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Soil salinization is a serious challenge to many countries worldwide. Putrescine (Put)
is related to the improvement of seed germination under salt stress, but molecular
and metabolic mechanisms are still not fully understood. The objectives of this study
were to determine the effect of seed soaking with Put on germination characteristics
under salt stress induced by 100 mm sodium chloride (NaCl) and to further analyze
subsequent stress tolerance associated with amylolysis, oxidative damage, sodium
(Na+)/ potassium (K+) accumulation and transportation, and metabolic homeostasis in
white clover (Trifolium repens cv. Haifa) seedlings. The results showed that seed soaking
with Put significantly alleviated salt-induced decreases in the endogenous Put content,
germination rate, germination vigor, germination index, Rl/SL, and fresh/dry weight
of seedlings. Put application also significantly promoted starch metabolism through
activating α-amylase and β-amylase activities under salt stress. The metabolomic
analysis showed that seed soaking with Put significantly increased the accumulation
of polyamines (Put and spermidine), amino acids (γ-aminobutyric acid, glutamate,
alanine, proline, citrulline, etc.), organic acids (ketopentanic acid, malonic acid, malic
acid, ketopentanic acid, cis-sinapinic acid, etc.), lipids and fatty acids (glycerol, stearic
acid, linoleic acid, palmitic acid, etc.), sugars (levoglucosan, fucose, and anhydro-D-
galactose), alcohols (myo-inositol, allo-inositol, hexadecanol, and threitol), and other
metabolites (thymine, xanthine, adenine, guanine, and glycerol 1-phosphate, etc.)
associated with enhanced tricarboxylic acid (TCA) cycle and γ-aminobutyric acid (GABA)
shunt contributing to better osmotic adjustment, cell membrane stability, energy supply,
and metabolic homeostasis when seeds germinated under salt stress. In addition, Put
significantly up-regulated the AsSOS1, NHX6, SKOR, HKT1, and HKT8 expression
levels which played critical roles in Na+ rejection and K+ retention resulting in higher
K+/Na+ ratio during seed germination under salt stress. The Put-induced up-regulation
of HAL2 transcription level could reduce the toxicity of 3′-phosphoadenosine-5′-
phosphosulfate (PAPS) in cells. Current findings will provide an integrative understanding
of Put-induced salt tolerance associated with amylolysis, metabolic regulation, and ionic
homeostasis during seed germination.
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INTRODUCTION

Salt stress is one of the most drastic abiotic stresses, especially
in arid and semi-arid regions globally (Bouaziz et al., 2020).
About 17.5% of the total agricultural lands in more than
100 countries are severely affected by salt stress (Food and
Agriculture Organization [FAO], 2021). Salt stress disrupts
various physiological functions during all phases of the plant
life cycle including seed germination, seedling growth and
development, and flowering (Parihar et al., 2015). In addition,
salt stress is also responsible for physiological drought, as large
amounts of metal ions in the rhizosphere seriously reduce soil
water potential and inhibit the water absorption capacity of the
roots (Yadav et al., 2011). It is well known that seed germination
is not only the basic foundation but also the most sensitive and
imperative phase of the plant life cycle (Cuartero et al., 2006).
Previous studies have found that salt stress significantly reduced
the germination of many important forage species including
white clover (Trifolium repens), alfalfa (Medicago sativa), and oats
(Avena sativa) (Hu et al., 2006; Wu et al., 2009; Cheng et al.,
2018). A previous study has reported that salt stress resulted
in massive accumulation of sodium (Na+) which causes ion
toxicity, mineral nutrition disorder, and metabolic imbalance in
white cover seedlings (Cheng et al., 2018). During germination
under salt stress, seeds often experience imbalance in active
oxygen metabolism leading toward excessive production of
reactive free radicals responsible for oxidative damage to various
cell organelles, retardation in seed germination, and even seed
mortality (Cheng et al., 2018; Luo et al., 2020). In addition,
the accumulation of Na+ in germinating seeds prevents the
mobilization of starches, amino acids (AAs), and sugars which are
essential for the synthesis of structural tissues as well as proteins
in embryos, thus inhibiting seed germination (Prakash et al.,
1988; Ramagopal, 1990; Cheng et al., 2018).

When plants are exposed to salt toxicity, the absorption,
efflux, and compartmentalization of Na+ are vital physiological
processes involved in salt tolerance. Salt stress activates calcium
ion (Ca2+) to regulate the salt overly sensitive (SOS) signaling
pathway which serves as one of the vital pathways for
Na+ excretion in plants (Gong et al., 2020). Vacuolar H+-
ATPase (H+-ATPase) in the plasma membrane hydrolyzes
ATP to pump H+ from the cytoplasm into the vacuole. This
process generates electrochemical gradient and proton driving
force, hence driving SOS1-regulated Na+ excretion from the
cytoplasm into the intercellular space (Blumwald, 2000). The
Na+ (K+)/H+ antiporters (NHXs) gene family has also been
found to be involved in salt stress response, cell expansion,
vesicle transport, and pH homeostasis (Bassil et al., 2012; Bassil
and Blumwald, 2014). NHX6, which is located in the Golgi and
trans Golgi network (TGN), compartmentalizes cytoplasmic Na+
into the vacuole, thereby improving osmotic adjustment and
also avoiding Na+ toxicity in the cytosol (Wang et al., 2015).
Moreover, high-affinity potassium transporters (HKTs) are Na+
transporters that regulate the long-distance transport of Na+
from the roots to the leaves and reduce the toxicity of Na+
to aerial parts (Almeida et al., 2017). However, some members
of HKTs also possess the characteristics of potassium (K+)
transporters associated with the maintenance of K+ homeostasis

in plants under salt stress (Hauser and Horie, 2010). Stelar
K+ outward rectifier (SKOR) is one of the outward-rectifying
shaker K+ channels mediating release and transportation of
K+ from the xylem to the shoot (Huang et al., 2018). Yellow
halotolerant protein 2 (HAL2) performs vital roles in sulfur
assimilation and RNA processing, and HAL2 overexpression
can increase tolerance of tomato (Lycopersicon esculentum) to
high Na+ concentration. Under salt stress, the decline in HAL2
activity significantly inhibits the sulfur assimilation pathway,
resulting in delayed plant growth (Arrillaga et al., 1998).
A previous study has demonstrated that improved endogenous
polyamines (PAs) including putrescine (Put), spermidine (Spd),
and spermine (Spm) levels induced by exogenous chitosan
significantly alleviated salt damage associated with the significant
up-regulation of NHX4, NHX5, NHX6, and SOS1 gene expression
in leaf and root of creeping bentgrass (Agrostis stolonifera)
(Geng et al., 2020).

