sanford et al., 2004; Richardson et al., 2011).
BnaA01g33410D is homologous to EMBRYO DEFECTIVE
3119 (EMB3119), which plays an important role in Arabidopsis
growth and development (Meinke, 2020). Although many
studies have focused on miR396, the roles of the bna-miR396–
Bna.A06SRp34a/Bna.A01EMB3119 pair are largely unknown in
the context of HI and should be studied in more detail.

Based on our collective results, we propose a potential model
for the regulation of HI in B. napus during the seed-filling
stage (Figure 6). Genetic differences and external environmental
stimuli affect the expression of circadian rhythm-related genes,
stress response genes, and miRNAs. miRNAs, in turn, may
modulate circadian rhythm-related genes and stress response
genes via a transcript cleavage. The resulting modulation of
transcript levels of transporter activity-related genes will affect
water and solutes flow to the seeds, driving seed development
and the accumulation of storage compounds, thus determining
seed yield and HI.
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