Polyamines (PAs) are important members of aliphatic
nitrogenous bases existing widely in different plant and animal
species. In plants, Put, Spd, and Spm are three main types
of PAs (Kusano et al., 2008). PAs exhibit multiple beneficial
physiological effects on alleviating salt damage by mediating
osmotic potential, ion balance, and antioxidant defense system
(Kasukabe et al., 2004; Verma and Mishra, 2005; Sudhakar
et al., 2015). Kasukabe et al. (2004) found increased endogenous
Spd content in transgenic Arabidopsis overexpressing an FSPD1
enhanced salt tolerance. Many studies have shown that exogenous
Spd and Spm application improved the activities of antioxidant
enzymes including ascorbate peroxidase (APX) and catalase
(CAT), thereby decreasing oxidative damage of organisms under
saline conditions (Roychoudhury et al., 2011; Sung et al., 2011).
In addition, Put, Spd, and Spm could significantly mitigate
salt-induced declines in seed germination rate, root or stem
elongation, and fresh weight associated with the improvement
of antioxidant capacity and reduced reactive oxygen species
(ROS) accumulation during seed germination (Prakash et al.,
1988; Benavides et al., 1997; Çavuşoğlu et al., 2007). The study
of Çavuşoğlu et al. (2007) also found that Put pretreatment
significantly improved the seed germination rate, fresh or dry
weight, and root length or stem length of barley (Hordeum
vulgare) seedlings under salt stress. The catabolism of seed
storage substances such as starch could be significantly improved
by the Put pretreatment contributing to better seed germination
and seedling growth of rice (Oryza sativa) in response to salt
stress (Prakash et al., 1988). Furthermore, increased endogenous
Put content by exogenous Put application effectively alleviated
adverse effects of salt stress on seed germination and early
growth of belladonna (Atropa belladonna) seedlings associated
with the reduced accumulation of net Na+ and chlorine (Cl−)
in different organs (Benavides et al., 1997). These previous
studies indicated the positive roles of Put in plant response
to salt stress. However, the regulatory roles of the Put in
metabolic homeostasis, Na+ and K+ transportation, and other
potential mechanisms demand further investigation during seed
germination under high salt conditions.

White clover, an important legume forage, is cultivated
globally due to its low crude fiber as well as high crude protein
and nutrient contents. In addition, white clover has also been
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widely used as an essential ornamental legume or ground-cover
plant, hence contributing to the aesthetic value of landscapes.
However, salt stress limits its yield and quality. The objectives
of this study were (1) to examine seed germination regulated
by Put in relation to cell membrane stability, starch metabolism,
and Na+/K+ transport under salt stress; (2) to further
explore metabolic homeostasis and metabolites reprogramming
associated with alteration in comprehensive metabolites during
seed germination based on the analysis of metabonomics in
response to salt stress. Present findings will provide new insights
about the effects and regulatory mechanisms of Put in legume
species during seed germination under salt stress.

MATERIALS AND METHODS

Plant Materials and Treatments
Seeds of white clover (Trifolium repens cv. Haifa) were surface-
sterilized with 0.1% HgCl2 for 5 min and rinsed four times
with distilled water. For the soaking pretreatment, the seeds
were divided into two groups. One group of seeds was soaked
in distilled water as the control while the other group of seeds
was soaked in Put (30 µM) for 2 h at 20◦C, respectively. The
soaked seeds were then germinated in Petri dishes containing
three sheets of filter papers moistened initially with 10 ml
of distilled water or 100 mg·l−1 sodium chloride (NaCl) and
each treatment was replicated four times (50 seeds for each
duplicate). The Petri dishes were kept in a growth chamber
programmed at average day/night temperature of 23/19◦C, 75%
relative humidity, and 600 µmol·m−2

·s−1 photosynthetic photon
flux density for 7 days. Filter papers, NaCl solution, and distilled
water were refreshed every day. The seeds were sampled after 7
days of germination for various biochemical, physiological, and
metabolomics analyses.

Determination of Seed Germination
Characteristics
Germination vigor (GV) and germination percentage (GP) were
evaluated after 3 or 7 days of germination, respectively. The
germination index (GI) and mean germination time (MGT) were
calculated according to the following formulas:

GI =
∑ Gt

Tt
(1)

where Gt is the number of the germinated seeds in the t days; Tt
is the time corresponding to Gt:

MGT =
∑

Ti× Ni∑
Ni

(2)

where Ni is the number of the newly germination seeds in times
of Ti, respectively (Zhang et al., 2007).

The root length (RL), shoot length (SL), seedling fresh weight
(FW), seedling dry weight (DW), and seed vigor index (VI) were
measured after 7 days of germination. The VI was calculated
based on the formula VI = FW× GI (Li et al., 2014).

Determination of Starch Content and
Amylase Activities
For starch content, dry powders (0.05 g) were mixed with 3 ml
of ethanol (80%) and the mixture was heated in the water bath at
80◦C for 30 min. After being centrifuged at 12,000 g for 10 min,
the supernatant was removed and 2 ml of distilled water was
added. Later, the centrifuge tubes were boiled in a water bath at
80◦C for 15 min, and then 4 ml of 9.2 mM HClO4 was added
and gently shaken for 15 min. After centrifugation at 12,000 g for
15 min, 1 ml of supernatant was dissolved in 2 ml of anthrone
sulfuric acid, and the mixture was boiled in a water bath for
10 min. The absorbance of the solution was measured at 620 nm
(Smith, 1969). Amylase activity was determined following the
methods of Kishorekumar et al. (2007) with some modifications.
Fresh seedlings (0.1 g) were homogenated in distilled water
(1.5 ml) and centrifuged at 12,000 g for 25 min. A total of
0.5 ml of supernatant was incubated at 70◦C for 15 min, and
then 0.5 ml of citrate buffer (0.1 mm) and 1 ml of 1% soluble
starch solution were added. After being incubated at 30◦C for
5 min, the mixture was heated at 40◦C for 15 min. The α-Amylase
activity was estimated spectrophotometrically at 540 nm. For
β-amylase activity, the supernatant was inactivated initially at pH
3.4, later β-amylase activity was detected using the same method
mentioned above for α-amylase activity.

Determination of Oxidative Damage and
Membrane Stability
To analyze the malonaldehyde (MDA) content, fresh seedlings
(0.2 g) were homogenated with 50 mm cold phosphate buffer
(1 mL, pH 7.8). After this, the homogenate was centrifuged at
12,000 g at 4◦C for 30 min to get the supernatant. A 0.5 ml
of supernatant was mixed with 1 ml of the reaction solution
[20% W/V tricarboxylic acid (TCA) and 0.5% W/V thiobarbituric
acid (TBA)] and then the mixture was placed in a water bath
at 95◦C for 30 min. After being centrifuged at 12,000 g for
10 min, the absorbance of the supernatant was detected at 532
and 600 nm (Dhindsa et al., 1981). The hydrogen peroxide
(H2O2) content was assayed by using the potassium iodide
(KI) method. The oxidation product was measured at 390 nm
(Velikova et al., 2000). For the relative electrical conductivity
(EC), the fresh seedlings (0.1 g) were immersed in 15 ml of
deionized water for 12 h, and then the initial conductivity of
the solution (Cinitial) was measured by using a conductivity
meter (DDS-307A, Shanghai Precision Scientific Instrument Co.,
Ltd., Shanghai, China). The seedlings were killed by autoclaving
at 140◦C for 30 min and the maximum conductivity of the
solution (Cmax) was measured. The percentage of Cinitial and Cmax
(EC = (Cinitial/Cmax)× 100%) was calculated as the relative EL of
seedlings (Blum and Ebercon, 1981).

Na+/K+ Content and Genes Expression
Analysis
Dry powdered samples (0.3 g) and 5 ml of nitric acid were added
into a Teflon digestion inner tank overnight and placed in a
constant temperature drying oven at 80◦C for 1.5 h, 120◦C for
1.5 h, and then at 160◦C for 4 h, respectively. After all acids in
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the tank evaporated, the residues were washed with 1% nitric
acid solution thrice to get a constant volume (25 ml) for the
estimation of Na and K contents (Geng et al., 2021). The Na
and K contents in the solution were then determined by using
the American thermoelectric inductively coupled plasma (ICP)
inductively coupled plasma emission spectrometer (ICAP6300).
The transcript levels of genes (Table 1) were performed using
a real-time quantitative PCR (qRT-PCR). The assay methods in
detail have been described in our previous study (Livak and
Schmittgen, 2001). Trβ-action was used as the reference gene
(Cheng et al., 2018).

Analysis of Metabolomics
The concentration of various metabolites was detected by using
a gas chromatography-time of flight mass spectrography (GC-
TOFMS). The method of Li et al. (2019) was used for metabolite
extraction, separation, and quantification as described clearly in
our previous study.

Statistical Analysis
The data were analyzed by using SPSS 20 (IBM, Armonk, NY,
United States). Significant relationships among the treatments
were detected by using the LSD at P ≤ 0.05.

RESULTS

Effect of Put on Seed Germination
Characteristics
Salt stress caused significant declines in GP, GV, GI, and VI,
whereas MGT increased when compared with the control. Under
normal conditions, Put treatment did not exhibit significant
effects on GV, GP, GI, and MGT. Under salt stress, seeds primed
with Put exhibited significantly higher GV, GP, and GI than
untreated seeds. The GV, GP, GI, or VI of seeds soaked in Put were
increased by 17, 13.5, 37.8, or 134.5% than that of seeds soaked in
water under salt stress, respectively (Table 2).

Figure 1A shows the phenotypic differences between Put-
pretreated and non-pretreated seeds after 7 days of germination.
The FW, DW, RL, and SL of the seedlings did not show significant
differences between the “Control” and the “Put” treatment
under normal conditions (Figures 1B,C). Salt stress significantly
decreased the FW, DW, RL, and SL of untreated seeds, however,
the seeds primed with Put exhibited significantly higher FW,

DW, RL, and SL after 7 days of germination under salt stress, as
reflected by a 68.56, 90.73, 102.27 or 63.49% increase in FW, DW,
RL or SL, respectively (Figures 1B–E).

Effect of Put on Oxidative Damage,
Membrane Stability, and Starch
Metabolism
Salt stress leads to the overaccumulation of ROS which causes
oxidative damage to cells. The EC and MDA content are
important indicators of cell membrane stability and oxidative
damage in plants (Liu et al., 2007; Cheng et al., 2018). Salt
stress caused significant increases in EC, MDA, and H2O2
content (Figure 2). The EC, MDA, and H2O2 content of Put-
treated or untreated seedlings did not show any significant
difference under normal conditions, but seeds soaked with
Put exhibited significantly lower EC, MDA, and H2O2 content
when compared with water primed seeds under salt stress
(Figures 2A–C).

Starch is the main energy reserve closely related to seed
germination and stress resistance (Yang et al., 2016). Salt stress
significantly decreased the germination and embryo growth of
white clover seeds associated with significant inhibition of starch
catabolism through decreasing amylase activity such as α-amylase
activity or β-amylase activity (Cheng et al., 2018). The Put
application did not have significant effects on starch content,
amylase activity, α-amylase activity, and β-amylase activity
during seed germination under normal conditions (Figures 3A–
D). In addition, salt stress showed no impact on starch content
and α-amylase activity in seedlings without Put pretreatment, but
significantly reduced the starch content and improved amylase
activity, α-amylase activity, or β-amylase activity in seedlings
pretreated with the Put (Figures 3A–D).

Effect of Put on Na+/K+ Content and
Genes Involved in Na+/K+ Transportation
The Put treatment did not affect the Na+and K+ content
and Na+/K+ ratio when the seeds germinated under normal
conditions (Figures 4A–C). Salt stress significantly reduced the
K+ content and improved the Na+ content as well as the
Na+/K+ ratio (Figures 4A–C). However, seeds soaked with
Put maintained significantly higher K+ content and lower Na+
content or Na+/K+ ratio than untreated seeds after 7 days of
germination under salt stress (Figures 4A–C). Under normal

TABLE 1 | Primer sequences and their corresponding GeneBank accession numbers of analyzed genes.

Target gene Accession no. Forward primer (5′–3′) Reverse primer (5′–3′) Tm/◦C

VP1 MF405364 GTCCAATCAGTGACAATGCCG AGAGGGCAAGAGACACAAGAGC 58

HKT1 MF405365 TGCATCACCGAAAGACAAAGC ATCGACAACCCTACATTCCCATA 57

HKT8 MF405366 TTCAAGACACGCTGGAGAAACTAT CGATGGCAGGAATGAGGTGT 57

SKOR MF405367 GTTTCATTTGATATGGTTCTCGGTG GGCCCTTTATTTGTTCACGGA 58

HAL2 MF405368 TTGTGAACCAGTTGAGAAGGCC TCGGCATCTCCACGACCTATT 61

H+-ATPase MF405369 CGTATAGTGTTTGGCTTCATGTTCA AATGGAGATGGCACCACCCTA 60

SOS1 MF405370 TGGTCCATCTGAAAGTGACAATAAC TCATCAAGCATCTCCCAGTAAGC 57

NHX6 MF405371 CAGTCTGGTTTCAGTCTTGCTCC ACCAAACATCAGGCACTCAACA 60
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TABLE 2 | Effects of seed priming with water or putrescine (Put) on seed germination characteristics.

Treatment GP (%) GV (%) GI MGT (d) VI

Control 96.00 ± 2.83a 95.00 ± 1.15a 36.17 ± 0.95a 1.53 ± 0.08b 1.48 ± 0.12a

Put 98.00 ± 1.63a 95.50 ± 1.91a 36.04 ± 1.32a 1.63 ± 0.16b 1.48 ± 0.10a

NaCl 49.00 ± 2.58c 33.00 ± 1.15c 10.26 ± 0.56c 3.11 ± 0.17a 0.25 ± 0.03c

NaCl+Put 66.00 ± 2.83b 46.50 ± 1.91b 14.13 ± 0.83b 2. 90 ± 0.21a 0. 59 ± 0.03b

Values are means ± SE (n = 4). Different letters in vertical columns indicate significant differences among various treatments (Control, Put, NaCl, and NaCl+Put). LSD
(P ≤ 0.05).

FIGURE 1 | Effects of seed soaking with Put or water on (A) phenotypic changes, (B) fresh weight, (C) dry weight, (D) root length, and (E) shoot length of white
clover seedlings after 7 days of germination under normal condition and salt stress. Vertical bars indicate ± SE of means (n = 4). Different letters above columns
indicate significant differences. LSD (P ≤ 0.05).

conditions, the transcript levels of H+-ATPase, Vacuolar H+
pyrophosphatase 1 (VP1), HKT1, HKT8, HAL2, and SKOR were
not significantly affected by the Put pretreatment, but the
Put significantly up-regulated the SOS1 and NHX6 expression

(Figure 4D). Salt stress had no significant effects on SOS1 and
SKOR expression but decreased the transcript levels of all other
genes (HKT1, HKT8, HAL2, H+-ATPase, VP1, NHX6) under
test (Figure 4D). The Put-pretreated seedlings exhibited 3.23,
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FIGURE 2 | Effects of seed soaking with Put or water on (A) electrical conductivity, (B) malondialdehyde content, and (C) hydrogen peroxide content of white clover
seedlings after 7 days of germination under normal condition and salt stress. Vertical bars above columns indicate the standard error of each mean (n = 4). Different
letters indicate a significant difference (P ≤ 0.05).

FIGURE 3 | Effects of seed soaking with Put or water on (A) starch content, (B) amylase activity, (C) α-amylase activity, or (D) β-amylase activity of white clover
seedlings after 7 days of germination under normal condition and salt stress. Vertical bars above columns indicate the standard error of each mean (n = 4). Different
letters indicate a significant difference (P ≤ 0.05).

3.65, 6.20, 4.94, 2.20, 3.90, 5.77, or 2.25 times higher transcript
levels of H+-ATPase, VP1, HKT1, HKT8, SOS1, NHX6, HAL2, or
SKOR when compared with water primed seeds under salt stress,
respectively (Figure 4D).

Effect of Put on Metabolic Profiles
More than 1,000 peaks were detected by GC-TOFMS and over
107 putative metabolites were found in seedlings of white clover.
A total of 102 differentially expressed metabolites (DEMs) were
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FIGURE 4 | Effects of seed soaking with Put or water on (A) total sodium content, (B) total potassium content, (C) sodium/potassium ratio, and (D) relative
expression of genes involved in sodium and potassium transportation (VP1, HKT1, HKT8, SKOR, HAL2, H+-ATPase, SOS1, and NHX6) of white clover seedlings
after 7 days of germination under normal condition and salt stress. Vertical bars above columns indicate the standard error of each mean (n = 4). Different letters
indicate a significant difference (P ≤ 0.05). The relative expression of genes is based on the Trβ-action gene expression.

identified and quantified in four different comparison groups
(Put vs. C, Put+NaCl vs. NaCl, NaCl vs. C, and NaCl + Put vs.
C) including 27 AAs, 24 organic acids, 10 lipids, and fatty acids,
5 sugars, 6 alcohols and 30 other metabolites (Figure 5A). The
heat map showed an overall change of 102 DEMs commonly or
differentially regulated by Put and NaCl (Figure 5A). A 44.12,
5.88, 79.41, or 70.59% metabolites significantly decreased in
the Put vs. C, NaCl+Put vs. NaCl, NaCl vs. C, or NaCl+Put
vs. C, respectively (Figure 5B). A total of 53.92% metabolites
significantly increased in the NaCl+Put vs. NaCl, and only 5.88,
10.78, or 13.73% metabolites significantly increased in Put vs. C,
NaCl vs. C, or NaCl+Put vs. C, respectively (Figure 5B). The
total content of AAs, organic acids, sugars, alcohols, and others
decreased significantly in both water-primed and Put-primed
seeds under salt stress, as shown in Figure 5C. However, seeds
soaked with Put exhibited an 88.89, 18.49, 91.85, 86.54, or 98.18%
increase in AAs, organic acids, sugars, alcohols, or others than the
seeds soaking with water under salt stress, respectively. The Put
pretreatment exhibited no significant effects on the total content
of sugars and alcohols, but a reduced accumulation of AAs,
organic acids, and others under normal conditions (Figure 5C).

The tryptophan, methionine, serine, aspartic acid, glutamic
acid, alanine, norleucine, isoleucine, norvaline, oxoproline,
citrulline, homoserine, aminoisobutyric acid, aminovaleric
acid, cyanoalanine, and succinylhomoserine content were
not significantly affected by the exogenous Put under normal
conditions, whereas the Put pretreatment significantly decreased
the threonine, tyrosine, cysteine, histidine, lysine, proline,
glycine, phenylalanine, aminobutyric acid, or diaminobutyric
acid content in seeds after 7 days of germination under
normal condition (Figures 6A,B). Salt stress had no impact on
glutamic acid, citrulline, and aminoisobutyric acid content, but
significantly improved aspartic acid content (Figures 6A,B).
Except the aminoisobutyric acid, 10 polar AAs (tryptophan,
methionine, threonic acid, serine, tyrosine, cysteine, aspartic
acid, glutamic acid, histidine, and lysine) and 16 non-polar
AAs (alanine, norleucine, isoleucine, norvaline, proline,
oxoproline, glycine, phenylalanine, citrulline, homoserine,
aminobutyric acid, aminoisobutyric acid, diaminobutyric acid,
aminovaleric acid, cyanoalanine, succinylhomoserine) contents
were significantly increased in the “NaCl+Put” when compared
with “NaCl” (Figures 6A,B).
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FIGURE 5 | Effects of seed soaking with Put or water on (A) heat map of changes in 102 metabolites, (B) percentage of the total number of metabolites in each
group, and (C) total content of AAs, organic acids, sugars, alcohols, and others in each treatment in white clover seedlings after 7 d of germination in response to
exogenous Put application and salt stress. Log2 (fold change) ratios were shown in the heat map. Red and green indicate the up—and down—regulation,
respectively. Vertical bars above columns indicate the standard error of each mean (n = 4). Different letters indicate a significant difference. LSD (P ≤ 0.05).

The Put treatment significantly reduced the pyruvic
acid, malic acid, α-ketoglutaric acid, and cis-sinapinic acid
contents with significant improvement in citric acid contents,
whereas other organic acids remained unaffected under

normal conditions (Figure 7A). Salt stress had no impact on
α-ketoglutaric acid, dihydroxycinnamic acid, and ferulic acid
contents with a considerable increase in the citric acid content
and a significant reduction in other 7 organic acids contents.
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FIGURE 6 | Effects of seed soaking with Put or water on (A) relative polar and (B) non-polar AAs content in white clover seedlings after 7 d of germination under
normal condition and salt stress. Vertical bars above columns indicate the standard error of each mean (n = 4). Different letters indicate a significant difference
(P ≤ 0.05).

However, the seeds soaked with Put maintained a significantly
higher 9 organic acids content than the seeds primed with
water under salt stress (Figure 7A). Under normal conditions,
the Put treatment significantly reduced the anhydro-D-
galactose and myo-inositol content with marked improvement
in hexadecanol content, while other metabolites remained
unaffected (Figure 7B). Salt stress significantly reduced the
levoglucosan, fucose, anhydro-D-galactose, myo-inositol, allo-
inositol, hexadecanol, threitol, and glycerol contents (Figure 7B).
Significantly higher levoglucosan, fucose, anhydro-D-galactose,
myo-inositol, allo-inositol, hexadecanol, threitol, and glycerol
contents were observed in the seeds primed with Put in contrast
to water primed seeds under salt stress (Figure 7B). Under
normal conditions, the Put treatment significantly reduced
the linoleic acid, palmitic acid, Put, formononetin, succinate
semialdehyde, and phosphate content, but had no significant
effects on other metabolites (Figure 7C). As compared to the
seeds soaked with water, the seeds primed with Put exhibited
significantly higher Put, Spd, formononetin, adenine, guanine,
succinate semialdehyde, and phosphate content, but had
significantly lower stearic acid, linoleic acid, and palmitic acid
content under salt stress (Figure 7C).

Metabolic pathways in association with sugars and AAs
metabolism, TCA cycle, and g-aminobutyric acid (GABA) shunt
were shown in Figure 8. A total of 60 out of 102 identified
metabolites (23 AAs, 4 sugars, 13 organic acids, 5 lipids
and fatty acids, 3 alcohols, and 12 other metabolites) were
assigned to metabolic pathways. The application of Put had
a pronounced effect on salt-stressed seedlings (NaCl+Put vs.
C) relative to non-stressed seedlings (Put vs. C). Put-induced
metabolites accumulation was mainly involved in amino acid and
organic acid metabolism under salt stress. The Put-pretreated
seeds maintained significantly higher contents of intermediate
metabolites involved in the TCA cycle and GABA shunt than
the water-primed seeds (NaCl+Put vs. NaCl) during germination
under salt stress (Figure 8).

DISCUSSION

Seed germination experiences a series of complex physical and
physiological processes including water absorption, activation
and formation of enzyme systems, and mobilization of reserve
substances such as starches, proteins, fatty acids, and minerals
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FIGURE 7 | Effects of seed soaking with Put or water on (A) organic acids, (B) sugars and alcohols, and (C) other metabolites content of white clover seedlings after
7 d of germination under normal condition or salt stress. Vertical bars above columns indicate the standard error of each mean (n = 4). Different letters indicate a
significant difference (P ≤ 0.05).
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FIGURE 8 | An assessment of 60 metabolites in the map of metabolic pathways. Red, green, and gray mean the significant increase, decrease, and unchanged,
respectively.

for seedling establishment and growth. Starches are the main
energy reserves closely related to seed germination and stress
resistance (Yang et al., 2016). During seed germination, starches
in the endosperm are rapidly hydrolyzed into monosaccharides
and other small molecular substances by various amylases. As
one of the most important hydrolysates of starch, the glucose
is metabolized into glycolysis and pentose phosphate pathways
to provide energy for seed germination (Smeekens et al., 2010).
In addition, soluble sugars also act as important osmolytes and
osmoprotectants performing crucial roles in the maintenance of
water balance and the integrity of lipids membrane structure
during germination under salt stress (Boriboonkaset et al.,
2013). A previous study has shown that salt stress significantly
decreased germination and embryo growth of white clover seeds
associated with the significant inhibition of starch catabolism
or sugars metabolism (Cheng et al., 2018). It has been found

that Put could significantly promote the metabolism of energy
storage substances such as proteins and starches contributing to
enhanced seed germination and seedling growth of rice under
salt stress (Prakash et al., 1988). Here, our study showed that
salt stress significantly decreased total amylase and β-amylase
activities in white clover seedlings without the Put pretreatment.
However, Put-treated white clover seedlings exhibited significant
increases in total amylase, α-amylase, and β-amylase activities
together with a significant reduction in starch content under salt
stress (Figure 3). The metabolomic analysis also demonstrated
that Put effectively alleviated salt stress-induced declines in
levoglucosan, fucose, and anhydro-D-galactose contents during
seed germination (Figure 7B). These findings indicated that
Put could activate amylases to accelerate starch hydrolysis
contributing to improved soluble sugars for seed germination and
seedling establishment under salt stress (Figure 3). Our current
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FIGURE 9 | Integrative pathways regulated by the Put priming during white clover seeds germination under salt stress. Red or green letters mean a significant
increase or decrease, respectively.

findings were consistent with the study of Çavuşoğlu et al. (2007)
who reported that Put pretreatment significantly improved barley
seed germination and seedlings establishment under salt stress.

During seed germination, smaller molecules
“monosaccharides” from starch hydolysis undergo glycolysis to
produce pyruvate perform vital functions in the TCA cycle and
mutual transformation of sugars, proteins, and lipids (Min et al.,
2016; Zhang et al., 2016). Salt stress significantly reduced the
production of pyruvate and intermediates of the TCA cycle such
as citric acid, α-ketoglutaric acid, succinic acid, and malic acid,
thereby inhibiting seed germination and subsequent seedling
establishment (Zhang et al., 2016; Cheng et al., 2018). In our
current study, the decrease in total organic acid content caused
by salt stress was observed in white clover seedlings, whereas
the total organic acid content was maintained at a high level in
seeds soaked with Put under salt stress (Figure 5C). The Put
pretreatment also significantly alleviated salt-induced reductions
in pyruvate, citric acid, α-ketoglutaric acid, and malic acid
during white clover seed germination, which indicated better
maintenance of TCA cycle in seedlings in response to salt stress
(Figure 7A). An earlier study by Min et al. (2016) found that
exogenous Put significantly increased accumulations of organic
acids and pyruvate, hence promoting the release of more energy
currencies (ATP and ADP) in leaves associated with improved
salt tolerance of cucumber (Cucumis sativus) seedlings.

In addition to metabolic roles for energy supply, organic
acids play critical roles in maintaining ionization equilibrium,
antioxidant defense, and other functions in cell saps due to
their property of weak acid (Lin et al., 2014). Glycolic acid is
an important intermediate metabolite of the photorespiration
pathway in higher plants (Hong et al., 2017). The inhibition

of glycolic acid metabolism reduces photorespiration rate and
photosynthetic rate, resulting in reduced glycine and serine
content, growth retardation, and even “respiratory condition
death” (Bai et al., 2014; Lu et al., 2014). Significantly higher
glycolic acid content was only observed in the Put-pretreated
white clover seedlings after 7 days of germination under salt
stress, indicating that the Put-induced salt tolerance could be
related to the glycolic acid pathway (Figure 7A). Previous
studies have shown that phenolic acids such as caffeic acid
(dihydroxycinnamic acid), sinapinic acid, and ferulic acid with
strong antioxidant capacity positively regulated plant nutrient
absorption, enzyme activity, and photosynthesis (Faulds and
Williamson, 1999; Robbins, 2003). It has been reported that
dihydroxycinnamic acid with appropriate concentration could
significantly improve the salt tolerance of soybeans and the
drought tolerance of cucumber seedlings (Klein et al., 2013; Wan
et al., 2014). The productions of sinapinic acid and choline in the
endosperm were conducive to seed germination (Strack, 1981).
The exogenous application of sinapinic acid promoted seed
germination ofArabidopsis and partially restored the germination
inhibition induced by ABA (Bi et al., 2017). Ferulic acid is
one of the most effective components of medicinal plants such
as Ferula (Ferula asafoetida) and Angelica (Angelica sinensis)
associated with systematic stress tolerance (Lu et al., 2005; Aybek
et al., 2018). In our current study, Put-pretreated white clover
seedlings maintained significantly higher dihydroxycinnamic
acid, sinapinic acid, and ferulic acid levels than water-pretreated
seedlings, indicating that the Put-enhanced salt tolerance could
be related to the phenolic acid pathway during seed germination.

Based on the metabolic profiling analysis, salt stress
significantly decreased all detected AAs in white clover
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seedlings, except for the aspartic acid, glutamic acid, citrulline,
and aminoisobutyric acid (Figure 6). These various AAs can be
used as key regulators of osmotic potential, antioxidant defense,
energy metabolism, or signal molecules in cells contributing
to stress tolerance in plant species (Hu et al., 2015; Shi et al.,
2015; Li et al., 2016; Xu et al., 2018). It has been proved that
enhanced salt tolerance induced by Put was related to the
accumulation of many AAs such as threonic acid, serine, aspartic
acid, histidine, lysine, alanine, isoleucine, norvaline, and proline
in cucumber (Yuan et al., 2016). In this study, white clover
seeds soaked with Put exhibited significantly higher total AAs
content and individual amino acid content including proline,
glutamate, cysteine, aspartic acid, tyrosine, methionine, serine,
threonine, alanine, GABA, etc. than the seeds without the Put
pretreatment, which indicated that the mediation of AAs might
play an important role in the Put-induced salt tolerance during
seed germination. Proline is one of the most abundant AAs in
plants (Figure 6). Rapid accumulation of the proline improved
osmotic adjustment (OA) and antioxidants capacity when plants
responded to abiotic stress (Ashraf and Foolad, 2007; Signorelli
et al., 2013). Glutamate is involved in the synthesis of other AAs
such as GABA, glutamine, citrulline, proline, and 5-oxopropyl
in plants and also participates in nitrogen metabolism under
stress conditions (Bouché and Fromm, 2004). In addition, it
is well known that cysteine has a strong antioxidant effect in
alleviating stress-induced oxidative damage in plants (Youssefian
et al., 2001). Put-regulated salt tolerance was related to the
transformation of Put into the synthesis pathway of GABA,
glutamate, and proline in different plant species (Gill and Tuteja,
2010; Min et al., 2016). In this study, Put enhanced salt tolerance
during seed germination by promoting proline, glutamate,
cysteine, and GABA accumulation and metabolism (Figure 6).

Methionine is a sulfur-containing amino acid that not only
participates in the anabolism of ethylene and PAs (Spd and
Spm) but also exhibits a strong antioxidant effect in plants
(Jia et al., 2009). Plastoquinone and ubiquinone are important
intermediate transmitters in the plant electron transport
chain (Shukla and Dubey, 2018). Tyrosine is involved in the
production of metabolites such as tocopherol, plastoquinone,
ubiquinone β-galactoside, salidroside, and benzylisoquinoline
alkaloid which are essential for plant survival (Xu et al., 2020).
Aspartic acid is a precursor of plant essential AAs including
lysine, threonine, methionine, and isoleucine (Azevedo and
Lea, 2001). In addition, aspartic acid also participates in the
transportation and storage of nitrogen in plants (Azevedo
et al., 2006). Serine is involved in the photorespiration
pathway, 3-phosphoglycerate pathway in plastids, and C1
tetrahydrofolate synthase/serine hydroxymethyltransferase
pathways (Zhu et al., 2004). It has been reported that
alanine alleviated salt-induced inhibition of various enzymes
involved in nitrogen fixation, photosynthesis, and respiration
(Thomas and Shanmugasundaram, 1991). Therefore, the Put-
induced accumulation of diverse AAs including methionine,
alanine, serine, tyrosine, and aspartic acid could be associated
with important roles in metabolic homeostasis, OA, and
antioxidant during seed germination of white clover under salt
stress (Figure 6).

According to our current findings, salt stress or salt stress
in combination with the Put priming significantly induced
alterations in glycerol, fatty acids, alcohols, and other metabolites
during seed germination. Fatty acids and glycerol are metabolized
into the TCA cycle to release energy for seed germination
(Manuel et al., 2013). It has been found that enhanced hydrolysis
and conversion of glycerol and fatty acids promoted aged soybean
(Glycine max) seed germination and seedling establishment
(Zhou et al., 2018). Our findings showed that the glycerol
content significantly decreased, but fatty acids (stearic acid,
linoleic acid, and palmitic acid) content significantly increased in
geminated white clover seeds subjected to salt stress (Figure 7C).
Interestingly, the Put-pretreated white clover seeds maintained
significantly lower stearic acid, linoleic acid, and palmitic acid
contents than the seeds without the Put pretreatment after 7
days of germination under salt stress, which could indicate that
these fatty acids might have been used for seedling establishment.
The previous study has proved that increased metabolism
and conversion of fatty acids to sugars regulated by diethyl
aminoethyl hexanoate were beneficial to the germination of
aged soybean seeds (Zhou et al., 2018). In addition, the Put
pretreatment significantly alleviated salt-induced declines in the
myo-inositol, allo-inositol, hexadecanol, threitol, hydroxylamine,
formononetin, adenine, and guanine when white clover seeds
germinated under salt stress (Figures 7B,C). Inositol acts as
precursor and substrate for the biosynthesis of many important
metabolites such as inositol hexaphosphate, phosphatidylinositol,
galactitol, ascorbic acid, indoleacetic acid conjugates, ononitol,
and pinitol which have diverse functions in plant growth
and adaptation to stress (Stevenson et al., 2000; Donahue
et al., 2010; Saxena et al., 2013). The overexpression of a
CaIMP gene in Arabidopsis associated with inositol accumulation
significantly improved seed germination and seedling growth
under lithium stress (Saxena et al., 2013). Adenine is converted
into adenine monophosphate (AMP) in plant tissues to increase
the concentration of ATP and plant growth. It has been found that
the application of guanine and adenine significantly improved the
growth and salt tolerance of wheat (Triticum aestivum) (Hussein
et al., 2015). Significantly higher adenine and guanine contents
were observed in the Put-pretreated white clover seedlings after
7 days of germination under salt stress, indicating that the Put-
enhanced salt tolerance was related to the purine metabolic
pathway (Figure 7C). Formononetin is an important member of
flavonoids exhibiting an obvious antioxidant effect in plants and
its accumulation helps to alleviate oxidative damage caused by
abiotic stresses (Saviranta et al., 2010; Fini et al., 2011; Li et al.,
2017). Our results showed that seeds soaking with Put exhibited
significantly higher formononetin content than the seeds soaked
with water, which could be associated with the maintenance of
ROS homeostasis during white clover seed germination under
salt stress (Figure 7C).

Under salt stress, excessive accumulation of Na+ causes ionic
toxicity resulting in an ionic and metabolic imbalance in plant
cells (Gong et al., 2020). For example, a large amount of Na+
in cells not only blocks K+ absorption but also accelerates K+
loss and the production of ROS which damages the structure
and function of the cell membrane during germination of white
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clover seeds under salt stress (Cheng et al., 2018). Salt stress
inhibited melatonin accumulation and also enhanced ABA signal
transduction to promote the accumulation of ROS, resulting in
oxidative damage and reduced seed germination (Luo et al., 2020;
Chen et al., 2021). Our current results showed that more than
forty times higher Na+ content was detected in the salt-stressed
white clover seedlings as compared with that in non-stressed
seedlings. However, the Put application not only significantly
inhibited Na+ accumulation but also significantly alleviated salt-
induced K+ loss resulting in a lower Na+/K+ ratio in white
clover seedlings (Figures 4A–C). These findings indicated that
the Put-regulated white clover seed germination and subsequent
seedlings establishment are associated with changes in Na+ and
K+ transport and distribution under salt stress (Figure 4). It has
been found that SOS1 is very important for Na+ homeostasis in
plants. For example, the study of Shi et al. (2000) proved that the
SOS1 mutant Arabidopsis seedlings were highly sensitive to Na+,
and overexpression of AtSOS1 in the SOS1 mutant significantly
reduced the sensitivity to Na+. The study of Yadav et al. (2012)
found that SbSOS1 could transport Na+ from the phloem to the
xylem resulting in reduced Na+ toxicity in living cells. Exogenous
Spm significantly up-regulated the AsSOS1 expression associated
with maintenance of low Na+ content and higher K+/Na+ ratio
in leaves and roots when creeping bentgrass suffered from salt
stress (Geng et al., 2021). Significant up-regulation of SOS1
and H+-ATP expression levels was observed only in the Put-
pretreated white clover seedlings after 7 days of germination
under salt stress indicating that the Put-enhanced salt tolerance
was related to the SOS pathway (Figure 4).

In addition, salt stress significantly reduced the expression
levels of NHX6, SKOR, HKT1, HKT8, and HAL2 gene in
white clover seedlings, however, seeds primed with Put could
significantly alleviate these phenomena (Figure 4D). NHX6
regulates the balance of Na+ and K+ in reticular structures
of golgi bodies (Bassil et al., 2011). A previous study found
that the K+ content in nhx5/nhx6 double mutant Arabidopsis
plants was significantly lower than that in wild-type plants, which
could be eliminated by restoring the expression of AtNHX5
or AtNHX6 in double mutant plants (Wang et al., 2015).
SKOR is a key protein for the long-distance distribution of
K+ from root to upper parts of the plant and contributes up
to 50% of K+ transport in xylem sap (Huang et al., 2018).
Under salt stress, ZmHKT1 or OsHKT8 mediate the Na+
rejection in xylem sap or phloem, respectively, and both of
them prevent the transfer of Na+ to young leaves. Impaired
performance of hkt1 or hkt8 increased Na+ concentration
in aboveground tissues leading to reduced salt tolerance in
plants (Kobayashi et al., 2017; Zhang et al., 2018). Our results
showed that transcript levels of HKT1 or HKT8 in seeds
primed with Put was 6.20 or 4.94 times higher than that in
seeds soaked in water under salt stress (Figure 4D). These
findings demonstrated that the maintenance of higher expression
levels of NHX6, SKOR, HKT1, and HKT8 induced by the Put
could play critical roles in Na+ rejection and K+ retention
during white clover seed germination (Figure 4D). In addition,
HAL2 hydrolyzed intermediate product 3′-phosphoadenosine-
5′-phosphosulfate (PAPS) in the process of sulfur assimilation in

rice and Arabidopsis cells under salt stress, which reduced PAPS
toxicity in cells (Gil-Mascarell et al., 2010). Put-pretreated white
clover seedlings exhibited significantly higher HAL2 expression
under salt stress, which could enhance detoxification ability to
PAPS (Figure 4D).

CONCLUSION

Seed soaking with Put significantly alleviated salt stress-induced
inhibition of white clover seed germination and subsequent
seedlings establishment associated with reduced oxidative
damage and accelerated amylolysis. The metabolomic analysis
found that the Put-pretreated seeds maintained significantly
higher AAs, organic acids, sugars, and other metabolites contents
than non-pretreated seeds after 7 days of germination under
salt stress. Put promoted sugar and AAs metabolism, TCA
cycle, and GABA shunt associated with better cell membrane
stability, energy supply, and metabolic homeostasis when
seeds germinated under salt stress. Put-induced increases in
other metabolites accumulation such as myo-inositol, guanine,
adenine, and formononetin could be involved in enhanced
antioxidant defense and osmotic adjustment contributing to
salt tolerance. Under salt stress, Put significantly up-regulated
the AsSOS1, NHX6, SKOR, HKT1, and HKT8 expression
levels which played critical roles in Na+ rejection and K+
retention resulting in a higher K+/Na+ ratio during seed
germination. In addition, Put-induced up-regulation of HAL2
transcription level could reduce the toxicity of PAPS in
cells (Figure 9). Current findings provide an integrative
understanding of Put-induced salt tolerance associated with
amylolysis, metabolic regulation, and ionic homeostasis during
seed germination.
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